
Design and Analysis of VLSI Subsystems 

Dr. Madhav Rao 

Department of Electronics and Communication Engineering 

International Institute of Information Technology, Bangalore 

 

Lecture - 86 

Adder-Part2 

 

(Refer Slide Time: 00:16) 

 

I have written it as A1 Carry Ripple Adder, the ripple here means that the carry out which 

is being generated from the individual bit full adder circuit is kind of propagated or rippled 

to the next bit addition, here it is A1 very simple example of 4-bit addition.  

What it really means is if I have A4-bit of A4 to A11, where 1 is the LSB bit and 4 is the 

MSB bit and I need to add it with that of the B input, again 4-bit input, then the addition 

should give us the sum of 4-bits with A1 carry out expression. 

The A4, B4 and then there will be A1 carry out and this addition or this particular adder 

circuit should also be able to incorporate the Cinput or also the Coutput or also called as 

the C input to this particular 4-bit addition. Once we understand this, we can easily scale 

it up to any higher order adder bits. Here at an individual level, at A1 bit wise level it is the 

first bit getting you it is A1 full adder representation of the first bit, the second bit full adder 

representation. 

Similarly, the third bit and then the fourth bit full adder representation. The sum is written 

here as S1, S2, S3, S4 and then finally, the out the carry out of the A4, B4 addition will give 



us the C4 addition which is nothing the C4 carryout, which is nothing but the carry out of 

all the 4-bit adder and this also incorporates the carry input, this C0 can also be written as 

C input to this particular 4-bit adders system. 

This particular C0 and then A11 and B1 should be able to define what is the S1.  

S1 = A1 ⊕B1 ⊕Co 

Which is generated which is A1 carry generated by this first bit of addition is then supplied 

to the second bit of addition. Then similarly C2 which is generated is supplied to the A1 

third bit, C3 which is generated is supplied to the 4-bit addition and then similarly we will 

get the C4 as the carry out of the 4-bit addition. 

C1 = A1B1 + A1C1 + B1C0 

(Refer Slide Time: 02:58) 

 

Now, if I want to find out the 16-bit adder right this 16-bit adder is going to generate A1 

C16 supplied with A1, B1, C0 and similarly A2, B2, C1 and then similarly A16, B16. 

For A1 16-bit adder system we will be able to generate the sum 16 or rather the sum S1 to 

S16 the carry out C16, the inputs that are been provided is A1 B1 to A16 B16. And then there 

will be A1 C0 that is A1 carry input to that particular 16-bit addition. These are the inputs 

and then the outputs are S1 to S16 and then the carry output of represented as C16. 



The question is what should be the delay for this 16-bit carry ripple adder circuit? let us 

take A1 look at it one by one. Let us also assume that all the inputs are available at time t 

= 0. All the inputs that means, A1 B1 to A16 B16 all of them are available at time t = 0, C0 

is also available at time t = 0. 

To generate this C1, if I want to generate which is nothing but the majority gate of this A1, 

B1 and C0. It is written as the A1 B1 + A1 C0 + B1 C0 that means, when A1 B1 are available 

easily A1 and C0 are also available at t = 0 and B1 and C0 are also available at t = 0, A1 B1 

is also available at t = 0. 

If I actually put it into an 2-input AND gate here. I will be able to get the output of A1 B1, 

AND gate parallel one more 2-input AND gate I will get A1C0, one more 2-input AND 

gate will get the output of B1 C0. All these outputs I can give it to A13 input OR gate and 

then that is going to generate the C1 bit. 

The C1 bit will take A1 delay of 2-input AND gate and then the 3-input OR gate, assuming 

that I will have three of the 2-input AND gates which will be generating the outputs 

simultaneously and then that will be fed into the 3-input OR gate and then the output will 

be nothing but the C1. 

Once I have C1, the C1 is then passed to the A1 generating the C2 as well passed to is 

generating the S2 alright. Now, I have utilized the delay of 2-input AND gate and then A13 

input OR gate. This C1 is then fed to the A2 C1 and then B2 C1, notice is that A2 B2, A16, 

B16. 

In fact, all this what I have actually annotated with the bounding box here A1 B1, A2 B2, 

A16 B16 can be actually be generated if because all of the inputs are available at time t is 

equal to 0. This will be generated if I have A1 lot of parallel 2-input AND gates, then all 

this outputs of A16 B16, A15 B15, A2 B2 and A1 B1 will be generated at the same time, that 

will be the delay of 2-input AND gate. 

