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Lecture - 13 

Density of States – 2D, 1D, 0D 

 

Hello everyone. Today, we are going to discuss Density of States in 2D solids, 1D solids, 

and 0D solids. Basically,  we will try to conclude the density of state discussions today. 
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And before delving into that let me quickly review what we discussed in the last class. We 

discussed in detail about the density of states in 3D solids. 3D solids mean that the 

dimension of the solids, the solid is significant in all 3 directions. By significant I mean 

electron is confined in all 3 directions in the solid in an extent which is larger than the 

dimension of the electron, generally the dimension of the electron. 

So, this is what we concluded about the 3D density of states that the density of states in 

3D solids is directly proportional to the energy value. And there are certain approximations 

that we make and those approximations are not unrealistic approximations. They are fairly 

reasonable approximations, specially at the top of the valence band and at the bottom of 

the conduction band. 



So, the discussion that we are doing here that is quite aptly suitable for application in our 

practical devices as well. Specially, in the most important parts of the bands that is the top 

of the valence band and the bottom of the conduction band. We saw that the density of 

state of a 3D solid  has a pattern like this.  

This g(E) as a function of energy for 3D solids is like this. First, for low energy values 

g(E) is quite low which means that the available electronic states for low energies is less 

in 3D solids. 

Then, we started our discussion of 2D solids as well, and a 2D case is also quite similar to 

a 3D case to the 3D case. Here even it is more simple, here only we have two directions in 

which we need to solve the Schrodinger equation and the solution of electronic wave 

function in 2D solids turns out to be A sin kxx sin kyy. 
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And these kx and ky values are discrete values. And as we saw that in order to find out the 

density of states, we need to calculate the allowed electronic states and that we do in k-

space. So, we go to the k-space which means we plot kx and ky axis, and we put the allowed 

k points in the k-space.  

And each point now corresponds to a wave function of electron. There are two other 

constraints that we or two other points that we need to keep in mind, one is that we did not 

consider the spin degree of freedom of electrons. 



So, we need to multiply the number of allowed states by 2, but at the same time we saw 

that points in different quadrants of the k-space, they essentially belong to the same 

electronic or they essentially describe the same electron because they only have a 

difference of global phase.  

And global phase physically does not make any difference in quantum mechanics, ok. So, 

two points, one is the spin and second is the over counting of electronic state. These two 

things we need to keep in mind. 

So, here in order to now find out the density of states, we need to calculate the number of 

k points in k-space and we need to find out the sort of the density of k points, allowed k 

points in the k-space. In this case, in a 2D case, density will mean per unit area. So, density 

will essentially mean per unit area. In 3D case, it was per unit volume.  

So, in order to find out the number of allowed k points in the range from k to k + dk, we 

draw a spheric, we draw a circular ring whose inner radius is k and outer radius is k + dk. 

So, this width of the ring is dk. And area of single allowed state in k-space, this area is 
𝜋

𝐿𝑥
 

times 
𝜋

𝐿𝑦
.  

So, this is the area of single allowed electronic state in the k-space and that is essentially 

𝜋

𝐿𝑥
 times 

𝜋

𝐿𝑦
. So, this is the area of one electronic state, one allowed electronic state in the 

k-space. 

Now, what is the area of the circular ring? So, the area of the ring will be 2𝜋𝑘𝑑𝑘, area of 

the circle is 𝜋𝑘2, circle of radius k is 𝜋𝑘2e and area of the ring will be 2𝜋𝑘𝑑𝑘. So, now, a 

number of electronic states in the ring will be area of the ring 2𝜋𝑘𝑑𝑘 divided by area of 

the single state. And the area of the single state would be 
𝜋2

𝐿𝑥𝐿𝑦
, and 𝐿𝑥𝐿𝑦 is also the area of 

the entire solid, essentially. 

So, this number of states number of electronic states in the ring would be the area of the 

ring which is this divided by area of the single electron, single electronic state or area 

occupied by a single state, so it would be 
𝜋2

𝐴
. So, these are number of electronic states in 

the ring, essentially. So, these are the total number of electronic states in a range from k to 

k + dk. And this is denoted by N(E) times dE also by N(k) times dk. 



So, these are the total number of electronic states for values of wave vector from k to k + 

dk or for energy range of E to E + dE. So, for these this is the number of electronic total 

number of electronic states in this energy range. Now, the density of state calculation is 

straight forward. Density of states essentially means number of electronic states per unit 

volume, in this case it will be per unit area at a given energy which means we need to also 

divide by dE. 
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So, this is a total number of electronic states is 2𝜋𝑘𝑑𝑘 A times, so N(E)dE is 2𝜋𝑘𝑑𝑘 

divided by 𝜋2 𝑖𝑛𝑡𝑜 𝐴. Now, the two points that we discussed is we need to consider the 

electronic spin as well. So, we need to multiply by 2. Also, we need to avoid over counting 

of allowed electronic states, and k points belonging to different quadrants, they essentially 

correspond to the same electronic wave function.  

