
Design and Analysis of VLSI Subsystems

Dr. Madhav Rao

Department of Electronics and Communication Engineering

International Institute of Information Technology, Bangalore

Datapath subsystems - Carry Skip Adder

Lecture - 89

Carry Skip Adder

Hello students, welcome to this lecture on the Data path subsystems where we will focus

on the Carry Skip Adder. We had seen earlier the carry ripple adder here we will see take

a look at the carry skip adder. We will try to utilize the same propagate and generate signals

of course, the group wise propagate and generate signals and then try to design this carry

skip adder which turns out to be a little bit faster than that of the carry ripple adder.

(Refer Slide Time: 00:46)

Let us begin with this, what we had seen is the carry ripple adder. Let me take the pointer

the carry ripple adder. Here, the way we have utilized the group generate signals is G1:0

we generate it from G0:0 and then from 1:0 we generated G2:0 and then similarly we

generated G015:0 for a 16-bit adder circuit.

The carry skip adder is nothing but it uses the same the group generate signals, but it also

utilizes the group propagate signals and then tries to shorten the critical path. If you

remember the carry ripple adder the critical path for generating the S16 was coming from

all the generate group generate blocks 15th block, 14th block, 13th block all the way from

1 block.

Here we will try to shorten the critical path by generating the group propagate signals or

by utilizing the group propagate signals. In the carry ripple addition, we have not actually

utilized the group propagating signals the propagate part was still a bit wise propagate

signals.

Here we will try to utilize the group propagating signals to shorten the critical path and,

how are we going to do that. We will write the expression for a 16-bit addition we will try

to find out G4:1, we will try to find out 8:5, we will try to find out 12:9, we will try to find

out the 16:13.

Once we have all those things the group of 4 bits. We have done 4 groups of each

individual groups having 4 bits. Once we have that then we will try to extract G4:0, G8:0,

G12:0, and G16:0 and then utilize this 4:0, 8:0, 12:0 and 16:0 to extract the sum bits.

Let us try to understand how we are going to generate this 4:0. That is what I have written

here

G4:1 = G4:4 + P4:4G3:1

G3:1 = G3:3 + P3:3G2:1

G2:1 = G2:2 + P2:2G1:1

G4:0 = G4:1 + P4:1G0:0

Remember that in a carry ripple ladder the way we generated 4:0 was G4:0 was nothing but

G4 plus the bit level P4 adding with that of 3:0.

Here the way we are generating it is different G4:0 is G4:1 that has been generated and P4:1

and then G0:0. Here in the carry ripple addition we have taken k is nothing but equal to i

for the 4th bit, 8th bit, 12th bit and then the 16- bit group generate signals.

Here for the fourth bit 4:0 or the 8:0 or the 12:0 or 16:0 we have taken k value. In this case

the k value is nothing but 1 in the subsequent G8:0 we will take the k value to be ɸ and for

12:0 we will take k = 9 and then for the 16:0 we will take the k to be nothing but 15 or

rather k 16:0 we will take the k value to be nothing but 13.

What we have done is we have utilized a different k value and then try to generate this

group generate signals. We have now utilized the group propagating signals in this case

and then try to represent G4:0 in a different manner. Although for a 4-bit addition we will

not be able to see the impact of this particular design.

(Refer Slide Time: 05:15)

Let us try to see for a 16-bit addition how it can be impactful. For a 16-bit addition what

we are trying to do is we are trying to generate 4:1 signal, we are trying to generate 8:5,

we are trying to generate 12:9 and 16:13 signals simultaneously. What it means is

simultaneously means is 4:1 depends on 3:1, 3:1 depends on 2:1, 2:1 depends on 1:1.

If I have a group of 16 bits starting from 1 to 16. We are going to divide or we are going

to take it logically divided into 4 such groups. The 1:4, 5:8 and then 9:12 and then 13:16.

The 4 groups are generated and simultaneously this is going to give me G 4 is to 1, this is

going to give us G8:5, this is going to give us G12:9 and then this is going to give us the

G16:3.

