
, 

Design and Analysis of VLSI Subsystems 

Dr. Madhav Rao 

Department of Electronics and Communication Engineering 

International Institute of Information Technology, Bangalore 

 

Lecture - 92 

Approximate Multipliers - Part 1 

 

(Refer Slide Time: 00:16) 

 

Hello students welcome to this particular lecture. In this particular module we will look 

into the Approximate Multipliers. It is basically a multiplier circuit and then we will try to 

understand how the multiplier blocks are designed and then try to go about approximating 

the multipliers. 

There are certain advantages of using the approximate multipliers especially for today’s 

image processing and signal processing applications and we will have a look at one such 

image processing application. 

Most part of this particular lecture is actually taken from this particular reference paper 

called as approximate multipliers based on the new approximate compressors. The 

approximate multipliers will go through in achieving the approximate multipliers we will 

have to understand compressors and we will also try to understand, what does the 

approximate compressors mean alright. 

(Refer Slide Time: 01:16) 



, 

 

Moving ahead, approximate multipliers comes under this broad domain of approximate 

computing. It could be an approximate computing as such will involve multiplication or 

the multiplication and addition, it would also involve a division. You know there are 

several approximate arithmetic operations that has been useful now in this particular in 

today’s applications. 

In that sense it falls into the approximate computing domain. Now, what is it? It is a 

computation technique that returns a possibly an inaccurate results. You know expecting 

an accurate results instead of that we are expecting an inaccurate results and to I mean it 

helps in to reduce the area, delay and the power consumption that will be involved in the 

circuit design and which goes into the application on the chip or a system application on 

the chip design. 

Now, where it can be used? It is heavily used in most of the error resilient applications 

where even if you have some kind of an error the it does not really matter that much. Some 

of those applications are really the digital signal processing and then the image and then 

the audio and video processing, some of them are also useful in the wireless 

communication. 

In that sense it actually connects the VLSI design to that of the application side. We will 

talk about the subsystem design, but then eventually it will be useful for the application 

side. This error resilient application represents that where the product which in the sense 

whatever is the output of the arithmetic computation and it is kind of an acceptable outputs. 



, 

Despite some of the underlying computations being inaccurate or incorrect. The question 

is how can we achieve this? one of the old methods is to make it software level 

approximations. But, over the last 4, 5 years there has been a lot of focus on the 

approximate circuits and thereby getting the approximate outputs which we can eventually 

design in the hardware alright. 

(Refer Slide Time: 03:27) 

 

That was a very brief discussion about the approximate computing and in this particular 

lecture we will actually talk about the multiplication. How do we get the approximate 

multipliers and it is circuit design or the block design to be done. To understand the 

approximate multiplier one has to understand what is a multiplication, how do we go about 

the multiplication in the VLSI domain. 

The binary multiplication is one such very standard method where it is nothing, but you 

have this if I consider the 4 bit inputs 2 of the multiplier and multiplicand and if I do a 

multiplication of that I will have the partial products and the partial products can be 

designed or it is deduced very very similar to how our manual multiplication method 

works. 

Each of this bit will get doing an AND operation we will get this partial products in the 

first row. The second bit when it gets you know gets ANDed with the a0 to a3 will give us 

the second row here. 



, 

Of course, there will be an offset here and the third one will give us the third row here with 

2 offsets here and then P3 when it gets multiplied with the four of the A bits we will get 

the fourth row of course, with the 3 offsets. If I do an addition of all these things I will get 

the 8 bits here which will be the product s0 to s7. If I actually look into this particular design 

in a dot diagram design it is very interesting to see that we call this particular the ANDed 

operation of b0 to a0 or b0 to a1 or b0 to a2 or b0 to a3 or b3 to a3. All these are nothing, but 

the partial products. 

In a multiplier definition all these are nothing, but the partial products each of these dots 

in this dot diagram represents the partial products. This first level of the dots however, it 

is arranged it represents this particular P00 to P33. The offset here or an empty spaces here 

represents that it will eventually be filled with 0. Then when it gets added this dot which 

is nothing, but a partial product will get added to 0 here, it will have any effect. What we 

really want is while we are actually adding it up and then eventually getting the product 

results. We want to make the 1st stage here is the case you know this is the partial products 

that has been generated and then in the 1st stage we make this kind of an arrangement. 

The 1st stage will get reduced to from this is the 1st stage. If I consider this particular level 

this particular three of this partial products can go up here, because it is anyways the 

addition here and these two can go this one can go here. That is what we will get here the 

1st stage we can say that this represents the same thing here, but it is kind of rearranged to 

some extent. Once I have a rearranged 1st stage then we will apply some half adder or full 

adder so that we will get the 2nd stage which is of the length of 3, the maximum length of 

3. 

