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Hello everyone. Today, we will conclude our discussion of Density of States and we will 

start a new topic called Fermi Function or Fermi Dirac Distribution Function, which 

essentially means the probability of a state being occupied.  

But let us first wrap up what we were discussing about the density- of states and this is 

what we have covered so far; the density of states in a material is essentially the states 

available for conduction the electronic states available for conduction. So, these are the 

unique electronic states, distinct electronic states available in a material which the electron 

can occupy, if it has the required energy. 
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And for the 3D material we saw that g3D is essentially directly proportional to square root 

of E. A 2D density of states is constant; it is not a function of energy, it is independent of 

the energy of the electrons. It is a constant value given by 
𝑚∗

𝜋ℏ2. And 1D density of states is 

inversely related to the energy in this way; square root of 1 by square root E. During the 



end of last lecture, I asked you to think about 0D density of states; what would be the 

density of states for a 0D material? 

So, a 0D material is essentially a material in which electrons are confined like they are 

confined in an atom basically, so or in a molecule. So, example of 0D materials are 

quantum dots, as I have repeatedly discussed organic molecules.  

By the way, organic molecules are nowadays being used in many novel electronic devices 

for their application. For example, the DNA molecules are being tested for their electronic 

properties and in some devices, they find interesting applications. 

So, the organic molecules and quantum dots are example of 0D material and a 0D material 

is essentially a big molecule. It is a single molecule or it might be a single molecule or it 

might be a combination of atoms making it a macromolecule; but it is like a molecule. So, 

in this case, what would be the density of states? That is the question that is there.  

So, in order to answer this question, we need to see so as you might recall that in order to 

find out the density of states, we need to count the number of states essentially and for 

that, we need to see how electronic states are distributed in a material basically ok. So, 

how are electronic states distributed in an atom or in a molecule? Just think about it. 
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In a 0D atom, in a 0D solids and the answer is simple that  there are discrete electronic 

states. So, if we plot the states in an atom, this is how it looks like. The confinement in all 

directions causes discretization of electronic states.  

In 1D solids as we have already seen that 1D solids might have bands and band gaps; 2D 

solids again might have bands and band gaps; 3D solids might also have bands and band 

gaps; but of 0D solid the electronic states will be discretely placed. Because the electron 

is confined in all directions and confinement leads to discretization of energy and this is 

how the electronic states would look like. 

So, in a very simple term, we can write down the density of states for 0D material to be 

delta function essentially ok; where, Ei corresponds to the band or corresponds to a 

reference energy level and if you take the reference to be 0, it will just be delta times E.  

But here also each of these electronic states can occupy up to 2 electrons because the 

electrons can have up spin and down spin and as we already know that opposite spin 

electrons can stay in one energy level that would make their quantum numbers different, 

at least the spin quantum number different and that would not violate any physical 

principle. 

So, this is the density of states in 0D material. It is as simple as that because there is no 

volume in 1D in 0D solids and then, electronic states per unit volume per unit energy can 

just be given by this delta function. So, as you might have seen in 1D case, let us say the 

density of states is inversely proportional to the square root of energy.  

So, if we plot the density of states as a function of energy in 1D case, what do you expect? 

It would be a decreasing function because as the E value increases, the density of state 

function decreases.  
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So, this g(E) function will be a for 1D case, g1D(E) as a function of E, it would be a 

decreasing kind of function like this. For when energy values are very less, it will have a 

large the density of states would be large number. As the energy value goes to higher 

values, this will be a small number. 
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And if you recall for 2D cases, the density of states is. For 1D, it is like this; for 2D case, 

g2D(E) as a function of energy is essentially for 2D case, it is constant; for 3D case, it is an 

increasing function; g3D(E) and for 0D case, it is just a delta function.  



So, corresponding to different or I would say 𝜕(𝐸 − 𝐸𝑖), where these can be different 

energy values, corresponding to different allowed energy values, it will be a delta function 

like this. It will have a peak at all these peaks will be of same height. So, if this is first 

allowed electronic state, this is second, if this is third, like this ok. 