The G4:1 depends on your G3:1 and then it is the bit level 4 and propagate bit level 4 bit

and 3:1 depends on G3:3 and then P3:3 G2:1 and then so on. All this individual groups of 4

bits can be simultaneously be generated and that does not have to depend on the other

groups, this does not have to depend on 8 is to 5 or 8 is to 5 does not have to depend on

the 4:1.

The 12:9 does not have to depend on 8:5, 16:13 does not have to depend on 12:9. If I can

actually logically divide into the 4 groups then individual groups can simultaneously

generate 16:13, 12:9, 8:5 and 4:1 signals.

Once I have that G4:1, 8 is to 5, 12:9 and 16:13 then we can actually generate G4:0, 8:0,

12:0, 16:0 by using this group propagate signals 4:1 from G0:0. The once this G4:0 is

generated we can utilize it to for the next one G4:0 to generate 8:0, a once 8:0 is there then

we can utilize it for generating 12:0. The 12:0 if it is there then you can utilize it to generate

16:0.

But notice that all this 4:1 to 16:13 are generated simultaneously does not have to wait for

the previous the group generate of the lower bits all these things can be generated

simultaneously. That is what I am writing down simultaneously and does not have to wait.

Once this is available in fact, this P4:1, 8:5, 16:13 can also be generated simultaneously.

Once this is done both of them are available and it is just waiting for the group 0 to 0 or 4

to 0 or 8 to 0 or 12 to 0 generate bits. Once these 2 are available with this is also being

available at the same time it takes 1 OR gate and then an AND gate to generate 4:0. The

4:0 if it is generated then it takes 1 OR gate and 1 AND gate to generate 8:0 and then so

on.

What it means is it actually skips 8:0 can actually skip generating 7:0 or 6:0 or 5:0. In fact,

if 4:0 is made available it can directly generate 8:0. The 12:0 can actually skip G11:0, G10:9

and 9:0. In fact, whenever the G8:0 is made available with 1 and 1 OR gate it should be

able to generate 12:0.

The G16:0 does not have to wait for G15:0, 14:0, 13:0 the moment 12:0 is available it can

generate a G16:0. It skips G15:0, 14:0 and 13:0 and directly whenever 12:0 is made available,

it then directly generates G16:0.

(Refer Slide Time: 09:56)

To visualize let us try to rewrite this expression.

G4:1 = G4:4 + P4:4G3:1

G3:1 = G3:3 + P3:3G2:1

G2:1 = G2:2 + P2:2G1:1

What it means is if I look into this particular expression what it says is, if I want to get G4:1

as 1 then either G4:4 has to be 1 or G3:3 has to be 1 or G2:2 has to be 1 or else G1:1 has to be

1 and P2:2 has to be 1, P3:3 has to be 1, P4:4 has to be 1 and then thereby I will get G4:1 as

1.

Now, if I look into this P4 G4:1 as 1 or if let us say G4:4 as 1 in this case. So, that I will be

able to generate G4:1. The moment the G4:$ is one that means, that my A4 and adding

without of B4 has to be 1, that means A4 and B4 bit are 1.

In that sense my P4 bit has to be 0. The XOR operation of both the bits are 1. My P4 has to

be 0 that means, my P4:1 is actually 0 now. The P4:1 is nothing but the XOR operations of

all P4 P3 P2 and P1 alright, in that sense it has to be 0.

If I consider this G4:1 as to be 1 and if it is 1 because of this the individual generate bits G4

G3 G2 then my P4:1 will become 0. That is what I am implying if G4:1 is to 1 implies that

G4 or G3 or G2 or in this case G1 has to be 1. If G1 has to be 1 even in that case P1 will be

0. The P4:1 will actually be 0, that is what I have written.

(Refer Slide Time: 12:41)

Moving ahead. What I am doing is if G4:1 is actually 1, we know that P4:1 will be definitely

be 0. If that is 0, I can actually take P4:1, I can virtually represent this particular expression

as P 4 is to 1 and then the complement of that,

G4:0 = G4:1 + P4:1G0:0

G4:0 = P4:1̅̅ ̅̅̅G4:1 + P4:1G0:0

If G0:0 or rather G4:1 is 0 then P4:1 can be 1 or 0. It still depends on P 4 is 1 whether it could

be 0 or 1. The G4:0 if it is G4:1 is 0 then it depends on P4:1. If it is 0 or 1 it can pass G0:0 to

4:1.