The output of this A2 B2 is actually waiting at the input of the 3-input or gate, but it is 

waiting for A2 C1 to be generated and B2 C1 to be generated, but C1 is generated only when 

we have the output of this 3-input OR gate. The moment C1 comes in it gets into the AND 

gate, the output of this AND gate and this particular AND gate will be fed into the 3-input 



OR gate and then it generates A1 C2, which will be got here to generate to S3 the sum 3-

bit. 

Similarly, it will go here to generate the C3 bit and then similarly C15 and then similarly 

C16. The overall delay from C0 to C16 is actually limited or its actually depends on the 

previous carry output bit. What it means is if I want to generate the C16 then it has to 

depend on the time or the propagation delay for the C15-bit, before that C15 has to depend 

on C14, C14 has to depend on C13 and so on, C2 has to depend on C1. 

Overall, if I look into this particular the carry ripple adder which is generating the carry 

output for generating the C0 to C16 for generating the C16 output, it will take OR gate 

expression, it will take the or expression. It is nothing but the 3-bit OR gate, 3-bit OR gate, 

3-bit OR gate, 3-bit OR gate and that will be the 3-bit OR gate is generating the C1, the 3-

bit OR gate is generating C2 3-bit OR gate is generating C15 C16 and so on. 

It depends on the 3-bit OR gate here, as well as the delay also depends on the AND gate 

here. The moment C1 is available then it has to wait for the A2 C1 to be output to be 

generated, B2 C1 output to be generated and that is fed into the OR gate to generate this 

the C2 expression.  

For A1 C2 to generate the C2 here, it has to wait for this OR gate, it has to wait for the 2-

input AND gate here. The output of that will be fed to A13 bit OR gate and then that will 

be fed into A12 2-bit AND gate and then that will be fed into the 3-bit or gate. 

Even for A1 C2 it has to that the overall delay will be twice the 3-bit OR gate plus the 2 

AND gate. Similarly for C16, it is 16 times 3-bit OR gate plus 2-bit AND gate. Now 

whereas, for A1 some expression now A1 B1 C0 to A16 B16 all are available here at time t 

is equal to 0. The XOR operation of A1 B1, A2 to B2 A15 B15 A16 B16 and output of it is 

already available and it is kind of delimited.  

The S16 is kind of delimited because delimited by the C15, whenever the C15 is available it 

will do an XOR operation and then get the output, because A16 to XOR 16 output is already 

available and have already reached and it just waits for the C15 to be available. Similarly, 

S15 will wait for C14 because A15 B15 is already the XOR operation is already done. 



Assuming that all these XOR gates are parallelly made available and A1 B1 to A16 B16, the 

inputs are already arrived at t is equal to 0. With that particular condition what should be 

the delay to generate the S16-bit, starting from C0. What should be the S16-bit output that 

is being generated, how much time or the delay it takes.  

The delay it takes is nothing but to generate C15 and then one more XOR operation because 

this is already done. This particular bounded box I have indicated here saying that this is 

already the moment A1 B1 all of them are available at t = 0, 1 2-bit XOR gate will be 

generating all this outputs of A1 B1, A2 B2, A16 B16. 

Then it just have to wait for the C15 output, once the C15 output is available then it does an 

XOR operation and then we will get S16 output. The C15 will be available for when this is 

generated. This is generated it has to wait for 15 times, 

tCo→S16 = tXOR + 15(tOR + tAND) 

The 15(tOR + tAND) and then one A1 tXOR delay will be able to give us the delay for the 

generating S16-bit. The one tXOR means 2-bit XOR gate. whatever is the delay that is this 

particular XOR gate. The one C15 is available, then it will XOR with the output of A16 B16 

XOR and then give us. This is my XOR output here and C15 whatever time it takes this is 

15 into tOR plus tAND. 

If I look into this the delay can be actually be expressed in terms of AND and OR gate for 

generating the C16-bit or whatever the carry output bit. For the sum bit it is nothing but 

one XOR and then the 15 tOR and AND gate. This 15 instead of A15 we can also say that 

for an n-bit addition it will be n minus 1 and OR gate and then that of plus the delay of the 

XOR gate. 



