
Design and Analysis of VLSI Subsystems

Dr. Madhav Rao

Department of Electronics and Communication Engineering

International Institute of Information Technology, Bangalore

Datapath subsystems – Carry Look ahead Adder

Lecture - 90

Carry Look Ahead and Carry Increment Adder

(Refer Slide Time: 00:16)

 Hello, students welcome to this lecture on the Carry Look ahead Adder, up till now we

had seen the carry ripple adder and then the carry skip adder previously and then in this

particular lecture we will take a look into the carry look ahead adder as well as just start

or introduce you to the carry increment adder. Let us begin with the carry look ahead adder.

(Refer Slide Time: 00:39)

Let me also pick my pointer, the carry look ahead adder again it is very very similar to that

of the carry skip adder. The carry skip adder we had this kind of an expression to go

through that what it really means is we will make if I have a 16 bits starting from 1 bit to

16 bit.

We will make it into different groups here and in this particular case I have made 4 groups.

Each of this groups we will create its own group generate, G4:1 and this 1 will have a G8:5

this 1 will have G12:9 and then finally, this one will have G16:13. Its individual subgroups

or whatever the groups it is been formed it will create it is own group generate signals and

those group generate signals are created simultaneously. Basically for G16:13 it does not

have to wait for any of the previous groups output.

Similarly, G12:9 will be created simultaneously with respect to G8:5 with respect to G4:1.

All of them will be available and then the moment G0:0 is fed or it creates the G4:0, that is

what is written here.

The G4:0, this G4:1 is created P4:1 is created and then the moment G0:0 is available it creates

G4:0. Similarly, whenever the G4:0 is created we will get G8:0, if we have G8:5 and then

P8:5, that is what the carry skip adder was doing the additional carry skip adder does was

it uses this particular expressions and then tries to deduce this expressions or implement

this particular expressions in the form of a multiplexer.

It uses a multiplexer to skip some of the computation and based on the group propagate

signals it actually skips the other computation and just passes into the next carry out, that

is about the carry skip adder. Let us have a look at the carry look ahead adder I have written

the same expressions as that of the carry skip adder. Then what is actually the difference.

It also utilizes the same it makes it into the different groups of the bits and then each of the

groups are responsible to create its own group generate bits and then the group or group

propagate bits and group generate bits so that to get the carry out from that particular group.

(Refer Slide Time: 03:42)

It is very similar expressions we will have but we will see how it gets implemented. Let

us take a look at the carry ripple adder. If I will write one particular expression

G8:0 = G8:5 + P8:5G4:0

This was done in carry skip ahead adder or carry skip adder in the carry ripple adder if I

want to get G8:0 = G8:8 + P8:8G7:0 or G8:0 = G8 + P8G7:0 and then it has to depend on the

previous carry out coming from the 7th bit.

If I write this in terms of the bit level it will be G8:0 = G8 + P8G7:0 as our carry ripple

adder. The difference here is in the carry look ahead adder it will be the same thing as that

of the carry skip adder. I am going to write the same expressions here P8:5 and then G4:0.

It also generates its own group generate signals and it is own group propagate signals and

then it waits for the previous groups carry out signal. This is very similar to the carry skip

adder, but in the carry skip adder we had actually used a multiplexer. If I write down the

expression, I am going to use a different color. The G 8 is to 0 was actually was the output

coming from the multiplexers.

Then the multiplexer was something like this the select line was the group propagate signal

and P8:5, this was actually the carry skip ahead adder. I am going to demarcate this all these

3, so that we will get a clear cut idea. This is my the first one is the carry skip adder and

then the second one is carry look ahead adder and the third one is our regular carry ripple

adder.

Where the carryout gets rippled so that we will be able to generate the next carryout. The

carry out keeps on rippling till the nth bit the carryout from the nth bit is generated.

Whereas, in the carry skip adder it uses a multiplexer if the multiplexer what it really

means is if I have G8:5 is already available. The G12:9 is already available G16:13 is already

available.

The moment P8:5 if it is not 1 then it is already available and then it can directly if it is not

one that means, if it is 0 then G8:5 can be directly propagated as the carryout of G8:0, that

is the advantage the carry skip adder has.

Again, the G8:0 is generated, but then again G12:9 or rather P12:9, if it is 0 then it whatever

it has created G12:9 it will be passed as the G12:0, it actually skips the evaluation of the

carry out here.

