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Density of States 

 

Hello, everyone. Today, we will discuss the idea of Density of States in devices; electronic 

devices. Let me quickly review what we have discussed in last couple of classes. We 

discussed how the bands arise naturally in solids when we solve Schrodinger equation for 

electrons in solids and that was done using K P model ok. 
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With this idea we could see that we can have an equation of motion or equation of action 

so to say. When we consider electrons in devices as wave packets the equation of action 

looks exactly like Newton’s second law of motion, where the mass is replaced by the 

effective mass the so called effective mass and the velocity of the particle is replaced by 

the group velocity of electronic wave packet. 

And there are some interesting implications of this equation of action. We can see that 

even if  electrons have same energy two electrons, but they are in different bands and the 

curvature of the bands are different in that case the effective mass of electrons would be 

different, effective mass of electron in a would be more than effective mass of electron in 

b. 



So, in band a, the electron behave like a heavy particle and in band b, it will behave like a 

light particle. Apart from that another interesting conclusion was that at the bottom of the 

bands the curvature is positive. So, the electron behave like a positive mass classical 

particle, but at the top of the bands the curvature of E k plot is negative and electrons 

behave as if their mass is negative, they behave opposite to what a classical particle will 

behave ok. 

Apart from this we also saw that there are certain constraints in which this equation of 

action can be used in our analysis and that is true, when the E k plot can be approximated 

by a parabola. So, in for those E and k values, where the E k plot takes a parabolic kind of 

fit where the E k plot can be fit by a parabola there the effective mass would be constant 

it would not be dependent on energy and there we can directly use this equation of action 

ok. 
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So, with this we moved on to a second idea. And we come back now to a two terminal 

device in which we have a source we have a drain and we have a channel region. In this 

two terminal device, generally the source terminal is grounded the drain terminal is applied 

with voltage V and the source and the drain are bulk material and the channel region is a 

small mesoscopic or nanoscopic region of semiconductor let us say.  

The electronic constant. So, in order to sort of understand the I-V characteristics which is 

the most important thing that we would like to know about a device how much current 



would flow through the device when we apply a certain voltage. So, the I-V characteristics 

is ultimately what we want to calculate or deduce from our analysis. In order to understand 

the I-V relationship or how much current would flow through the device we first need to 

understand how many electrons are there and how they are distributed in the system. 

So, then only we can sort of extend that idea to how many electrons will flow through the 

device. So, in bulk materials the concentration of electrons or the number of electrons at a 

certain energy at a given temperature is calculated by a function called Fermi function and 

there is an idea or there is a concept called Fermi level or in other words electrochemical 

potential of the material. 

So, the Fermi level is the level up to which all the electronic states all the allowed 

electronic states in the system are filled at T equal to 0 Kelvin. So, at absolute zero 

temperatures, the level up to which all electronic states are filled is known as the Fermi 

level of the material and this idea this is a statistical idea. So, that is why it is well defined 

in bulk materials, but sometimes it is also used in nanoscale or mesoscopic devices as well. 

So, by defining the Fermi level and Fermi function for source and drains we can see and 

these two materials are metals. So, the electrons are there are lots of electrons all. So, it 

has the as you might know that metals have bands overlapping bands. So, all the electronic 

states up to Fermi level are assumed to be filled in metals. So, in source and drain contacts 

all the electronic states below Fermi level are filled generally at T equal to 0 temperature 

above T equal to 0 temperature some of these electrons can go at higher energy states as 

well.  

And the source and the drain these contacts they will have a continuum of states below the 

Fermi level and even above the Fermi level because these are the bulk material. And so, 

that is why allowed electronic states will be a continuum of states. So, almost at all possible 

energies electrons can exist because they are metals and they are bulk materials.  

So, for source and drain contacts just by knowing their Fermi level and Fermi function at 

non zero temperatures we can figure out the distribution of electrons how many electrons 

exist at what energy this we can easily deduce. But for channel region which is a small 

region in modern devices electrons do not take may not take actually may not take 

continuum of energy values. 