(Refer Slide Time: 12:06) 

 

Let us have A1 look at it generate and then the propagate signals here. This is the truth 

table which we have anyways seen this earlier. This particular truth table is anyways seen 

earlier and then I had also made A1 very brief definitions of the propagate and generate 

signal. But once again we will have A1 look at into it, because then we will be able to use 

this for designing the adder subsystem blocks for the higher order adder bits. 

The generate and propagate signal, for the generate signal the definition is A1 and B, the 

inputs A1 and B will be truly generating this carry output independent of the C input. That 

is possible only when the carry output is 1 and when A1 and B both of them are 1 and 

irrespective of the C input being 1 or 0, it actually generates A1 carryout. 

The independent of the C input, if it generates A1 carry output signal then the generate 

signal is 1. That is what the definition says, and that is possible only when A1 and B are 

both of them are 1 alright. Propagate signal its been said that the if it is 1, when the carry 

out logic is when the carryout is 1 and the carry input is actually 1. 

That is possible only in this case, the carry output is 1. The carry input is kind of propagated 

to 1 and carry input is propagated to carry output as 1 and if I look into the proper definition 

the propagate P, it carries if its carryout is true, when there is A1 carry input.  



Going back, the carry output is 1, when there is A1 carry input. In this particular case it 

actually generates A1 here, but this 1 is actually generated by A1 and B alright and then 

not by this carryout, because here carryout is 0 and still it is generating 1. 

Whereas here in this particular portion of the combination here the carryout whatever is 

the carry A1 carry input it is kind of propagated here, even if it is 0 it is actually propagated 

to 0 as in the carryout. That is possible only with respect to the A1 and B inputs, it is 

possible only when A1 and B one of them is 1.  

The propagate signal is actually an XOR operation of Ai Bi or whatever, in this case if it 

is A1 first bit I can write it as A1 ⊕ B1 or if it is A19 bit it is Ai ⊕ Bi. The generate here if 

A1 with respect to the definition of A1 and B inputs. The generate bit will be nothing but 

the and operations of Ai Bi. 

(Refer Slide Time: 15:14) 

 

That is what I have mentioned here in the next slide. The generate is the AND operation 

of Ai Bi, the propagate is the XOR operation of Ai Bi. What it really means is if Pi is 1, that 

is only when the carryout is kind of propagated from the carry input, Gi is 1; that means, 

the A1 the ith bit is actually generating A1 carryout. 

With this particular definition, what we know is A1 sum bit can be expressed as, 

𝑆 = 𝐴⊕ 𝐵⊕𝐶 



Then the C input can also be considered as Ci-1 and this sum I can also state it as Si for the 

ith bit Ci-1 the carry input Ai Bi expression. The Ai Bi I can consider it to be nothing but 

the Pi, the propagate bit. 

The propagate bit XOR with that of the Ci-1 will give me the sum bit. That is how we will 

be using this bit wise propagate signal to define our sum output and also to that of the carry 

output.  

What we have seen so far is we define the Pi bit, the propagate bit here, we have defined 

the Gi bit here the generate bit wise generate and then-bit wise propagate signal. This we 

are going to use it to define our sum expression, to define our carry out expression. 

The carry out will be nothing but Ci for an ith bit the sum for the i-bit is sum Si carry input 

is nothing but Ci-1. We will use this particular definition to redefine our sum expression 

and then the carry output expression and try to visualize the different adder circuits. 

(Refer Slide Time: 17:06) 

 

Here is A1 definition of A1 group wise generate signal. Until now what we have seen is 

the bit wise Gi which is nothing but Ai and Bi, but here it is A1 defining A1 group wise 

generate signal of i-1: 0. What it really means is if I am using an adder circuit let us say 

the 4-bit adder circuit. For A4-bit adder circuit, I can actually generate A1 group wise 3 is 

to 0. 



The A1 group wise generate signal 3 : 0 and then use this for to express the 4-bit addition 

sum expression and then the carryout expression. What I am saying here is the definition 

of the group wise Gi:j and Pi:j still remains the same. The Gi:j and Pi:j. This is A1 group wise 

now, i j are not A1 individual bit, i and j are not same it is A1 different numbers. Let us say 

that I can take an example of 3 is to 1 or P of 3 is to 1. 