If G4:1 is actually 1 then that P4:1 is definitely 0. I can use this particular complement

expression without any change in the logical expression of this. Now if suppose I use this

particular expression for designing my circuit.

This I am going to use it to design my circuits how am I going to do that. We can utilize

this P4:1 the complement of that use it as a select line for a multiplexer and then the pass

the 2 inputs of G0:0 and 4:1.

The G0:0 and 4:1. If P 4 is to 1 the select line is 1 then I will pass the G0:0 at the output, if

P4:1 is actually 0 then I will pass G4:1 to the output of the multiplexer. This is very important

to understand that once I have the group propagating signals P4:1 or whether it is 1 or 0. It

just passes let us say that if it is 0 in this case, it will pass G4:1 to the G4:0 output.

If it is 1 here then it passes G0:0 into the G4:0. Similarly, if I have P8:5 simultaneously

generated when P4:1 is generated and if it is 1 here it will pass this 4:0 to the output here

as G8:0 and similarly if I have 12:9 as 1 here, it will pass G8:0 to the next output of the

multiplexer.

The movement P4:1, P8:5, P12:9 is to 1 it can actually skip, it will actually skip generating

or the G4:1 it will directly take the output from G0:0 this will go as 8:0, this will go as 12:0.

It can actually skip generating the intermediate generate signals because of the

multiplexers.

(Refer Slide Time: 16:04)

That is why it is called as the carry skip adder. To put this particular multiplexer block into

the reality, we have 2 blocks now. One is generating 𝑃4:1 from A4 is to individual A and B

input bits. For an 8-bit addition here we have created 2 such blocks one is generating 𝑃4:1

the other one is generating 𝑝8:5 which will go into the select line of the multiplexers. On

the lower side, we have 2 blocks one is generating a 𝐺4:1 another one is generating 8:5.

That has been provided that is fed to the one input of the multiplexer, one input of the

multiplexer. The other input of the multiplexer is coming from 𝐺0:0 and output is 𝐺4:0

which will go on in this particular multiplexer input.

The moment 𝐺4:1 is 1 here, 𝐺4:0 will be 𝐺4:0 it does not have to wait for this to be computed

and similarly 𝑃8:5 if it is 1 here, 𝐺4:0 which is nothing but 𝐺0:0 will be passed to the 𝐺8:0

does not have to wait for 𝐺8:5 to be computed.

This particular block I have said that it is going to generate the sum bits as 4:1, that means,

S4 S3 S2 S1 and then this particular block is going to generate S8 S7 S6 S5. This particular

multiplexer is going to skip the carry out that is being generated carry out in the sense if I

want to generate 𝐺8:0, it actually skips G7 is to skips the generation of 𝐺7:0, 6:0, 5:0. It

directly takes 𝐺4:0 or 𝐺8:5 based on the group propagate signals.

It may not be advantageous if I have only 4-bit of addition, but it will be advantageous if

I have a higher order adder subsystem block design 16 bit edition or 32 bit edition. It will

directly skip producing for the 32 bit addition, it will directly skip producing 30:0 or 29:0.

It can actually take if the last group is 1 it can directly skip the generate signals and then

they directly take the 28:0 which is actually taken from 24:0 and actually taken from 20:0

and then so on. This particular the carry input of 0:0 can actually be passed to the last bit

addition.

(Refer Slide Time: 19:03)

Using this can we now design the PG architecture. The propagate and generate architecture

and the first level is nothing but the bitwise, the second one is the group wise where it will

generate the group wise generate and group wise propagate bits in this carry skip adder

and then the third one is the sum bits generation.

