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Let us talk about 2:1 compressor. The 2:1 compressor I can consider it to be partial product 

1 0 and partial product 1, there were 2 bits. It can be easily represented as an AND and an 

OR operation here and then the summation of that. If I look into the AND operation here 

the p0 itself will be 1/4 p1 the probability of p1 will be itself be 1/4 because it is a partial 

products. 

S =∑{po, p1} =∑{po, p1, po + p1} 

The Xi being 1 is the probability of Xi being 1 is 0.5 the probability of Yi or yj being 1 is 

0.5. The probability of P of p0 is 1/4 the probability of p0 and with that of p1 will be actually 

be 1/16 and probability of p0 plus p1 will be nothing, but 7/16 and that is something we 

can get from this particular truth table. Remember that if I have this kind of a probability 

then in fact, if I can avoid this completely in my summation process, because it will have 

an error of only 1/16. What we said was the summation of the partial product that is what 

we are interested in. 



The summation of the partial product is also be rewritten as the summation of the OR 

products and then the AND products. In the AND products the probability of this being 1 

is actually 1/16. Most of the cases it will be 0, in that sense if I actually make it ignore it 

then if I do only the OR operation it will actually have it can reduce the computation. 

The AND product is kind of ignored and what happens to the approximate sum. One such 

truth table is given p1 p0 w1 is given w1 is nothing, but p0 + p1 is considered to be the w1 

and then the sum is given and then the approximate sum is given this is the accurate sum. 

If I have 0, 0 it is 0 approximate is also 0 if I have 0, 1 I will have the sum as 1, 1, 0 it will 

be 1, 1, 1 it will be nothing, but 2. 

But whereas my approximate sum will give me the same values except this particular 

value. The error here is 1 and then the probability of error is nothing but 1/16 coming from 

straight from this particular value. 

What we have done is in a 2:1 compressor instead of the regular sum 2:1 compressor is 

nothing but a half adder instead of an XOR gate why not represent just with an OR gate. 
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Going ahead 3:2 compressor can we now approximate 3:2 compressor of course, we can 

do that summation of the partial products 3 partial products will be involved. In this case 

and if I consider p0 and p1 as 2 of the partial products I can rewrite it as p0 and p1 and p0 or 

p1 and leave that p2 as it is.  



Now if I actually do p0, p1 use this and this further use it as AND an OR recoding, I will 

have p0, p1, p2 and then p0, p1 + p2 and then this one will be our last stage. Finally, I need 

to evaluate what is the probability of this particular being 1 and what is the probability of 

this being 1 and this being 1. Turns out that this is nothing, but  

S = ∑{po, p1, p2} 

AND-OR    ∑{pop1, po + p1, p2} 

¼ x ¼ x ¼ =1/64 

The approximate sum for the approximate 3:2 compressors we can actually have as 

nothing, but the summation of only these 2 partial products. What is that p0 p1? or that of 

p2 and p0 + p1. Instead of 3:2 compressors will be nothing, but a full adder and instead of 

2 XOR gates what we can do is? We can have an OR gate here we can have an OR gate 

here and then we can have an AND gate here. 

This will give me the partial products, 

S_approx = ∑{p0p1 + p2, p0 + p1} 

= ∑{w2, w1} 

If I actually use in the truth table here, w2 and w1 are actually and in the diagram here. The 

w2 and w1 can be generated by AND an OR gates and in the truth table we can see that the 

approximate sum and then the expected sum most of them are matching except the last 

case here which is expecting 3 and the approximate 1 is giving the answer of 2. 

Once we get this w2, w1 we can actually do the summation of that which will give me an 

approximate 2 here summation of that and we will give me an approximation of 2 that. 

Here also we can actually use an XOR gate or we can use an AND an OR recoded adder. 
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We can similarly extend it into 4:2 compressors also we had got 3:2 compressors. The 4:2 

compressors will have 4 partial products and we can consider two each p0 p1 AND an OR 

recoding we can apply here. 

S =∑{p0, p1, p2, p3} 

AND-OR Coding:∑{pop1, po + p1, p2p3,p2 + p3} 

∑{pop1(p2 + p3), pop1 + p2 + p3, (po + p1)(p2p3), (po + p1 + p2p3)} 

∑{pop1p2 + pop1p3, pop1 + p2 + p3, pop2p3, p1p2p3, po + p1 + p2p3} 

Eventually we will find it out that this is 1/64, and then this is 1/64, this is 1/64, 1/64 we 

ignore that. Finally, I think we can approximate it into this particular AND an OR recoded 

forms. We can ignore this we can ignore this. Finally, we will be left with, 
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Similarly, we can do the 5:3 and 62:3 compressors also eventually by having 5 partial 

products we can have 3 of them and 5 for having 6 of the partial products we can eventually 

reduce it further. You can see that it is actually having the 3 of the on the outputs here. 
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What we have tried here to design is we have approximated the compressors and 

compressors are actually used for adding up finally, counting the number of ones in the 

partial products and finally giving us the multiplier.  

If you are approximating the compressors we are naturally going to get the approximate 

multipliers. The higher order approximate multipliers what we have said is generalizing 



everything. The 7:4, 8:4, 9:5, 10:5 can also be designed by extending the earlier explained 

method. 