This becomes 3, 2 and 1 bit, 3 to 1 1 bit. The definition still remains the same, saying that 

generating the carry out from the group irrespective of the carry input to the group. 

Generating the carryout from the group irrespective the carry input to the group will have 

to generate A1 signal as 1.  

If I have A1 block of 3-bits and this is my C input to that particular 3-bits and then this is 

the output of that particular 3-bits, the definition says if the C output is truly independent 

of that of C input. In respect to this input if it is generating C output then we can say that 

this G3:1 is actually 1. 

Similarly, propagate signal it is the definition still remains the same. The propagating A1 

carry out from the group when there is A1 carry input to the group. Similarly, if the C input 

here is 1 and then C output is kind of this C input is propagated to the C output, we can 

say that the propagate 3 is to 1 is actually 1. This is the group wise definition of generate 

and then propagate signals and this particular group wise generating signal of Gi-1:0 is 

nothing but the carry input for the ith bit. 

What it also means is if I can actually do generate the group wise i-1 bit, The i-1 is to 0 

group wise generate signal, that is nothing but the carry output of i-1 bit for the group i-1.  

𝐺𝑖−1:0 = 𝐶𝑖−1 

This is A1 carry output, it will also act as A1 carry input to the ith bit addition. This is what 

the group wise generate signal is kind of defined. Now, let us take A1 look at it whether it 

really makes A1 any sense here. If I consider, 

𝐺1:0 = 𝐺1:1 + 𝑃1:1𝐺0:0 

𝐺1:0 = 𝐺1 + 𝑃1𝐺0 

= 𝐴1𝐵1 + (𝐴1𝐵1̅̅ ̅ + 𝐴1̅̅ ̅𝐵1)𝐶0 



= 𝐴1(𝐵1 + 𝐵1̅̅ ̅𝐶0) + 𝐴1̅̅ ̅𝐵1𝐶0 

= 𝐴1(𝐵1 + 𝐶0) + 𝐴1̅̅ ̅𝐵1𝐶𝑜 

(Refer Slide Time: 22:18) 

 

𝐺1:0 = 𝐴1𝐵1 + 𝐴1𝐶0 + 𝐴1̅̅ ̅𝐵1𝐶0 

= 𝐵1(𝐴1 + 𝐴1̅̅ ̅𝐶0) + 𝐴1𝐶0 

𝐺1:0 = 𝐵1𝐴1 + 𝐵1𝐶0𝐴1𝐶0 

𝐺1:0 = 𝐶1 

The 𝐺1:0 or rather the group generated, the group generating signal for 1:0 is nothing but 

C1. Similarly, if I do the expression 𝐺2:0, turns out to be nothing but the carry two. The 

sum expression I can actually write it in terms of the group generating signal.  

̅̅ ̅̅ ̅ 

If I want the sum 1 or sum 2 here, once the C1 is generated we know that it will be nothing 

but A2 XOR B2 XOR C1. Which I can also rewrite it as A2 XOR B2 XOR 𝐺1:0, in terms of 

the group generating signal and A2 and B2 I can actually write it in terms of the propagate 

bit 2-bit level propagate signal P2 XOR 𝐺1:0. 

Similarly, I can actually write Ci
th bit, it is nothing but the XOR operation of the propagate, 

bit level propagate signal Pi and with that of the Gi−1:0 alright. If I am generating the C the 



sum of the ith bit, it is nothing but the propagate of the ith bit XOR with that of the group 

generate of the previous one. The i-1:0, hope this is clear. 

(Refer Slide Time: 24:32) 

 

This is the overall A1 broader definition of the group generate signal starting from i:j.  

Gi:j = Gi:k + Pi:kGk−1:j 

This is Pi:k group propagate signal, this is A1 group generate signal, this is A1 group 

generate signal, this is A1 group generate signal from the group of the bit wise ith to kth 

bit this is group generate signal from k-1 to j bit.  

This is the propagate which is A1 group propagate signal from ith bit to kth bit. Similarly, 

we can also define if j = 0 and i = N-1. It will be nothing but N-1 and then in k will be A1 

bit which is in between N-1:0. 

Gn−1:0 = GN−1:k + PN−1:kGk−1:0 

SN = PN⊕GN−1:0 