Here the maximum length is 4 here in the sense maximum length means if I consider any 

kind of a column here out of the 8 columns here 1, 2, 3, 4, 5, 6, 7 out of the 7 columns 

here. If I consider the 4th column, that turns out to be having the maximum height or the 

maximum length. 

I am when trying to reduce this the length of 4 into 3 by applying some half adders here. 

This particular enclosure here which is enclosing the two of the bits is nothing, but 

representing the half adder. This particular enclosure representing the two dot partial 

products or the two dots here represents the half adder here. Eventually if I have the half 

adder here then I will get the 3 bits here, and then 1 bit here and then the 3 bits here, 3 bits 



, 

here, 3 bits here. I am actually reducing from 4 to 3 bits here, 3 dots here whatever we can 

say in the 2nd stage now we will do the further reduction and then get from 3 dots to 2 

dots here. 

Finally, if I have this particular stage with only 2 dots. That means, that I need to have 

some kind of an adder a subsystem block which can actually do an addition of 7 bits an 

addition of this 7 bits.  I need a 7 bit addition and then finally, I will get this results. 

Here I have written that it is a final carry propagate adder of 6 bit here which means that I 

am going to take apply the addition up till this particular dots or the bits here leaving this 

out. This could be anyways we can consider it to be directly as the first LSB of the product 

bits right, that is what we do. 

We have this particular partial product. In an overview the binary multiplication can be 

recognized into three stages. One is a partial products generation and then kind of 

rearranging, the second is the partial product reduction which will be like 4:3, from the 1st 

stage 4 the length of 4 can be reduced to a length of 3. 

Then the length of 3 can be reduced to a length of 2 by applying some half adders or full 

adder designs and then the last one is the carry propagate addition which we do it in the 

last stage. Once we get the length to be equal to 2, then we apply the carry propagate 

addition. 

We can apply carry skip adder, we can apply carry select adder or increment adder 

whatever we can apply that to finally, get the eventually get the product bits. Notice that 

here this is one single dot these two dots represents the half adder and then these three dot 

represents the full adder design. 

We can actually use the full adder and half adder design to convert to reduce to in fact, to 

in the 2nd stage we call it as the partial products reduction stage. What we say that this is 

the binary multiplication we can also say that the approximation can be introduced in any 

of these blocks. Whether it is the 1st stage or the 2nd stage or the 3rd stage or even in fact, 

we can say that during the partial product generation as well. 



, 

(Refer Slide Time: 09:54) 

 

Here is an exact multiply here is a this is called as a conventional multiplier also called as 

a dadda multiplier, because it was kind of invented by the author Dadda himself. This is 

the way the dadda multiplier works where you have the 8 bit multiplication, giving us a 

16-bit output. 

If you consider the 8-bit multiplication these dots are nothing, but the partial products that 

are being generated. Then the two the boxes which are enclosing the 2 dots represents the 

half adder the boxes which are enclosing the 3 dots are the full adders. We apply in the 

dadda multiplier it keeps applying the half adder and full adder to bring it to a stage where 

it is only the length is 2 bits. Then finally, apply some the fast adders and then get the a 

product bits. 

In all the stages of partial product reduction from reducing the length here to a length of 6 

here to a length of 4 here to length of 3 and then finally, 2. We apply the half adders or the 

full adders, the sequence for an 8 x 8 bit multiplier is like this the length is 8 here or the 

height of this the partial product stack is actually 8. In the next stage it reduces to 6, in the 

next it will reduces to 4, 3 and 2. 

8 x 8: 8 −>  6 −>  4 −>  3 −> 2 

Similarly, for 16 x 16 bit multiplication it actually reduces start from, 

16 x 16: 16 → 13 → 9 → 6 → 4 → 3 → 2 



, 

In this particular work I think the benchmark multiplier is considered to be the dadda 

multiplier. 

(Refer Slide Time: 11:32) 

 

Let us take a look let us take a quick look at the compressors what do we mean by 

compressors. When we apply this half adder or the full adder into our partial products so 

as to reduce the partial product stages we call it as a compressors. It is basically 

compressing from the higher length of the partial product stack into a lower length. 

the very primitive compressors could be the half adder or a full adder here the full adder 

as we know already a 3 input generates the sum and carry and then half adder is nothing, 

but 2 inputs will generate the sum and carry. It could also be called as 2:1 compressor the 

half adder and 3:2 compressors if you use the full adder, here is the truth table for the half 

adder and full ladder. Moving ahead, let us take a look at the 4:2 compressors. 



, 

(Refer Slide Time: 12:23) 

 

What do we mean by an exact 4:2 compressors? It is actually realized by the 2 full adders 

here. The 4:2 compressors will involve 4 inputs there will be 1 carry input and there will 

be a carry output and then there will be a carry here and then the sum here.  