So, there may be some energies which might be disallowed because this is a 

semiconductor. So, there might be a band gap moreover this is a small region and 

confinement as we saw the confinement creates discretization. So, the electronic states or 

the energy levels might be discrete. So, in order to understand how many electronic states 

exist in channels or how many electrons can channel sort of contain we need to understand 

this idea of density of states in the channel ok. 

So, this is what we are going to discuss from this class onwards also this channel in modern 

devices this can be a 3D channel 3 dimensional channel, it can also be a 2D channel, it can 

be a 1D channel, it can as well be a 0D channel. By 3D channel; we mean a semiconductor 

which is basically a channel which is which has dimensions which extends in all three 

directions. 

A 2D channel by 2D channel we mean that it is like a graphene nanoribbon. The dimension 

in the third direction or the length in the third in one direction is extremely small as 

compared to its dimension in other two directions. So, it has the length or the extent in one 

dimension is very small as compared to the extent in other two dimensions. A 1D channel 

can be a nano wire whose extent in two dimensions is very small as compared to it is extent 

in third dimension. 

And a 0D channel means by a 0D channel we mean that its extent in all three dimensions 

is very small like molecules or quantum dots. So, in modern day devices this channel can 

be a 3D channel a 2D channel 1D channel or 0D channel. So, we need to understand the 

density of states in all these kind of channels and once we are equipped with this 

understanding we will be in a position to sort of understand the transport of electrons in 

the devices. 

Because we would and apart from that apart from density of states we will also need to 

know about the Fermi function; once we understand these two ideas we will be in a 

position to understand the transport and I-V characteristics of the device ok. So, this is an 

unbiased device unbiased by unbiased means we mean V the applied voltage V is 0 volts. 

So, at 0 volts the source electrochemical potential the source Fermi level and the drain 

Fermi level would be at the same level because they are the same material no voltage 

applied they are at the same temperature. So, their Fermi level will be the same. 
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But when we apply a bias, so for example, if we apply a positive voltage on the drain 

terminal this becomes a positive voltage the source is grounded. By virtue of the positive 

voltage the potential energy of electrons will go down in the drain terminal because the 

potential energy is given as the electronic charge which is essentially minus e where e is 

the unit charge times the applied voltage.  

And since the potential energy goes down the electrochemical potential or the Fermi level 

will also go down by this value q times V where q is also the unit charge ok. So, now with 

application of a voltage what happens is that the source Fermi level is now higher than the 

drain Fermi level ok and there are certain electronic states in the channel.  

So, now, what happens in this device is that the source contact tries to fill all electronic 

states in the channel adjacent to the source up to its Fermi level. So, the source tries to fill 

electronic states up to this level ok and the drain terminal where the Fermi level is now 

lower than the source Fermi level it tries to fill electronic states up to its mu drain its Fermi 

level. 

So, there is now a competition between the source terminal and the drain terminal. The 

source is trying to fill all electronic states up to this energy and the drain is trying to fill all 

electronic states up to this energy. So, all the electronic states which are common to both 

of them which means all electronic states in the channel in this region will now be filled 

because both source and drain are trying to fill these electronic states.  



But the electronic states which lie between the source Fermi level and the drain Fermi level 

which means these electronic states in the channel these electronic states the source is 

trying to fill them with electrons. Because it has enough number of electrons and its Fermi 

level does not change with flow of few electrons into that channel the drain is trying to fill 

to make sure that only electronic states up to this level are filled. So, which means that the 

drain terminal is now trying to make these states empty of the electrons. 

So, the source is pumping electrons in these electronic states and the drain is pulling out  

electrons from these energy states and that is how the conduction basically takes place in 

a device, in a two terminal device ok. So, this is what we will understand, but before going 

into more details of this let us begin with the idea of density of states. 
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Density of states in very simple terms is; the number of allowed electronic states number 

of allowed electronic states in a material per unit volume of that material at a given energy. 

So, at a given energy number of electronic states valid electronic states per unit volume in 

a material this is the simple definition of the density of states in any material or in a solid 

state devices. And as we discussed the channel can be a 3D channel, a 2D channel 1D 

channel or even a 0D channel. 