So, now, we sort of know how density of states look like in 3D, 2D, 1D and 0D materials. 

Now, we are ready to sort of ready to understand how to use the density of states idea in 

our electronic devices. So, for that, we also need to understand this is the summary of 

density of states. This we have already seen that for 3D case, increasing function; 2D case, 

constant function; 1D case, decreasing function and 0D case, it is a delta function ok. 
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Generally, in solids conduction or conducting electrons are present in the conduction band. 

So, generally in solids, if this is the band structure, if this is the valence band, most of these 

states are filled. If this is the conduction band in between there is a band gap, this is 

conduction band, there will be a small number of electrons at the bottom of the conduction 

band and the energy value at the top of the valence band is popularly written as Ev; the 

energy at the bottom of the conduction band is written as Ec.  

The corresponding E k diagram for this is this we have also seen in our earlier classes, 

especially during the discussion of KP model, this is the actual this is how the actual E k 

diagram looks like. 



This is the valence band; this is the conduction; this is the among the simplest E k diagram 

for conduction band and valence bands basically and at the top of the valence band and at 

the bottom of the conduction band, generally the E k relationship is parabolic. So, that is 

why we can use the use the parabolic relationship.  

We can use this parabolic relationship 
ℏ2𝑘2

2𝑚∗
 But if this energy value, if this value is the 

bottom of the conduction band reference energy value is Ec, in this case the E k 

relationship between the E k relationship for electrons at the bottom of the conduction 

band would be E equals Ec + 
ℏ2𝑘2

2𝑚∗
. 

So, we need to add this reference value in the E k relationship. This is the E k in solids in 

devices generally this is the E k relationship that we will use for electrons in conduction 

band. Similarly, in valence band if this energy level is Ev the E k relationship would look 

like E equals Ev - 
ℏ2𝑘2

2𝑚∗ .  

Generally, we are mostly concerned about the electrons at the bottom of the conduction 

band because those are the major contributors in conduction, specially in doped 

semiconductors ok. So, that is why we will use this relationship in most of our device 

analysis. 

So, with this relationship, the density of states would change a little bit; the expression for 

the density of states would change a little bit because now, this 
ℏ2𝑘2

2𝑚∗
 will be E - Ec. So, 

which means k will be now 
√2𝑚∗(𝐸−𝐸𝑐)

ℏ
.  

So, instead of E, we will have a factor of E minus Ec in all our expressions, especially in 

density of states. So, the density of states for 3D material in conduction band the form will 

be the same; but in place of E, we will have E - Ec essentially. Similarly, in 2D, 1D and 

0D cases as well. If 0D kind of situation is arising in the conduction.  
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But in 3D case, this E k relationship, this g3D(E) would be directly proportional to the 

square root of E –Ec; g2D(E) will still be constant because it was already independent of 

energy and g1D will be inversely proportional to square root of E - Ec.  

Similarly, for a 0D material, we can write it to be delta function at Ec or 2𝜕(𝐸 − 𝐸𝑐). So, 

these are the density of states expression in conduction band of most of the in 

semiconductors that is what we will use in our analysis and now, there is an interesting 

observation that we can make from these expressions. 

So, if we plot in a material,  if we plot for example, if this is the conduction band, this is 

Ec bottom of the conduction band. If this is the top of the valence band Ev, so the valence 

band is here, conduction band is here; this is the band gap.  

Now, for a 3D material, if the channel is a 3D material, in that case g3D(E) in conduction 

band would be directly proportional to square root of E - Ec. What it says is that the plot 

of density of states in 3D material in conduction band as a function of energy will now 

slightly be shifted to the edge of the conduction. 