But to keep it very very simple we can also say that 7:4 could be realized using two of the 

lower order compressors and 8/4 could be realized by having 2 of the 4/2 compressors 4:2 

compressors. What we will do is we will restrict ourselves to a lower order compressors 

and then try to use apply that into the multiplier design and get the inaccurate results. 
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This is what we will be doing, this is the kind of a very generic simple algorithm we will 

be using for assigning the compressors. This is nothing, but 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, we have 12 bit cross 12 bit multiplier, overall I will have 24 columns, this is 24 columns 

and the length here will be nothing but 12. 

The first partial product generation stage will have 12 and for approximating what we will 

do is the LSP side the lower bit side in the 16 columns or in the 24 columns, 12 bit columns 

the 12 columns the starting 12 columns will be the approximate 1 approximate 

compressors. The last 12 columns will be the exact compressors. On the here I think we 

have we will be using the approximate 1, but rest of the cases it is the exact compressors. 

We will do the partial product reduction stage and then go to the next stage. 

In the next stage also we will see that we will apply the approximate compressors to an 

extent to an extent where the height is maximum. Here the height was maximum here, we 



divided the LSP side we divided the region two segments and then applied on one segment 

we applied approximate compressors on the other side we applied the exact compressors. 

Here also, once we get this get into the second partial product reduction stage we will 

identify the maximum height here and once we get the maximum height here we will apply 

up till that particular maximum height we will going to apply the approximate 

compressors. And lower than that we will going to apply the accurate compressors. Finally, 

we will keep on reducing the number of stages. 
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Here is the overall design of an 8/8 x 8 bit multiplier and this is the regular data multiplier 

which uses the half adder and full adder right. Does not use any 4:2 compressors or 5:2 

compressors. It uses only half adder and full adder, it is much more an accurate designs 

and here it is an approximate design. The approximation here is done is because on the 

LSB side we have approximated the compressors itself and on the MSB side there is an 

exact compressor, but while it is kind of reduced from here to here you can still see that 

maximum height on right of some maximum height everything is in approximate 

compressors left of that it is the exact compressors and then so on. 

The data multiplier actually has the sequences from here to here from here to here from 

here to here and then finally, this one and then the fast adders. This one 8:8 bit multiplier 

with approximate compressors is giving us one reduced stage and then from one reduced 

stage to the next reduced stage and then you can directly achieve the fast adders. 



Comparing with that of the data multiplier here I think this is much more efficient in terms 

of hardware because the number of stages has been reduced. The sequence of the reduction 

stages reduction steps for an 8 by 8 bit multiplier of the data multiplier type it is eight to 8 

to 4, 3 and 2. 

The number of full adders that has to be used is 35 half adders it is 7. Approximate I have 

written without truncation I will come to that later. The approximate multipliers which we 

have used here is 8:4 and then 3:2, there is the number of stages the reduction stages has 

drastically reduced and the approximate compressors that has been utilized is 14 alright. 
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Moving ahead, this is a 16 x 16 bit multiplier design and this is the data multiplier design. 

Using the half adders and full adders and then note there is a sequence here of reduction 

here the sequence of reduction is very very simple, 1, 2, 3, 4, 5, 6, 7. There are 7 stages 

here, it is only 4 stages the number of approximate compressors is 55 here.  

Here the full adders and half adders are 195 and 15 here it is only 27 and 3. Remember 

that what we have done is we have applied on to the LSB side we have applied the 

approximate compressors and on the MSB side we have applied the exact compressors. 
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Then we have applied just to understand or see the impact of on the application side this 

particular approximate compressor driven multiplier design is actually used for the 

Gaussian smoothing application. Gaussian smoothing application is one of the very 

regularly or very frequently used filtering method just to looking at the Gaussian shape 

here it gives us a kind of a blurring it applies a blurring on top of that particular on that 

particular pixel values. In this particular case if I consider this as an original image here 

and if I apply the Gaussian smoothening here on top of this. I am likely to get some kind 

of a blurred image and in kind of this blurring image is actually very very useful in some 

of the filtering process, one of the heavily used image processing application. 
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In this particular Gaussian smoothening application the multipliers are a more frequently 

used arithmetic operators. Instead of using an exact multiplier if we use the approximate 

multipliers how does it behave. 

This particular slide talks about applying the approximate multiplier in the Gaussian 

smoothing filter and what is the output of that. If I have an original image of a cameraman 

original image and if you build the Gaussian smoothing that the filter using the exact or 

the data 8 bit multiplier here this is what the image it looks like. 

It is compared to the original image it looks little bit blurred and that is what we expect 

from the Gaussian smoothening filter and this particular output on the right side is from 

the Gaussian smoothening filter when the filter is actually developed from this 

approximate 8 bit multiplier. 

If I actually compare between these 2 images there is hardly any difference only thing you 

can see is there is little bit of that the data is kind of lost, but I think all the prolific 

information or all the relevant information which is kind of the image is rendering is still 

present. With respect to these 2 images we will still get the same kind of information that 

is required. That is why we say that the approximate computing is used especially for some 

of the error resilient applications and image processing happens to be one of them. 