So, let us see how the density of states will look like in a 3D channel. So, let us take a 3D 

material and what do we mean by a 3D material? A 3D material, a 3D channel by a 3D 

channel; we mean that the channel will have certain length, certain width and certain 



height. So, that so this is a 3D material that can be used as a channel. It has let us say Lx 

length Ly width and Lz height ok. So, this is Lz this is Lx this is Ly.  

And in order to make a device out of this material we just need to put contacts at two points 

of this and then we are basically we will have a two terminal device. And but in order to 

understand the electronic transport or the electronic distribution we need to see how many 

states, how many electronic states would be allowed in this particular material. 
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So, this is a typical 3D solid on x y z axis it has Lx extent on x axis, Ly on y axis and Lz  on 

z axis. And if we assume if you make a simple assumption that for all energy values or for 

the energy values at which we are interested which means at the bottom of bands and the 

top of the bands; generally these are two regimes of E k plot where we are most interested 

in because that is where the entire sort of electron and hole transport takes place. 

So, in these two regimes this E k relationship is parabolic let us say and the so, that is why 

the mass of the electron now needs to be taken as the effective mass that we studied in the 

previous classes. So, let us assume that that in the regimes of interest the E k plot is like a 

parabolic plot which is not a bad assumption I would say which is true in most of the cases, 

but instead of regular mass of electron we need to take the effective mass of electrons. 

So, the E k plot will look like E would be 
ℏ2𝑘2

2𝑚∗  and now with this notion of effective mass 

we can sort of ignore all the crystalline potential and the quantum mechanical nature of 



the electrons. Or, in other words the effect of crystalline potential and the quantum 

mechanical nature of electrons is now encapsulated in the idea of the effective mass ok. 

So, with by assuming electron to be a particle with effective mass this 3D solid can be 

considered like a 3D box we can ignore the or sort of we can do away with the crystalline 

potential and the quantum mechanical nature or the quantum mechanical interaction of 

electrons with the crystal with the atomic course. So, now electron is just a particle in a 

3D box like situation in this 3D solid.  

So, in order to calculate the density of states how many states would electronic states 

would exist at a given energy we need to see or we need to sort of solve again we need to 

start with the solution of the Schrodinger equation in this case and this kind of solution we 

have already done.  

We have already solved Schrodinger equation for a particle in a 1D box where the electron 

is confined in a one dimensional box. Now, it is just a generalization of the 1D box 

situation it is now a 3D box and in this case the solution will be a natural generalization of 

the solution of the particle in a 1D case. 

So, if you recall the wave function for particle in a 1D box was A sin (kx), where k was k 

could take these values of n was integer any integer ok. So, the wave function of electrons 

in a 1D box was A sin (kx) where  k could take values like n𝜋/L where L was the length 

of the box and n could be any integer. Now, in a 3D box, I am directly generalizing this 

solution the electronic wave function would be Ψ(𝑥, 𝑦, 𝑧) in 3D case it would be a constant 

times sin kxx sin kyy times sin kzz. 
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So, this is the electronic wave function in a 3D box when the electron is confined entirely 

in the 3D box where now kx is nx𝜋/Lx, ky is ny𝜋/Ly and kz is nz𝜋/Lz where kx is nx ny nz 

are integers set of they can be any integer from the set of integers ok. Now, we need to see 

how many electronic states would exist at a given energy we need to sort of visualize or 

we need to calculate we need to count the number of electronic states at a given energy 

that is what we need to do. 

In order to do that calculation it is always easy. So, since as you might have already seen 

from the solution of the wave function different wave functions exist for a for different 

values of k’s kx ky kz. So, in order to calculate the number of electronic states or in order 

to calculate the number of allowed electronic wave functions we need to calculate different 

k values in the system basically. 
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So, that is why we plot the solution k points on the in the k plane which means we have 

kx, ky, kz axis sorry we have kx, ky, kz axis and the allowed k values n𝜋/Lx, n𝜋/Ly and 

n𝜋/Lz ok. So, on the k axis in the allowed values will be 𝜋/Lx, −𝜋/Lx, 2𝜋/Lx, −2𝜋/Lx, 

3𝜋/Lx, −3𝜋/Lx and so on basically. 