If I consider one segment one. Let me use the pointer here. If I have a stack of partial 

products if I have 4 and then in the neighboring also if I have 4 then I can use this 4:2 

compressors. 

Then it is going to generate the carry out here Cout it is going to generate the sum here 

and it may take a carry input assuming that is the LSB side. I will say that the C input is 0. 

I can say that the C input is 0 I can assume that and then there will be a carry out or rather 

I will say that carry. This carryout is actually going and it will fit it into as a carry input to 

this particular 4:2 compressors, this will be 4:2 compressors. 

Now, whatever goes into carry input this particular output will be the carry input to the 

next 4:2 or the subsequent 4:2 compressors. This carryout will go in as the carry input in 

the next stage of the partial product. When we create the partial product this carry in will 

go into to the next stage of the carry input here. 

The sum will be anyways be considered as a dot in the next stage as a dot in the next stage 

or rather as a partial product in the next stage hope this is clear. That is why the 4:2 



, 

compressors will have 2 carry outs, one going into the same stage the second one going 

into the next stage. 

The 4:2 compressors was actually developed using the 2 full adder circuits. The x4 is the 

LSB side, x1 is the MSB side and if you have the 3 MSBs and then the last LSB is actually 

going into the second or rather the full adder side here along with the carry input. 

Whatever is the sum that has been generated here will go into the to the full adder here. 

Remember that I think what we are doing is we are considering this particular 4 bits as an 

input and then we ultimately want to find out the sum and then the carry out. It is really 

not whether x4 is the MSB, LSB or the MSB it is nothing but, 

x1 + x2 + x3 + x4 + Cin = Sum + 2(Carry + Cout) 

We will use one full adder for the x1, x2 and x3 and another full adder for this sum whatever 

is the sum generated and then along with that sum x4 and then we will have the C input 

and then create the overall sum and then overall carry alright. Hope this particular 

understanding is clear about the exact 4:2 compressor. 

(Refer Slide Time: 15:56) 

 

Similarly, we can have 5:2 compressors where there are 5 inputs and then there are 2 carry 

inputs, 2 carry outputs, 1 sum and 1 carry. This can be done using the 3 full adder circuits. 

I will have the first full adder will have 3 inputs, second full adder will have 3 inputs, third 

full adder will have 3 inputs. 



, 

The only thing here is the inputs are nothing, but the carry input of the first carry input and 

then the second or the third full adder will have the second carry inputs and it will generate 

the sum carry and Cout and Cout1. If I look into the full adder circuits here the full adder 

circuits can be represented as nothing but x1. 

If I consider the sum here sum can be represented as an XOR gate, x1, x2 and x3 here. The 

Sum 2 can be considered as the S1 XOR with that of x4 with that of Cin and that to 1. 

Finally, this particular sum here will be considered as again S2 XOR x5 and then XOR with 

that of Cin of 2. If I consider the sum or the delay associated with us extracting the sum 

output it will be 1, 2, 3, 4, 5, 6, there will be 6 OR gates of delay. 

Basically a compressor is nothing but a logic circuit that counts the number of 1’s in the 

input, number of 1’s in the sense x1, x2, x3, x4 and then carry input, carry input 1 and carry 

input 2. 

(Refer Slide Time: 17:51) 

 

If I have this particular the partial products which are been generated. Now, the question 

is why can I not apply the 5:2 compressors, 3:2 compressors, 5:2 compressors here and 

then make a much more reduced partial product stage in the next stage. 

Ultimately what we want is if I want to create a sum of this it is nothing, but the summation 

of this partial product, summation of this partial product, summation of this, this and this. 

The partial product summation starting from 0 to j - 1 in the jth column. 



, 

The compressors are XOR rich circuits and partial products reduction is a it is a critical 

multiplier block. The XOR gates tend to contribute to the higher area and delay. If I have 

some kind of an approximate compressors then it will be highly beneficial in actually 

leveraging to that of the footprint, the delay and then the power. 

We can greatly reduce the we can greatly benefit get benefited in terms of all these three 

parameters. Of course, we will achieve the inaccurate results, but for some of the 

applications it may not have that much of an impact. 

(Refer Slide Time: 19:07) 

 

Approximation how is the approximation done? This is the proposed design in this 

particular paper is nothing but you can represent the partial products in the form of an 

AND and OR gates and not use the XOR gates at all. Instead of an XOR gate which will 

give you an accurate sum right instead of an XOR gate why not use some kind of an AND 

gate or an OR gate.  

Of course, we will get some error. But, if that error will not have that much of an impact 

then we will get reduce delay. We will also avoid the XOR gate which occupies more of 

an area and instead use that off an AND or an OR gates. 