So, if this is the conduction band energy Ec, this point is Ec, so this function would be 

plotted as this. So, at E equals to E c, g3D(E) would be 0. So, what it says is that if we are 

using a 3D channel, in a 3D channel at the bottom of the conduction band, right at the 

bottom of the conduction band, the density of states is 0.  



So, what it says is that no electron can exist at the edge of the conduction band in a 3D 

solid because the density of state is 0 at the edge of the conduction band and as we go 

above conduction band edge, as we go above from the bottom of the conduction band, the 

density of states is increased. 

So, the number of allowed electronic states around the bottom of the conduction band in 

this range here in this area so to say in this regime will be less. So, the number of electrons 

that exist in very close to the bottom of conduction band will be a small number in 3D 

devices.  

That is an important thing because generally, the perception that we have is that an electron 

goes from the top of the valence band to the bottom of the conduction band or a electron 

goes from the valence band to a higher energy and then, it relaxes the energy and comes 

down to the bottom of the conduction band. 

But in a 3D channel which is and 3D channels are among the most common channels that 

we use. 3D material, just at the edge of the conduction band no electronic state exists and 

also, near the edge of the conduction band very less number of electronic states exist in 

this energy range. As we go higher as we go above the bottom of the conduction band to 

higher energies, the allowed electronic states increase significantly ok.  

So, this we need to keep in mind . So, this was the scenario for 3D materials, for 3D 

channel. Now, let us see what happens in a 2D channel and this you might have already 

guessed that for 2D channel, for a 2D material, the density of state is independent of 

energy. So, the density of state is a constant function.  
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So, a 2D density of state in conduction band will be constant. So, if we plot the density of 

states, it will be a constant function starting from the bottom of the conduction band. It 

will be a function like this ok. So, what it says is that the number of allowed electronic 

states in the device is same irrespective of where you are in the conduction band. So, in 

this entire range the same number of electronic states would be allowed in this entire range. 

So, in this case, an electron can exist at the bottom of the conduction band and in fact, it 

can exist anywhere wherever there is an available state. This is different from a 3D case, 

where electrons just near to the bottom of the conduction band are very less in numbers 

because the density of states is very small in that region. Let us see what happens in a 1D 

case. In a 1D case, the density of states is actually inversely proportional to energy and the 

situation is exactly opposite to the 3D case.  
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So, in 1D case, it will be inversely proportional to square root of E - Ec. So, this g versus 

E plot for 1D solids would be like this. Just at the bottom of the conduction band which 

means at E equals E c, g 1D actually tends to infinity. So, this is the huge number at the 

bottom of the conduction band.  

So, what it means is that at the bottom of the conduction band, an extremely large number 

of allowed electronic states exist. In fact, most of the electronic states exist  at the bottom 

of the conduction band which means that in 1D solids most of the electrons stay at the 

bottom of the conduction band. 

This is direct to in contrast with 3D solids. So, now, if an electron is excited from the 

valence band to the conduction band, in most of the cases, it will invariably fall to the 

bottom of the conduction band because there is huge number of electronic states available 

there, almost infinite and that is an interesting difference as we change the dimensionality 

of material or as we change the dimensionality of the channel, such kind of fundamental 

changes happen in the electronic properties of the material. 

So, that is why this kind of analysis, this kind of fundamental analysis is important, if we 

want to understand the conduction or understand the transport in devices specially in nano 

devices; where 1D, 2D channels are quite frequent actually. In 0D case, it is just a delta 

function. So, there are discrete energy levels. It is just like a  atomic structure of; even the 

notion of conduction band and valence band is not very well applicable in 0D materials. 
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So, we will just have allowed electronic states, discrete allowed electronic states, where in 

each state two electrons can exist ok. So, with this, we essentially conclude our discussion 

on the density of states. 
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The next topic that we are going to discuss is the idea of Fermi function. So, as we have 

repeatedly seen for conduction, we saw that if this is the 2D device, prototypical 2D device; 

a two terminal device, not 2D device this is a two terminal device that we take in order to 



understand the theory of transport and in this two terminal device, if there is no applied 

voltage, the source Fermi level and the drain Fermi level are at the same level. 

