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Lecture - 12 

Density of States - 3D, 2D 

 

Hello everyone. In the previous class, we discussed the idea of Density of States 

qualitatively and why it is important. We started our discussion of 3D density of states in 

previous class. Today, we will building on that, we will see how mathematically we can 

derive density of states for 3D materials and for 2D materials as well. 
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So, this is what we saw in the previous class. We saw that a 3D material can be 

approximated by a 3D potential well which means it becomes a 3D particle, particle in a 

3D box situation, it becomes a 3D potential box and by using the notion of effective mass. 

If the E k relationship is parabolic, in that case the electronic wave functions are given as 

a direct generalization of 1D potential box electronic wave function. 

And here, the allowed kx, ky, kz values are as we saw in the previous discussion as well; kx 

is essentially nx𝜋/Lx; ky is ny𝜋/Ly and kz is nz𝜋/Lz; where, nx, ny and nz can be any integer, 

they belong to the set of integers basically. And density of state is essentially the number 

of allowed electronic states which means we need to calculate number of allowed 

electronic states in the material.  



And the easiest and natural way of doing that is to calculate the number of allowed 

combinations of kx, ky, kz points and that is why we move to k space, which means we plot 

the allowed k points on kx, ky, kz axis system and this is how it looks like essentially. Here, 

there are two points that we need to sort of make clear in the beginning. Each point in this 

space, each point essentially belong to an allowed electronic state.  

So, each of these points is an allowed electronic state. It can be anywhere; but we have not 

considered the spin degree of freedom of electrons basically. So, this is just the special 

wave function. This wave function of electrons in space. So, if we consider the electronic 

degree, so the spin degree of freedom of electrons, each of these point can hold up to two 

electrons. So, that is why the number of allowed electronic states will be twice of these 

points in a way. So, each point can hold up to two points. 

So, there are two allowed states corresponding to one point. So, that is point number 1. 

Point number 1 is we need to consider the spin of electrons and as we know electron is a 

spin half system, which means its spin angular momentum can take 2 values; its quantized 

and it can take plus half or minus half and that is why each point can correspond to either 

of the one of the two angular momentum states. 

2nd point is in addition to the spin states, if we closely look at various points  in the k space 

what we see is that if we change for example, if we change kx to -kx, the wave function 

here will change from Ψ′(𝑥, 𝑦, 𝑧).  

So, now, the wave, so let us say if we make a change from kx to -kx, in that case, the 

electronic wave function will change from Ψ(𝑥) to Ψ′(𝑥) and Ψ′(𝑥) will be essentially 

minus if we put instead of kx, if we put -kx, it will be sin -kxx sin kyy sin kzz ok. 

(Refer Slide Time: 05:05) 



 

So, that will be the wave function which means Ψ′(𝑥,y,z)  will be −Ψ(𝑥, 𝑦, 𝑧). So, the 

wave function will just have a negative sign outside of all the sins and cosine. So, there 

will be a global phase in the wave function that is introduced, if we make a change of sign 

in kx, ky and kz ok. And as we know from our discussion of postulates of quantum 

mechanics that if there is a global phase, it does not make any difference on the probability 

density function of the system.  

So, this will remain the same. Also, it will not make any difference on the expectation 

value of the; of any operator so to say. So, this is the expectation value of any operator. 

This is over the entire volume. This will not change and this will not change. Essentially, 

a global phase, a global phase factor does not physically mean anything actually. It 

corresponds to the same electron basically ok. So, what it means is that all wave functions, 

which are differed from each other just by a global phase. 

For example, this wave function psi prime and wave function psi, the only difference 

between the two is that psi prime is minus psi. So, there is a factor of global phase. It does 

not physically make any difference. So, they essentially correspond to the same electron. 

So, all these wave functions, which just have a difference of global phase factor, they are 

physically the same thing. And what it implies is that, so there are 8 octants in the kx, ky, 

kz system here.  

And a point in first octant and the point in a second octant will have a difference of a global 

phase. Similarly, the points in all these octants will have a difference of just a global phase. 



So, which means that a point in first octant is similar to the points in all 8 octants; so, 

which essentially mean that the number of; the number of allowed wave functions or 

number of distinct allowed wave functions need to be divided by 8;  So yeah. 

(Refer Slide Time: 08:20) 

 

So, if we calculate all k points, we need to multiply by a factor of 2 because we need to 

incorporate electronic spin. But we also need to divide by 8 because all k point 

combinations in all  octants are essentially similar to each other. They are essentially 

corresponding to same electrons ok.  

So, all the distinct electronic state are just present in one octane of this kx, ky, kz plane. So, 

with these two points in mind, now we are in a situation to calculate the distinct number 

of electronic states in a 3D system.  
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So, we need to calculate the density of these points which means we need to calculate 

number of electronic states per unit volume per unit energy source. So, in order to calculate 

the density of state, we plot a spherical shell in this kx, ky, kz plane. So, we plot a spherical 

shell of thickness dk. So, the inner radius of the spherical shell is k and the outer radius is 

k + d k.  