In the first bit what we are assuming is that I have not indicated any of the or rather the

AND and the XOR gates here what it means is the XOR and the AND gates are there and

it is giving us the bit wise generate and then the propagate signals. The 1 2 3 4 up to 16

represents the bit wise generate and then the propagate signals.

The 0 is grounded represents that the carry input is 0 here. This represents 0:0 which will

be nothing but G0 which is nothing but C0 or we can also say that it is Cin to be nothing

but 0 and this individual blocks here and blocks here, blocks here, blocks here is going to

generate the group wise generate and propagate signals. This particular 8 to 5, 12 to 9, 16

to 13 is going to give me 16:13. It could be 𝐺16:13 and 𝑃16:13 here 12:9 the output here

represents generate 𝐺12:9 and 𝑃12:9. Similarly, 8:5 will give me 𝐺12:9 and 𝑃12:8 is 𝑃8:5 and

𝐺8:5 and this 4 is 1 is going to generate, 𝐺4:1 and 𝑃4:1.

All these 3 blocks are at the same level indicates that all of them all the 3 blocks here which

is nothing but an AND OR blocks and the XOR operations to generate the propagate

signals are there parallely. This block does not have to depend on any of the output of this

particular group blocks and then this particular group block does not have to wait for this

particular group of blocks and then so on. That is why it is kind of an independent and all

of them if all the signals if 16 to A1 and B16 to B1 are made available all the output of these

blocks are generated simultaneously.

Once they are available simultaneously. This particular line which goes to the multiplexer

here the multiplexer takes 3 inputs, one is coming from 0 is to 0 the other one is 𝐺4:1 and

then the third one the select line is nothing but 𝑃4:1. Based on the select line it will pass the

output whether it is coming from this one or the generate 𝐺4:1 and then it is going to

produce 4:0. This 4:0 is going to this particular multiplexer the next group higher order

group multiplexer where this particular line indicates 2 inputs again one is a select line,

the other one is 𝐺8:5, this the second input is 𝐺4:0.

Based on 𝑃8:5 we will get 8:0 whether it is coming from 4:0 or whether it is coming from

𝐺8:5. This particular multiplexer output will go to this particular multiplexer input and then

this particular line again 2 inputs one is a select line, another one is 𝐺12:9.

Finally for a 16-bit addition we will have the fourth multiplexer, one input is coming from

12:0 and then the other line which will have one as a select line the other one as 𝐺16:13.

The output is going to be 𝐺16:0, with this set of 3 the simultaneous blocks here and then

this multiplexer. We are going to get 16:0, 12:0, 8:0, 4:0 really really fast, because, it is

going to skip generating 3:0 or 7:0 to 11:0 or 15:0 and directly get the 16:0 from the a 12:0

block from the 8:0 block from the 4:0 block.

But here we still need to extract the sum bits, we still need S2 S3 S4, 0:0 is going to give

me S1 because 0:0 with that of the P1 XOR I will give me the S1 and P is anyways available

here. The S2 will require the P2 signal that is available here with that of 1:0.

I need somehow get the 1:0 block. The 1:0 block I can actually have this particular square

block which is nothing but AND and OR block this square block is also AND and OR

block. The AND and OR block with this one G1 P1 and 𝐺0:0 is going to generate 1:0 here

and this block can be along the same level of this particular blocks, the reason is it does

not depend on this particular block at all. It has to take the G1 P1 signal coming from here

and then 𝐺0:0. The second block here has to wait for 1:0 and then it will generate 2:0 and

then this block will generate 3:0.

This one will give me 3:0, 2:0 and 1:0, that I can produce or extract sum 4 sum 3 sum 2.

Similarly, for the other group 8:5 we have got 8:0 here, but I need 7:0, I need 6:0, 5:0, that

I can produce S8 sum 8 sum 7 sum 6.

I will produce these 3 blocks here of AND OR gates and this first block will wait for 4 is

to 0 whenever the output of the multiplexer at the same time the output of this multiplexer

will go to the another multiplexer, but at the same time it will also go into the AND and

OR block here.