It actually skips the evaluation of G8:0 need not have to compute because if P12:9 is 0 then

whatever is computed here G12:9 it will be propagated as 12:0 as a carryout. It does not

have to wait at all, but if it is 1 here then it has to wait for G4:0 computation. So, that this

CSA, the carry skip ahead adder has an advantage if the propagate group propagate bit is

0.

Whereas, this carry look ahead adder it does not use a multiplexers at all. It uses instead

of deriving 1 inverter here and then putting it into a multiplexer it directly uses the AND

gate here the AND gate and then here the OR gate. It uses the AND an OR gate, it uses

the AND an OR gate instead of the multiplexers. The advantage is irrespective of the group

propagate signals it is going to generate the G8:0.

Even if in this particular case carry skip skip adder if P8:5 is 1 then it has to do the AND

computation and then that will be passed as G8:0 and then the additional inverter delay is

there for the P8:5 here, that additional inverter is taken off and then it will do AND OR

operation it has this is anyways made available. It will compute this P8:5 this is also made

available.

It will compute this AND operation and then do an OR operation and then get the carry

out result which is nothing but G8:0. It does not have to wait it does not have to do an

inverter a this thing and whatever is when P8:5 here is 1 it has to do an AND operation and

then pass it as the G8:0.

The passing through the multiplexers are generally done using the pass transistors and then

it will have its own delay. In that sense it is a much more simpler design carry look ahead

adder and we say that it is looking ahead the reason is very very simple, it does not really

the moment 4:0 is generated we will get 8:0.

The moment 8:0 is generated we will get 12:0, the moment 12:0 is generated we will get

16:0. It does not it actually looks ahead to the carry out of the next group without even

trying to calculate the 7:0 or 6:0 or 5:0.

(Refer Slide Time: 10:13)

Moving ahead, the circuit or the block diagram of this particular subsystem, adder system

is nothing but 2 blocks here and here. Which generates G4:1, P4:1 for the first group the

second group it generates 8:5, P8:5 very very similar to that of the carry skip adder. Instead

of the multiplexers here it will do an AND an OR operation, P8:5 AND it with that of G4:0

and then OR with that of G8:5 and then it generates G8:0. This is for only for the 8 bit

addition we can extend 2 to more blocks for a 16 bit addition.

Remember that it ultimately it has to create the sum bits, ultimately it has to extract the

sum bits not only S8 or rather S9 G8:0 will give us the S9 sum bit, but we also want the sum

bits from S8, S7, 6, 5, 4, 3, 2, 1. What it really has to do is internally in this particular adder

it has to generate G0:0, G0:0 is anyways made available G1:0, G2:0, G3:0.

After the XOR operation here it will give me S2, S3, S4 and then so on. We want all the

sum bits from 1 to 8. For to generate the sum 1 to S8 we need all this in the individual

group generate bits. Even if I am taking the 1 to 4 bit this 1 is this particular logic is

anyways is going to create 4:0, but still I need G3:0, G2:0, G1:0, so that I should be able to

calculate the other sum bits. This block is going to do that going to extract the G3:0, G2:0,

G1:0. The internal group generate signals this particular block is going to do similarly here

this particular block is going to generate G7:0, G6:0, G5:0.

(Refer Slide Time: 12:29)

The way it does is in the P G architecture, this is my PG architecture diagram alright. The

first stage is nothing, but the bit wise the generate and propagate signals, the second stage

is the group wise generate and propagate signals, the third one is nothing but having

implementing the XOR gate so as to extract the sum bits. We are considering the G0:0 the

carry input is nothing but grounded that is 0 object.

Notice here that all this blue box is generating its own group generate signals. The G4:1 is

created by this 3 this square block which is nothing but each of this blocks is representing

AND an OR gate. It is creating G4:1, this 1 is creating G8:5, 12:9, 16:13, and simultaneously

it is also creating P4:1. It is not only G4:1, but also P4:1, it is also P8:1, 8:5 this is also P12:9,

this is also G16:13.

The output here is generating the group generate as well as the propagate signal. Once that

is available then it goes to the instead of the multiplexers here it will go into the AND an

OR gate. The red box is nothing but the bigger AND an OR gate which takes in G4:1, P4:1

and then G0:0 so as to generate 4:0. Once the 4:0 is generated this is anyways made

available along the same lines as when G4:1, is the output generated.