So, now, the number of states in the spherical shell, which means in an energy range from 

k to k + d k will correspond to electronic states in energy range from E to E + d E ok. So, 

the number of electronic states which have value or which lie in the spherical shell will 

correspond to the electronic states in this energy range energy from E to E + d E basically 

ok.  

So, now, let us do a simple calculation. The volume of a single allowed electronic state is 

essentially it will be a small cube in the reciprocal space, in the k space and this the volume 

of single state will be 𝜋/Lx times 𝜋/Ly times 𝜋/Lz. 

So, this will be 𝜋3/Lx Ly Lz equals 𝜋3/V; where, V is the volume of the entire solid which 

is just a 3D solid essentially. So, this is the volume of allowed electronic state, a single 

allowed electronic state in k space. Now, the volume of the spherical shell is we are trying 

to find out the number of electronic state in the spherical shell.  
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The volume of spherical shell will be  4𝜋𝑘2𝑑𝑘; just this ok. So, we know the volume of a 

single state, we know the volume of the spherical shell, we can easily find out the number 

of electronic states in the spherical shell by just by dividing the volume of the spherical 

shell by the volume of the single electronic state. So, that is what we will do volume of the 

single electronic state is 𝜋3/V. 

So, number of electronic states in the energy range from E to E + dE will be 4𝜋𝑘2𝑑𝑘 

divided by 𝜋3/V. So, these are the number of electronic states in this energy range from E 

to E + dE essentially. So, this is the number of electronic states in the energy range is 

denoted as N(E)dE; in the energy range from E to E + dE will be denoted as N(E)dE and 

this will be 4𝜋𝑘2𝑑𝑘V/𝜋3. 

So, any in that sense becomes the number of electronic states per unit energy, which is 

also a function of energy. Now, we need to convert or we need to change the variable on 

the right hand side from k to E basically and that is here that is where here we will use the 

E k relationship, which is a parabolic relationship, if we use the idea of effective mass.  
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So, please keep in mind that we are making an approximation that the E k relationship is 

parabolic and we can make or we can use the notion of effective mass like this. So, in this 

case, k will be given as 
√2𝑚∗𝐸

ℏ
  just by rearranging the terms and from here itself, k2 is 

2𝑚∗𝐸 divided by ℏ2.  

And if we take a derivative of this, it becomes 2kdk is essentially 2𝑚∗𝑑𝐸 divided by ℏ2. 

2 and 2 goes away, so kdk is equal to 𝑚∗𝑑𝐸 divided by ℏ2. So, this we will put here in this 

expression. So, by using this relationship and this E relationship k value, N(E)dE is 4 by 

here 𝜋, 𝜋 and 𝜋3 becomes 𝜋2.  

This 𝑘2𝑑𝑘𝑉 can be written as k times kdk times V. So, this k value is just 
√2𝑚∗𝐸

ℏ
; 4/𝜋 

√2𝑚∗𝐸

ℏ
 

and kdk is 𝑚∗𝑑𝐸 divided by ℏ2 times volume. So, this is the total number of electronic 

states in the system ok, in the energy range from E to E + dE. Now, the dE, dE go away 

and as we discussed there are two other factors that we need to consider. 

We need to consider the electronic spin first, so which means that we need to multiply this 

expression by 2 in order to consider the electronic spin. And second, we saw that various 

k points in different octants or k points in different octants, just introduce a global phase 

which will not change, which will not make any physical sense, which will essentially be 

the same electron. So, we just need to count the number of electronic states in 1 octant; 

here, we have done we have done the calculation for all 8 octants. 
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So, we need to multiply by 2 in order to consider a factor of spin and we need to divide by 

8 in order to not over count the distinct allowed electronic states. So, we need to multiply 

by 2 for spin and divide by 8 for distinct k values and rest of the expression looks like this; 

4 by 𝜋2 ℏ3 times 𝑚∗√2𝑚∗𝐸 times V. So, 4, twice, 8; so, they go away. 

So, which means the total number of electronic states per unit energy is just 

𝑚∗√2𝑚∗𝐸 divided by 𝜋2 ℏ3 times V and the density of state now is so here, we have 

considered the spin; we have considered the over counting of electrons. Now, the density 

of state will simply be the total number of electronic states per unit energy per unit volume.  

We need to divide by the volume. So, it becomes 𝑚∗√2𝑚∗𝐸 divided by 𝜋2 ℏ3 ok. So, this 

is the number of electronics density of states in a 3D material. So, there are some 

interesting observations that we can make from this expression actually.  
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So, finally, the number of electronic states in a 3D material will be 3D solid will be this 

g(E) is 𝑚∗√2𝑚∗𝐸 divided by 𝜋2 ℏ3 ok. So, 𝑚∗ is a is constant, if we assume that the E k 

relationship is parabolic, in that case a 𝑚∗ is constant 𝜋1  and ℏ1 are other constants. So, 

essentially, g(E) is directly proportional to 𝐸
1

2 ; square root of E basically. 