To approximate the half adder, let us say the sum = x1 + x2. If I consider the half adder it 

is only 2 bits, 2 input bits, 1 carry and 1 sum. The XOR gate of the sum is replaced, if I 



, 

replace that XOR gate of the sum. The accurate sum of an half adder is nothing but an 

XOR gate here. 

But, instead of an XOR gate if I do an OR gate here and carry is retaining the same it is an 

AND gate. We will retain the same instead of the XOR here we will do an OR gate here 

turns out that in the truth table only one error is likely to be appearing. 

This is the output here the carry is 1, sum is 0 here. For 1 and 1 for the inputs to be 1 and 

1 here in the approximate output I will get 1 here and then 1 here. I will have a problem 

only in this particular case it is supposed to be 0, but we are getting a value of 1 here. The 

absolute difference out of the 4 cases is only 1 case. 

What we can do is, 

S = ∑(x1, x2) = ∑{x1, x2, x1 + x2} 

This results in one error in the sum computation. What we are saying is if I consider x1 + 

x2 addition of x1 and x2. What I can say that we can actually do an x1, x2 and then do an 

addition with x1 or x2, x1 or x2 is likely to give us one error here in the sum computation 

alright. 

(Refer Slide Time: 21:44) 

 

If I proceed further now why not use this AND an OR re-coding for our different size of 

compressors. What here I have written is in our partial product generation. This is my 8 



, 

bit x input and 8 bit y input, if it gets multiplied I will get the partial products. The partial 

product would be of 16 the length here will be of 8 and 8 bits will make it 16 bits. The 

height here the largest height will be nothing, but the 8 bits. 

Here what I have done is I have represented in different colors just to ensure that finally, 

this particular representation will make it to an OR gate and then the other color will be 

represented as an AND gate. What we really need is x1 and yj xi and yj of the i + jth column. 

If I consider i + jth column to be somewhere around this alright. 

It will be nothing, but i + jth column will represent xi . yj and it will also represent xj and 

yi, the dot product of without the partial products of xi, yj and then it will also present xj, 

yi. If I consider the i + jth column in the partial product alright. If I actually consider those 

two things, what it really means is if I consider x7 y2 in one of these columns and x2 y7. 

If I pick these two partial products and if I want the sum basically we want to add all of 

them. Why not add these two together. If I want to add these two together. The addition 

what we can say is the addition of this can also be represented as an ANDing of x of this 

particular partial product. I can say that this is the partial product i j and then this is the 

partial product j i. 

I can actually do an ANDing of Pij and Pji and ORing of Pij and Pji, this actually the 

summation of these two product these two partial products can be represented as an AND 

an OR. That is why we say that this is an AND an OR re-coding, thus in the i + jth column 

of the PPM we can replace the couple of partial products especially xi yj and xj yi with a 

modified partial products of Aij and Oij. 

That is what I have done here. I have represented this one as the OR gate and this one as 

the AND gate. Similarly, for all other 4 terms we will have the OR and then the AND gate. 

The same partial products what we have obtained from the binary multiplication of this 8 

bit, 2 8 -bit numbers. It is now represented in the form of an OR gate, the output of an OR 

gate and then the output of the AND gate. 

For the future references what we will do is it is nothing, but xi yj which is nothing, but the 

partial product and if it has to be summed with that of xj yi. It is nothing, but the partial 

product summation which will be nothing but the AND operation and then the OR 

operation and that has to be summed. 



, 

(Refer Slide Time: 25:22) 

 

The output of the OR and then the output of the AND that has to be added together. The 

proposed approximate compressors what they have proposed in the paper is considering 

the input bits xi and yj that are uniformly distributed. If I consider the partial products or 

even the xi. 

I will consider x1, I will consider y2 as an individual bit it has a probability, if it is uniformly 

distributed we say that the probability of x1 to be 1 is 0.5 and probability of y2 being 1 is 

also 0.5. That is what if we consider that uniformly distributed of this particular bit and if 

all these bits x1 to x8. Similarly, y1 to y8 are independent of each other and are uniformly 

distributed then we can say that each of these bits x8 to x1 and y8 to y1 will have a 

probability of being 1 is half. 

Therefore, the probability of pi is probability of the each partial product will be half 

multiplied by half, because it is the probability of xi ANDing with that of the yi which will 

be 1 by 4th. 

Similarly, we can see that the probability of pi to be 0 is 3 by 4 and that is what is written 

in this particular table x y, yj and pj. We will have only 1 here out of the 4 cases, that is 

why it is 1 by 4 of the partial product being 1. Ultimately what we want is if I have the 

number of inputs as j. I will have the partial products of p0 to pj - 1. Finally, the number of 

outputs we want to reduce from one stage partial product generation stage to the next stage 

we want to have j by 2 length and then so on. 



, 

 