Similarly, the allowed ky values are 𝜋/Ly, −𝜋/Ly, 2𝜋/Ly, −2𝜋/Ly, 3𝜋/Ly, 

−3𝜋/Ly…Similarly the allowed kz values are if we plot on kz axis these are 𝜋/Lz, −𝜋/Lz, 

2𝜋/Lz, −2𝜋/Lz and so on and apart from these axis points there can be any point in the 

plane in this 3D plane. Basically, any combination of kx, ky, kz any combination of allowed 

kx, ky, kz would be a valid solution for Schrodinger equation.  
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So,  this plot basically does that it plot all possible all allowed k points in the k planes and 

these are the discrete points in this three dimensional k plane. And by their discreteness or 

by visualizing the allowed solutions in k space we can sort of visualize or we can sort of 

count the allowed number of electronic wave functions in the system. 

So, now from the solution of Schrodinger equation we deduced or we find out the allowed 

k points and we plot the allowed k points in the k plane 3D k plane. And now, we will need 

to count the distinct solutions of electronic wave function and then we would need to divide 

that by the volume of the solid in order to calculate the density of states. 

So, that is the sequence of calculating the density of states in any system. So, in this k 

plane if you closely look the volume occupied in k plane by one valid solution or by each 

allowed state is 𝜋/Lx times 𝜋/Ly times 𝜋/Lz. So, this is the volume of a single electronic 

allowed electronic state in the k plane. This is the volume of one state one allowed 

electronic state in the 
𝜋3

𝑉
 where V is the Lx Ly times Lz volume of the solid in physical 

plane. So, this is the volume of one allowed state in k plane 3D k plane ok. 

Now, in order to see how many k states would exist from energy E to energy E plus d E. 

We need to see how many electronic states exist from a k value certain k point to k + dk 

and to calculate this number we plot a spherical shell of thickness dk. So, we plot a 

spherical shell in k plane whose thickness is dk and we will see how many electronic states 

how many allowed states are there in this spherical shell. 

So, the volume of spherical shell is as 4 𝜋 k2 dk. So, the number of electronic states in 

these spherical shells will correspond to number of electronic states in energy range from 

E to dE and this is what we are trying to calculate actually. So, the volume of spherical 

shell is 4𝜋k2dk and volume of single state is 
𝜋3

𝑉
.  

So, the number of states in the spherical shell would be, number of states in the spherical 

shell would be the volume of the spherical shell divided by the volume of one state which 

is essentially 
𝜋3

𝑉
, pi cube by V. So, this becomes   

4𝑘2dk

𝜋2  V.  

So, these are the number of electronic states in energy range dE number of electronic states 

in energy range from energy E to E + dE is 
4𝑘2dk

𝜋2  V. Number of electronic states per unit 



volume of the solid would be 
4𝑘2dk

𝜋2 . Now, this right hand side is in terms of k we need to 

convert it in terms of E and for this we will use our E k relationship that we discussed on 

the previous slide ok. 
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So, the E k relationship that we take is 
ℏ2𝑘2

2𝑚∗ . So, which means k is √
2𝑚∗𝐸

ℏ2  this is k apart 

from this dE is now 
ℏ22𝑘𝑑𝑘

2𝑚∗ . If we differentiate this on both sides so, which means k dk is 

𝑚∗

ℏ2 𝑑𝐸. So, in place of 𝑘2dk we can sort of write k times kdk and this kdk value can be 

taken from here and this k value is this. 

So, the number of electronic states from energy E to E + dE would be 
4

𝜋2 𝑘. 𝑘𝑑𝑘 that is 

4

𝜋2
√

2𝑚∗𝐸

ℏ2

𝑚∗𝑑𝐸

ℏ2  ok. So, dE and dE will cancel out. So, number of electronic states at energy 

E would now be given by N(E) and the density of state which we generally denote by D(E) 

or sometimes by g(E) will be number of electronic states per unit volume. 

So, this is the number of electronic states per unit volume which is essentially this 

expression 
4𝑚∗

𝜋2ℏ3 √2𝑚∗𝐸. So, this is how we calculate the density of states in a 3D channel 

we will discuss more about this in the next class. Please, I would request you to go through 

this derivation again and I will again quickly review this in the next class. This is an 



important derivation which will be useful at many places in our device analysis. So, see 

you in the next class. 

Thank you. 