If we apply a voltage here, this v becomes positive. The drain Fermi level will go down by 

a value of q times applied voltage and the source Fermi level will try to fill all the electronic 

states up to this level. The drain Fermi level will try to fill all electronic states up to this 

level.  

So, all the electronic states below the drain Fermi level will be filled in the channel and 

these states will be getting electrons from the source and the drain will take out the 

electrons from these states and this will essentially enable conduction in the device. So, 

this is the broad idea of conduction. 

But before that we sort of need to understand the idea of the Fermi level and the Fermi 

Dirac distribution function or  simply known as Fermi function. So, with the density of 

states, we could see how many allowed electronic states are available in the solids; 

especially, in conduction band or even we can also reduce the number of available 

electronic states in the valence band as well. 

Using with KP model, if we go back we saw that mathematically and graphically how 

bands are formed in periodic crystals. So, now, the last topic that is left before we move 

on to discuss the idea of conduction or the theory of transport is the Fermi Dirac 

distribution function.  

So, all of us know that electrons are spin half particles and all half integer spin particles, 

all the particles whose spin is half integer 1/2, 3/2, 5/2, so on; all those particles are known 

as fermions and on fermions, when a lot of fermions are close to each other,  this 

fundamental principle Pauli’s exclusion principle applies basically. 

So, what it means is what this principle says is that no two fermions can have the same 

quantum numbers; exactly the same quantum numbers. In other words, Pauli’s exclusion 

principle states that the two electrons cannot occupy the same electronic wave function, 

when we take spin wave function and the space wave function together ok.  

And because of this, if we have a large number of fermions in a system which is generally 

the case. For example, in solids, we have a huge number of electrons; even in a small 



channel, we will have a large number of electrons sitting there. Then, because of the Pauli’s 

exclusion principle, they will occupy various states in a certain way. 

So, they will follow a certain distribution function which is known as the Fermi Dirac 

distribution function or simply known as the Fermi function ok. So, the Fermi function 

that is essentially the idea of the Fermi function and mathematically, this is how it looks 

like. 
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So, this is a function of energy. This is given as  𝑓𝐹𝐷(𝐸) =  
1

𝑒
𝐸−𝐸𝐹

𝑘𝑇 +1

. This is how the 

electrons will be distributed in the system. Physically, it corresponds to the probability that 

a state will be occupied by the electron at temperature T in thermal equilibrium.  

So, the Fermi Dirac distribution function physically means the probability that a state is 

occupied at a given temperature in thermal equilibrium and it depends on EF which is 

known as the Fermi level of a of the material. 

Now, this is the distribution function of fermions. In nature, there are other particles as 

well which have integer spins and these particles are known as Bosons essentially and 

there is no principle like Pauli’s exclusion principle for bosons. Bosons can many bosons 

can occupy the same state, same energy state and the distribution function is known as the 

Bose Einstein distribution function. 



So, let us write this function as BE; fBE and Fermi Dirac as FFD that function is given as. 

So, these two functions essentially describe how two different kind of particles fermions 

and bosons are distributed in various energy levels at a given temperature and there is only 

a small difference and that is the difference of this sign. Here, it is a positive sign in Fermi 

Dirac distribution; in Bose Einstein distribution, this is the negative sign. But this makes 

huge difference; this sign makes huge difference in their distribution. 

So, we will see how this how Fermi Dirac distribution function is important in our device 

analysis. We will also see why this probabilistic argument comes about; why can we 

interpret this as a probability of the state being occupied by electron at a given temperature 

in the next class.  

So, I let you think about this; I will request all of you to think about or go through Fermi 

Dirac distribution and Bose Einstein distribution function and if you can go through the 

derivations, at least the theory of these two distributions on your own. 

Thank you for your attention. See you in the next class. 