The G8:5, 12:9, 16:13 is all generated at the same time. Once we have that that will goes

to the AND an OR gate the other input is coming from 4:0 and then the moment 4:0 is

created it will try generating 8:0. The moment 8:0 is generated we will get 12:0, the

moment 12:0 is generated we will get 16:0. This way we will be able to generate or look

ahead into the carry out of the individual subgroups here.

Without even worrying about 7:0, 6:0 and 5:0 which are actually useful for generating this

sum 8 bit sum 7 bit and sum 6th bit without even actually generating this it is actually

generating 8:0. It is actually looking ahead to 16:0 without even considering when the

15:0, 14:0 or 13:0 is generate, and that is why it is called as the carry look ahead adder.

The other thing is once we understood these 3 blue boxes here for all the subgroups and

then this particular red box to generate 16 is to 0 for a 16 bit addition. These 3 boxes which

is nothing but a representing the AND an OR gates it is useful to generate 1:0, 2:0, 3:0 the

moment 0:0 is made available.

Similarly, the moment 4:0 is made available it will this particular block AND an OR gate

is going to generate 5:0 this is going to generate 6:0, 7:0, and similarly 9:0, 10:0 and 12:0.

Now, remember that if I want to pick G7:0. The G7:0 is actually created by G7:7 + P7:7 +

P7:7 and it has to wait for G6:0. Internally these 3 particular internally within that particular

group this is still a carry ripple addition only externally within interaction between the 4

groups it does utilize the carry look ahead adder, because here its own group generate and

then propagate signals are created.

But, internally when it generates the 3:0, 2:0, 1:0 or 7:0, 6:0. 5:0 it actually does the carry

ripple addition. Here also it is nothing, but the carry ripples, it actually waits for the

previous one and then generates a 𝐺4:1, 𝐺8:5 𝐺12:9 16:13. While it is interacting between

the subgroups we have AND an OR gate so that we will get directly the 4:0, 8:0, 12:0, and

16:0 hope this is clear.

(Refer Slide Time: 17:04)

What should be the delay of this particular carry look ahead adder, it will have a bit wise

generation delay it is nothing but an XOR gate AND gate whichever one is higher that we

will have to account for.

In the third stage it will have an XOR gate delay, that is what we have the XOR gate and

then the PG represents the bit wise this has to be bitwise PG generate propagate and

generate signals. Then it will have you know these 3 blue boxes here the delay due to these

3 blue boxes the delay of this particular box. Then finally, S16 if I considering the 16 bit

addition we are really interested in finding out the delay for generating these 16th bit sum.

In that sense it will have the delay coming from these 3 particular blocks.

Overall, I will have the critical path coming from these 3 blue boxes these 3 red boxes and

then these 3 green boxes. We will have this delay from the 3 blue boxes red boxes and

then the green boxes. Now, what all these boxes are nothing but the AND an OR gate.

It is basically 3 AND an OR 3 and an or 3 AND an OR gates delay. The 3 and an or 3

AND an OR here and these particular blue boxes are written as nothing but PG of n. What

it really means is it is been generalized into N bits having K groups of N bit each.

The N bits each, in that sense these 3 blue boxes these 3 blue boxes these 3 blue boxes 3

blue boxes can be generalized into the tpg of n here where n here is actually nothing but the

4 bits.

It is basically generating the AND an OR gates at the output here this is what the output

here whatever is the delay here that is considered as tpg of n bits. A group wise propagate

and generate signals for the n bits hope that is clear. We will have the delay as nothing but

𝑡𝑆𝑖𝑛→𝑆16
= 3𝑡𝑝𝑔(𝑛) + 3𝑡𝐴𝑂 + 3𝑡𝐴𝑂

When I compare this with that of the carry ripple adder, we will have the same 3tao here

the same 3tao here the only thing here is will be the multiplexers. The carry ripple adder

will have the multiplexers here. The advantage with the carry skip adder is because of the

multiplexers if the 𝑃4:1 or 𝑃8:5 or 𝑃12:9 or 16:13 is actually 0 then it will actually take its

own generated signal and then pass it to the next one.

If this propagate group of signals is 0 this is 0 this is 0 then it will directly generate it will

actually go really fast up till here and then it has to do only the 3 addition. In that sense it

will be really faster it does not have to wait for this signal to come or rather this signal to

be achieved.