So, we need to divide by 4 because these 4 set of k points they correspond to the same 

electron, so we need to divide by 4 as well, ok. So, this becomes, total number of electronic 

states in the range from E to E + d E, this becomes kdk divided by 𝜋 times area. 

Now, we go back to our E k relationship and the E k relationship looks like this, E= 
ℏ2𝑘2

2𝑚∗
 , 

so which means 𝑘2 is like our earlier calculations 
2𝑚∗𝐸

ℏ2 . And if we take a derivative on both 

sides, it is 2kdk equals 
2𝑚∗𝑑𝐸

ℏ2 . 



We can remove 2 from each side, so it becomes k.dk is equal to 
𝑚∗𝑑𝐸

ℏ2
. So, if we put this 

value there, total number of electronic states in the energy range as a function of energy 

would be, so this is dE here, we need to take derivative on the right side as well, 
𝑚∗𝑑𝐸

ℏ2
𝐴. 

So, this number on the left hand side this is the total number of electronic states in the 

system. 

So, N(E) would be number of states total number of states per unit energy. This is the 

number of states, this entire left hand side expression, N(E)  times dE, this is the number 

of states in the energy range from E to E + dE, basically. So, this number any would be 

number of states per unit energy and the density of state as we; so, for 3D case will be 

number of states per unit area per unit energy. So, this will be N(E) divided by area, ok. 

So, now, we are in a position to sort of calculate the density of states for the 2D case. So, 

for 2D case if we represent, the density of state by g2D(E), this would be N(E) by area and 

it becomes 𝑚∗𝑑𝐸 by times A, A and A cancels which means g2D(E) is you know even m 

star goes sorry, this dE also goes away because N(E) is 
𝑚∗𝐴

ℏ2 , so this dE also goes away. So, 

what we are left with is 
𝑚∗

ℏ2 .  

So, here we also had 𝜋, so k.dk.A/ 𝜋 and k dk is 
𝑚∗𝑑𝐸

ℏ2 . So, we will also have a 𝜋 here, so 

essentially it would be 
𝑚∗

𝜋ℏ2 So, this is the density of states in a 2D solid as a function of 

energy. This is the expression for the density of states in a 2D solid. 

And as you might have already guessed here that on the right hand side everything is a 

constant, essentially. So, we are assuming a parabolic band structure. So, this 𝑚∗ is a 

constant, 𝜋 is a constant, ℏ is also a constant, so this g2D(E) expression is essentially a 

constant.  
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So, g2D(E) is 
𝑚∗

𝜋ℏ2. And this is an interesting result if we compare this to the 3D case, because 

in 3D case we saw that the density of state for 3D case is directly proportional to square 

root of E and that is why if we plot density of state for a 3D case as a function of energy, 

it is a function like this, but for a 2D case the density of state is constant.  

And if we plot g2D versus E, it will essentially be a straight line parallel to the energy axis. 

So, it will not change with energy. And this is an interesting difference between 3D 

materials and 2D materials, between a 3D channel and a 2D channel. In 3D channels, at 

low energy values, the density of states or number of allowed electronic states is very less.  

But in a 3D channel, the density of states or number of allowed electronic states that can 

exist in a material is the same irrespective of the energy or it is the same basically, same 

for all energy values. So, if we change our channel from if we make our channel 2D the 

density of state changes and it will change the conduction in a major way.  

So, this is why understanding density of states is quite important, ok. So, now,  we will see 

how the density of states look like for 1D solids, ok. 2D case was easy.  
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Now, a 1D solid means that the solid is now  like a nano wire. So, the electron is confined 

between x equal to 0 to x equals to L let us say and this is the x axis. There might be atoms 

between x equal to 0 to x equal to L, but as we previously discussed in KP, after KP model 

that by effective mass we can sort of in incorporate the impact of the crystalline potential 

of the lattice. 

So, the E k relationship is h bar square k square divided by 2 m star, m star is the effective 

mass of the electron in the solid. And by considering the effective mass, we can assume 

that the electron is independent of the lattice interaction and electron is just confined in the 

boundaries of the solid. It is just confined between x equal to 0 to x equal to L. And this is 

essentially the particle in a box situation. 

And the solution of Schrodinger equation of particle in a box we have already done. In 

fact, we have repeatedly done it in 3D and 2D cases, repeatedly discussed it. So,  for 

density of states, please remember this please sort of make yourself understand this that in 

order to calculate the density of states which is the number of allowed electronic states in 

a material, we need to first solve the Schrodinger equation for that material.  

And the Schrodinger equation solution for 1D solid would be essentially same as the 

Schrodinger equation solution for particle in a box. And because of the boundary 

conditions the wave function at x equal to L should be 0, so which means k times x should 

be n𝜋.  