And if we plot g(E) as a function of energy, just to see how electronic states are distributed, 

this will be a square root function. So, it will be a sub-linear kind of function, not exactly 

like this. It will be something like this. This is not the exact quantitative sort of plot, just 

to see how qualitatively g(E) depends on E. This is how it depends on E essentially and 

what it implies is that. So, g(E) is essentially the density of states, which means these are 

the allowed electronic states in a material. 

So, in 3D materials, it turns out that for low energy values, for these energy values, this 

g(E) is very small. So, the density of states in 3D materials is very small for small energy 

values; but as we go as we increase the energy value, as we go to higher energies, this g(E)  

becomes more and ultimately, it becomes a saturation, a saturating kind of function; not 

exactly saturating, but the rate of increase lessens.  

It does not increase with the same rate as it increases in the beginning. So, the number of 

allowed states for low energies in 3D materials is small and they become large as we 

increase the energy. So, this is the key takeaway and this will be quite important, when we 

discuss the discuss a 3D channel, where we will be using this kind of channel in a device. 



So, there number of states available in a certain energy range will be very important 

because that will govern the conduction from the source to the drain. So, that is why 

understanding this is important. So, that is about the density of states in 3D materials and 

we have seen that the density of state g(E)  is directly proportional to square root of E. 

Now, let us see how it sort of varies in 2D solids. 
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So, like a 3D solid, a 2D solid  can be like a graphene material or MoS2. So, a 2D solid is 

essentially a solid which is extended only in two directions. So, the dimensions of the solid 

are like this. It has Lx length, Ly width.  

This is the solid, 2D solid. By using the same principles as we used in 3D materials, 3D 

by using the same approximations, if we sort of have this E k relationship, this kind of E 

k relationship, E is directly proportional to k square or a function of k minus a constant 

square parabolic relationship between E and k. 

In that case, we can precisely define the effective mass becomes constant because and in 

that case, all the effect of crystalline potential and the interaction of atomic cores or crystal 

with the electrons can be encapsulated in effective mass and we can consider this 2D 

material as a large 2D potential box; exactly the same way as we did in the case of 3D 

solids. 



And now, we just need to see now since the effect of crystalline potential has been 

encapsulated in the idea of effective mass, we just need to solve the Schrodinger equation 

for the entire solid and this becomes a very large or as at least as large as the solid is that 

large potential box, but a 2D potential box and the solution of wave function in 1D 

potential box was A sin kxx. 

So, here also by the same, by generalizing this wave function in 2D case, this will be A sin 

kxx times sin kyy and as we saw in the 3D case because of the boundary conditions, we 

need to have sin kxLx to be 0 and similarly, sin kyLy to be 0. This is from the derivation of 

the particle in a box case and from here, we deduce that the allowed sin kx values are 
𝑛𝜋

𝐿𝑥 
 

or since there are two possible n here.  

So, we will write 
𝑛𝑥𝜋

𝐿𝑥 
 is kx and ky would be 

𝑛𝑦𝜋

𝐿𝑦 
; where, 𝑛𝑥 and 𝑛𝑦 are integers essentially. 

And we are trying to see what is the density of states for a 2D material for a 2D solid, so 

we just need to calculate the  distinct allowed electronic states in the solid and for that, we 

will move to the k space because in k space the counting becomes easier. 
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So, in k space, the allowed k points will be essentially. Now, the allowed k points will 

be 
𝜋

𝐿𝑥 
 , 

2𝜋

𝐿𝑥 
, 

3𝜋

𝐿𝑥 
similarly and so on and on the y axis 

𝜋

𝐿𝑦 
, 

2𝜋

𝐿𝑦 
, 

3𝜋 

𝐿𝑦 
 and so on and apart from these 

points, combination of these points will also be valid solution of Schrodinger equation in 



2D case. So, these points will be the finally, these points drawn which are drawn on the 

screen, these will be the allowed solutions of electronic wave function. 

And here also, we need to keep two things in mind; one is the spin of the electrons. So, 

each point can host up to 2 electrons because of the spin, since electron is a spin half 

particle. So, each point can host up to 2 electrons. So, the number of states will be twice 

the number of allowed points. Also, the each point, so the points in different quadrants will 

essentially correspond to the same wave function because there will be just a difference of 

a global phase. 

So, a factor of 2 will come because of the spin and we need to divide by a factor of 4 

because of the repetition of the k values essential corresponding to the same electron. So, 

now, in this case in order to calculate the number of electronic states from  the range from 

k to k + dk, we will make a circular ring here of inner radius k and outer radius k + dk.  

So, we will make a circular radius of width dk; inner radius will be k and outer radius will 

be k + dk and in this radius, in this ring in k plane, we will try to see how many distinct 

electronic states exist, that will give us the number of electronic states in the energy range 

E to E + dE.  

So, the electronic states corresponding to a range k to k + dk will also correspond to energy 

range from E to E + dE and that is how we will do this calculation. I will let you do this 

on your own. So, please do this on your own and we will discuss this in the next class. 

Thank you. 