It will be really fast to generate the output, but that will be one of the best case in terms of

the worst case the 𝑃4:1 or the 𝑃8:5, 𝑃12:9 and 𝑃16:13 will be 1 and then it has to wait for the

previous carry out signals.

In that sense I think the carry look ahead adder because it is a simple AND an OR gate

does not involve any kind of an inverter to invert the group propagate signals we will still

have a better performance or a delay here from the carry look ahead adder. That is why we

say that the multiplexers consume little bit more delay than that of a simple AND an OR

gate hope this is clear to everyone.

(Refer Slide Time: 21:09)

The overall delay or overall critical path is denoted like this by this particular black line

indicating in this particular middle stage the critical path or the maximum delay that it

takes. In this particular stage

𝑡𝐶𝑖𝑛→𝑆16
= 3□ + 3□ + 3□ + 𝑡𝑋𝑂𝑅 + 𝑡𝑝𝑔

Itis nothing but the bit wise and then this tpg of n is nothing but the group generate and

propagate signals whatever is needed and whatever is the delay due to those particular

AND an OR gates alright.

(Refer Slide Time: 21:45)

Hope this is clear, for a general expression of K group and N bits we will have

𝑡𝐶𝑖𝑛→𝑆16
= 𝑡𝑝𝑔 + 𝑡𝑝𝑔(𝑁 − 1)(𝑁 − 1 + 𝐾 − 1)𝑡𝐴𝑂 + 𝑡𝑋𝑂𝑅

This K is K - 1 decides the number of the red boxes which we had the AND an OR gates

which is going to interface between the different subgroups.

This N - 1 is our last group’s, the AND an OR gates and then this particular tpg of N - 1 is

our first AND an OR gates or the first groups AND an OR gates to generate the group

propagate and generate signals. The XOR and will be nothing but for the last stage to

extract the sum.

Then this tpg which is nothing but bit wise is our whatever is the gates that has been

involved whether it is an XOR gate or an AND gate whichever takes more to create the bit

wise generate and propagate signals. That will be there in the first stage, hope this is clear.

(Refer Slide Time: 22:52)

Let us move on to the carry increment adder. The carry look ahead adder and carry skip

adder the expressions were very similar or rather it was derived from this particular

expressions. If I notice this 𝐺8:0 = 𝐺8:5 +𝑃8:5 𝐺4:0. But if I look into the subsets of the carry

out signals within the same group of 8 to 4 bits.

The 𝐺5:0 is actually created from G5 plus or rather r with that of P5 and with that of 𝐺4:0.

The 𝐺6:6 = 𝐺6 + 𝑃6𝐺5 and 𝐺7:0 = 𝐺7 + 𝑃7𝐺6. If I look back into my PG level diagram

here for the carry look ahead adder. I am talking about this particular 3 gates here 3 AND

an OR gates 3 AND an OR gates 3 AND an OR gates here.

If I want to create the individual groups carry out and it subsequent the sum bits for

example, 3:0, 2:0 or 1:0 or in this particular case 7:0, 6:0, 5:0 then I need this kind of a

carry ripple kind of an architecture here. Where carry ripple in the sense it this one has to

wait for 𝐺4:0 here and then 5:0 is generated and this has to wait for 6:0 and then this has to

wait for 6:0 and then 7:0 is generated.

Rather if it is a very sequential flow 7:0 has to depend on 6:0, 6:0 has to depend on 5:0.

The question is can we actually design it in a sense that once the 4:0 is available why not

all of them are made available 7:0, 6:0, 5:0 just like how 8:0 is made available. If I look

into this particular expression of 8:0, 8:0 depends on this 4:0 and 8:5, 𝐺8:5 and 𝑃8:5.

Now similarly if I want to create the similar expression here this block can actually be

brought into the same level, but I need not only 4:0, but also I will need 7:5, P8 is 𝑃7:5.

Here for generating 6:0 at this level I will require 𝐺6:5 and 𝑃6:5.

That is what the carry increment adder does here. Here instead of waiting for 𝐺6:0 to be

generate in the 7:0 or 6:0 depends on 5:0 and 5:0 depends on 4:0 instead of that why not

consider this 7:0 and 6:0.