So, the k values n𝜋/L, where n is any integer, n belongs to the set of integers. And in 

density of states, not only do we need to solve the Schrodinger equation for electron, we 

also need to count the number of allowed electronic states in the material. 

And in order to count the number of states we make a shift to k-space. So, the k-space for 

1D solid will also be a one-dimensional k-space, only one axis, and the allowed k values 

will be n𝜋/L. So, the values will be these. So, this is 𝜋/L, 2𝜋/L, 3𝜋/L, and so on. Let us 

say, this is the x equal to 0 point; -𝜋/L, -2𝜋/L, -3𝜋/L will also be valid solutions of the 

Schrodinger equation, ok. 

So, now, we need to calculate the number of electronic states in a range of k to k + dk. So, 

for that we take a linear element on the k axis. So, we take a strip of dk width only, and 

we will try to see how many electronic states exist in this dk length, then this will also be 

equal to the number of electronic states in energy range from E to E + dE and from this 

number we can calculate the density of states as we have done for 3D and 2D cases, ok. 

So, the here the density of states will mean number of electronic states per unit length per 

unit energy basically. So, length occupied by one electronic state is, so the length in which 

one allowed electronic state exist in k-space is essentially 𝜋/L and length of the linear 

element that we have taken is essentially dk, the length of this is dk.  

So, the number of states in the energy for k range of k to k + dk will be the length of the 

linear element, number of states in this linear element would be the length of the linear 

element divided by the length of the single allowed electronic state.  

So, this will be the number of electronic states in the in this linear element of k-space in 

1D solids. So, with this, now we can see that the number of states in the energy range from 

E to E + dE is essentially the number of electronic states in the k range from k to k + dk.  
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So, the number of electrons from number of electrons in energy range from E to E + dE is 

which is described as N(E) times dE. This will be equal to dk.L/𝜋 and the E k relationship 

as we have seen is 
ℏ2𝑘2

2𝑚∗   which means that k is √
2𝑚∗𝐸

ℏ2 . 

So, dk will √
2𝑚∗

ℏ2 ; if we take a derivative of square root of E that will be essentially 
1

2√𝐸
 in 

denominator and in numerator, we will have dE. So, if we put this value of dk from here 

into this expression, ok. So, this number N(E).dE would be 
1

2
√

2𝑚∗

𝐸ℏ2 𝑑𝐸. 

So, dE dE go away. Now, what we are left with is, now we need to again consider those 

two points as well that each point can correspond to up to 2 states corresponding to 2 

different spins of the electron. So, we need to multiply by 2 and we need to divide by 2 as 

well, because the states for positive values of n and the states for positive negative values 

of n in k-space, they essentially represent the same electron, because  the wave function is 

differed just by a global phase in these 2 states. 

So, in order to avoid over counting, we need to divide by 2. So, 2 and 2 go away. So, what 

we are left now is with and there is a factor of L as well there, √
𝑚∗

2𝐸ℏ2L, ok. So, this N(E)  

parameter is the number of electronic states per unit energy, ok. So, the density of state 

would be number of electronic states per unit energy per unit length. 
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So, we just need to divide by, in order to calculate density of states for 1D material we just 

need to divide N(E) by the length, ok. So, which means density of states for 1D solids is 

square root of 
1

ℏ
√

𝑚∗

2𝐸
. So, this is the final expression for the density of states for 1D solids, 

ok. 

And you might have quickly noticed it that the dependence of density of states on, yeah. 

So, there is I guess a factor of 𝜋 as well there which we missed here, so dk, yes. So, there 

is a factor of 𝜋 in denominator which would come from here, so 1/ 𝜋  and it would be 

ultimately 1/ 𝜋. So, yeah, I am sorry for missing this factor. So, there is a factor of 𝜋.  
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And ultimately, the final expression for the density of states in 1D solid cells will be this. 

So, g(E) for 1D solids is 
1

𝜋ℏ
√

𝑚∗

2𝐸
. It should be 𝑚∗ here. And you might have readily noticed 

that 1D density of states is inversely proportional to the square root of E, ok. 

So, as the E value will increase, this g 1D will decrease essentially. And if you compare 

this with 2D case, in 2D case this was constant essentially. In 3D case, it was directly 

proportional to the square root of E. So, as you are seeing as we change the dimension, the 

number of states that the electrons can occupy in the material, they change, their behavior 

change fundamentally. 

Now, the last thing that is left in density of states discussion is the density of states in 0D 

solids. 0D solids mean quantum dots or organic molecules. So, these solids have very small 

dimension in all directions which mean that electrons are now confined in a nanoscopic 

regime in all the directions. They are not free to move in any dimension, any direction 

basically. 

So, for 0D solids I will let you think about this what would be the density of states for 0D 

solids. Please think about this, and we will discuss this in the next class. 

Yeah, thank you for your attention. See you in the next class. 