The AND and OR block here once it produces 5:0, it will go into the next block which will

give me 6:0 and then the next block which will give me 7:0. Similarly, I will complete for

the other 2 groups generating 9:0, 10:0 and then 11:0 and then the last one the last group I

will have 13:0, 14:0 and then 15:0.

Notice that we have multiplexers and then this set of 3 blocks here with the multiplexes is

going to give me 16:0, 12:0, 8:0 and 4:0. Only this particular block which are marked in

the black lines here are going to give me the output of 3:0, 2:0 and 1:0. Within the

individual bits it is inner the group generate bits are generated by this black lines of box

and all these square boxes are nothing but AND OR gate representation the multiplexer is

a different one.

Once I have this 3:0, 2:0, 1:0 and then 7:0 to 5:0 and 11:0 to 9:0 and then 15:0 to 13:0. I

can then produce the sum bits of all this 16 adder output, what should be the delay here.

The delay here is considered for the critical path is still the generating the S 16 bit starting

from the first bit A1 B1 available.

(Refer Slide Time: 27:08)

I will have a delay from this particular first stage which is nothing but the bitwise generate

and propagate signals the delay due to that. The second one I will have to find the critical

path here and then the third one which will be nothing but the XOR operation.

I know the bitwise PG delay and then the XOR delay here. The second one we will have

to find out it turns out that the delay is due to this 3 multiplexer output. The multiplexer

for this particular group, the multiplexer for the second group here, the multiplexer for the

third group and then this is made available for this black boxes. So, as to generate 15:0

and then generate the S16.

My critical path here in the second group will be like this and then this 3 black box does

not have to give any inputs to this multiplexer. The multiplexer either gets a input here or

it is getting the input here, from this block which is waiting for this block and then this

block and then this one.

(Refer Slide Time: 28:18)

My critical input or rather the critical path which is going to give me the delay expression

for this carry skip adder starting from the C input or whenever the inputs are available to

see S16 output is nothing but this 3 delay of this 3 boxes plus these 3 multiplexers and then

this finally these 3 black boxes and plus of course, the XOR gate and then the PG in the

first level in the first stage the bitwise propagate and generate signals delay.

𝑡𝐶𝑖𝑛→𝑆16 = 3□ + 3□ + 𝑡𝑝𝑔 + 𝑡𝑋𝑂𝑅

(Refer Slide Time: 28:52)

In a sense the carry skip adder the delay of that for generating S16 bit is nothing but the

first stage bitwise propagate and generate signals the XOR gates for the final third stage.

This is the first state, this is the third stage and in between I will have the first 3 blocks.

𝑡 𝑑𝑒𝑙𝑎𝑦
𝐶𝑖𝑛→𝑆16

= 𝑡 𝑝𝑔
𝑏𝑖𝑡𝑤𝑖𝑠𝑒

+ 3𝑡𝐴𝑂 + 3𝑡𝑚𝑢𝑥 + 3𝑡𝐴𝑂 + 𝑡𝑋𝑂𝑅

In fact, if I can actually do all these are 3 blocks because we have 4 groups and each groups

are of 4 bits. If I can actually make k groups I can actually make an asymmetric groups,

asymmetric in the sense the groups having different bits or rather I can have k groups.

tdelay = t pg
bitwise

+ tXOR + (K − 1)tmux + 2(N − 1)tAO

If there is a 20-bit addition then I can have 5 groups of 4 bits each, not really asymmetric,

but 5 groups with 4 bits each, k is 5 here and N = 4. Then I can have k, I know this could

be represented as k minus 1 number of multiplexers delay plus this tAO and then this tAO

will make it 2 (N – 1) tAO.

The 4 bits 4 - 1, 3 into 2 and then the number of groups will be k groups. If I consider this

particular delay and then compare with that of the carry ripple adder delay it will be same

tpg of bitwise and it will be having the same tXOR in the third stage plus, but here it will be

for an N bit. The k x N will give me the total number of addition. The k N – k - 1 of tAO

will be my answer for the carry ripple adder whereas, here it is nothing but 2 (N – 1) x tAO

+ k - 1 x tmux and this carry skip adder is likely to be faster than that of the carry ripple

adder.