The 7:0 actually depends on 4:0 very very similar to 8:0, the way the 8:0 is generated it

depends on 4:0 and then 8:5 and 𝑃8:5. Similarly, if 𝐺4:0 is generated and if 7:5 and 𝐺7:5 is

made available then with the help of 𝐺4:0 it should be able to generate 7:0 at the same time

as that of 8:0 and then 6:0 it depends on 4:0 it does not depend on 5:0 now and depends

on fully on the 4:0.

The moment if it is because 6:5 and 𝑃6:5 is made available the moment 4:0 is made

available then we will get 6:0 at the same time as that of 8:0. The 5:0 is anyways depends

on 4:0 and then 5:5 and 𝑃5:5. If I look into the carry increment adder here these 2 particular

are changing these 2 are changing with respect to these 2.

All other 2 things remains the same the carryout of the lower LSB side and then carryout

of the MSB side in between the bits 𝐺7:0, 6:0 there is it is being generated at the same time.

The moment 𝐺4:0 is made available here, all these things are created and it is waiting for

𝐺4:0 is to be generated and then the moment 𝐺4:0 generated all these 4 bits all these 4 group

generate bits will be generated simultaneous.

In the sense each of this group 4, 4:1, 8:5, 12:9 and then 16:13 all this group is actually

waiting for the carryout. The moment the carryout of the previous subgroups is generated

it gets incremented, it gets holistically all the groups gets incremented into the group

generate carryout bits. That is why it is called as a carry increment adder. It is waiting for

one particular 𝐺4:0 and that in the next instance we will get the 𝐺8:0 to 𝐺5:0 all of them will

be in the next increment of the instance we will get all these carry out signals.

(Refer Slide Time: 28:15)

The block diagram is pretty simple you will have 4 groups here. This particular first group

is 8 you know 4:1 and then this 1 is 8:5, 12:9, 16:13. The first group even if it does the

carry ripple adder here. It is going to generate 𝐺4:0 the moment 𝐺4:0 is generated we will

have 𝐺8:0 that is been generated but also 𝐺7:0, 6:0, 5:0.

The moment 𝐺8:0 is generated we will have 12:0, but also we will have 11:0, 10:0, 9:0.

The moment 12:0 is generated we will have 16:0, but also we will have 15:0, 14 and 13:0

which will help in extracting this sum bits.

(Refer Slide Time: 29:07)

The PG architecture here for the carry increment adder will look like something like this

a carry ripple addition here in the first block. The moment 𝐺4:0 is generated then it goes

whereas while this particular 4 blocks is generating 𝐺4:0 at the same time we will have 16

is to 13 being generated this one is 12:9 being generated 𝐺8:5 being generated.

But not only along the outermost bit, but also on inside this particular bit we will have 𝐺6:5

we will have 𝐺7:5 and not only 𝐺7:5 or 𝐺6:5, but it will also have 𝑃6:5 generated and 𝑃7:5

generated and 𝑃8:5 generated. Similarly here when it is generating this one it will be

nothing but P10:9.

Then similarly here G11:9 and then P11:9. The moment G4:0 is generated I need one

particular AND gate and an OR gate here which is represented by a block. To get my G8:0,

7:0, 6:0 and then 5:0 simultaneously generated.

It is generated at the same time instance, it gets actually from G4:0 it gets incremented to

8:0, 7:0, 6:0 and 5:0 at the same instance. Once 8 is to 0 is made available then it will get

12:0, 11:0, 10:0 and 9:0 incremented.

The moment 12:0 is made available then it will get 16:0, 15:0, 14:0 and then 13:0. In the

sense the 4 groups which are being created it is actually once the G4:0 is generated then 8:0

and all the other groups will be incremented in the next time instance. Then this will also

be available in the next incremental time instance and then this will be available in the next

incremental time instance. That is why it is called as a carry increment adder. Once we

have this G16 in the individual carry out bits then I should be able to generate the S16 to S1

bits. The critical path in this particular case will be nothing but the S16 bit how much

amount of time it takes to generate the S16 bit and it will be nothing but coming from this

particular AND an OR gate.

This the input here depends on this particular AND an OR gate and then that depends on

this particular AND an OR gate this particular AND an OR gate. I will have this 4 AND

an OR gates plus this 1 plus this 1 and then finally this 1.

Looking at it makes it very very simpler in fact, this is one of the most fast adder that we

can develop the carry increment adder because the overall delay it turns out to be 4 tao and

3 tao to generate the G15:0, and then one XOR to generate the S16 bit and then one the tpg at

the bit level pg at the bit level, that will be the delay.