To find basically the statistical difference between these 2 images one it is output of the 

exact multiplier and then one is the output of the approximate multiplier there is something 

called as a structural similarity index that is a parameter which quantifies how much of the 

output is kind of degraded. 

If I consider the output of the exact multiplier, this particular image and if we find out what 

is the SSIM value structural similarity index turns out to be this is what the benchmark is, 

that is why it is SSIM is 100%. If I find out the SSIM for this approximate 8 bit multiplier 

which is kind of adopted in the building the Gaussian smoothening filter the output of this 

is giving us around 98.88%. This is what we are getting the SSIM the structural similarity 

index value. If I can find out the difference quantifyingly or you know statistically it is 

only a degradation of around 1.12% which is very very small. 



This particular image is about after running the output image into the SSIM module 

function we will get this particular image, and from this particular image we will be able 

to calculate or estimate the SSIM value. 

If I consider the SSIM function on the output of the Gaussian smoothening I will likely to 

get 1 particular image which rounds about 200%. The SSIM of this particular output image 

turns out to be like this and this is giving us around 98.88% of SSIM. 
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This is the overall output of the images using the 8 bit multiplier, and then the 16 bit 

multiplier using the approximate compressors. Here, I have different types here I have said 

one step full one step truncated 2 step full and 2 step truncated. I need to go back to the 16 

bit designs or the 8 bit designs and then try to explain what does that 1 bit and 2 bit 

represents right 1 step full and 2 step. 

In this sense in this particular the partial products stages or the representation of the partial 

products and its reaction stages. The 1 step full represents, we are applying the 

approximate compressors only on the first stage and then from the second step onwards 

there is no approximate compressors at all. That becomes 1 step and it would be applied 

for an 8 bit multiplication or a 16 bit multiplication. The 2 step full represents we are 

applying the approximate compressors on 2 on both the stages not only in the first stage 

reduction, but also in the second stage reduction which will go into the third stage. 



We will have 2 stage or the 2 step where we will apply the approximate compressors. 

There is one more term called as the truncation, truncation represents that in this the lower 

LSB side everything is truncated to 0 only we are considering only about the MSB side 

the higher order significant bits. 

The first 8 bits we will truncate it to 0, whatever is the partial product we will for a 16 

cross, 16 bit the first 8 bits for first 8 columns will all be truncated to 0, because we know 

that even if we make this the LSB side 0 the MSB sides will still have more weight age. 

We can easily do the exact compressors or the approximate compressors and get the values 

get the product values, but having truncating the lower LSB side is not going to have that 

much of a difference in the values between the inaccurate results and then the exact results. 

That is what it is called as the truncation. Having this for an 8 bit and then a 16 bit we can 

actually have 1 step without truncation, 2 step approximate compressors without 

truncation, 1 step approximate compressors with truncation 2 step approximate 

compressors with truncation. 

I can actually do it for 8 bit multiplier as well as an 16 bit multiplier and in the end we will 

actually get 4 designs for an 8 bit and 4 designs for the 16 bit. This particular row is for 

the 16 bit multiplier and this particular row is for the 8 bit multiplier. 

The 8 bit multiplier we can easily see that the SSIM value turns out to be 99%, 99%, 98% 

98% when for the 1 step if I apply the approximate compressors without doing the 

truncation this will be the highest. If I apply the truncation it will be slightly less than that 

of the previous value, 2 step if I apply the approximate compressors there it will go down 

to 98% 2 step application of the approximate compressors along with the truncation will 

give me 98% even lower than this. 

If I use the 16 bit and do the 2 step full and then 3 step full. Instead of in the 16 x 16 bit it 

is not only the first stage second stage, but also third stage is available because the higher 

number of columns are there. Then the length is also higher, it will eventually reduce it to 

we can easily apply the approximate compressors even to the third stage. 

In that particular case if I have 2 step full means 2 step 2 stage where we will apply the 

approximate compressors we will get the SSIM value as 0.99. But, if I have the truncation 

in a 16 bit multiplier this there is a significant loss here. The 2 step 2 stage truncation is 



not good whereas, the 3 stage applying the approximate compressors is still better the 98 

percent of the SSIM value is achieved. 

But, 3 step again with a truncation making the LSB part to be completely 0, it also degrades 

very very low. In this particular lecture what we have seen is how do we do an approximate 

compressors using an AND an OR recoding and then actually neglecting the part which 

has a very less probability of being 1 and then use that for putting the approximate 

compressors and use that particular approximate compressors into the multiplier design 

and we have seen the 8 x 8 bit, 16 x 16 bit multiplier design and then if those multiplier 

designs if we use it in a Gaussian smoothing application what will be its impact. It is impact 

in terms of the SSIM is not it is almost close to the 100% it is giving us the results of 99 

and 98%. 

But overall, the area the footprint of the design of the multipliers on the chip the power 

consumption for the 8 bit or a 16-bit approximate multiplier as well as the delay the critical 

path reduces significantly. All these could be leveraged without causing much of an SSIM 

degradation in the final application side. 

 


