
Design and Analysis of VLSI Subsystems

Dr. Madhav Rao

Department of Electronics and Communication Engineering

International Institute of Information Technology, Bangalore

Datapath subsystems - Adder

Lecture - 85

1-bit Adder design

(Refer Slide Time: 00:16)

Hello students welcome to this lecture on Data Path Subsystems and we will be looking

mostly to the adder. In this first particular module of the adder circuit we will look at the

circuit level designing of the adder. What we will be doing is we will look into the 1 bit

half adder and then the full adder and then go about understanding the layout of the 1 bit

full adder circuit.

Subsequently we will also take a look into the adder subsystem. If I want to make it into

an 8 bit or a 16 bit or a 32 bit adder subsystems how do we go about designing those in the

future lectures. Let us begin with this particular adder circuit, understanding the adder

circuit.

(Refer Slide Time: 01:01)

As we know the half adder which does not involve the carry input and then has only 1 bit

of A and 1 bit of B and then we want to get the summation of the 1 bit of A and 1 bit of B

and then the carry out due to the addition of the 1 bit of A and B. In this the two input bits,

where the carry input is not a lot considered we will have four such combinations starting

from 00 to 11 and then we will have 4 such output values.

For 00 the sum is 0 the carryout is 0 for 0 1 the sum is 1 carryout is 0 for 1 0 the sum is 1

the carryout is 0 and then for 1 1 the sum is 0 and then the carryout is 1. In that sense if I

look into the sum bit wherever it is 1 it is either A or B is either 1 and then the other one

is 0. We will have the XOR operation of A and B, the XOR operation of the input A with

that of B will give us this sum bit.

S = A ⊕ B

C = A . B

The carryout if I consider, if I look into the logical values of 1, it is only 1 here in the last

combination when A and B is 1. The carry out for a half adder will be nothing but A and

B, hope this is pretty clear to everyone.

(Refer Slide Time: 02:28)

For a full adder we will consider the not only A and B, but also the carry input, it may be

the carry input coming from the previous input additions. If I consider this 3 inputs I will

have 8 such combinations, this will be 8 such combinations and then, we will have 8 such

output combinations of the summation output and then the carry output.

If I start to looking into the input combinations from all 0 0 0s to all 1 1 1. We will get the

sum and then they carry out and it is very interesting to find out for which particular input

combination the sum is actually 1. The sum is 1 here when the Cin is a one and then the

other two are 0s and then the sum is 1 here, when B is 1 and the other two are 0.

Sum is 1 here when it is A is 1 the other two are 0 and then 1 here when all the three inputs

are 1. For the inputs where it is two of them are 1, the sum is actually 0 and then where it

is two of them are 1 it is 0, two of them are 0 it is 0 all of them are being 0 it is 0.

In that sense the sum is actually can be considered as an XOR operation of all the three

inputs. It will provide either it will give us the odd number of one’s between these 3 input

combinations. That is why the sum is considered as

Sum = A ⊕ B ⊕ C

Carry out it is again very interesting to see if I consider the carryout let me take a different

color. If you know in this particular combination the carryout is 1 when we have B and C

to be 1 the carryout is one here when A and C are both ones carryout is 1 when we have A

B to be 1 and it is 1 finally for all the three combinations to be 1.

For all these three combinations we can easily say with the majority of the three input with

the majority of the three input that means, if the majority of the three if it all it is two of

them are showing one out of this three combinations A B Cin, if two of them are showing

1 then carryout is 1.

If all the three are showing them 1 then definitely the carry out will be 1. This is called as

a majority gate with the inputs coming from A B and Cin. It is logical expression is nothing

but,

Carry = AB + BCin + ACin

(Refer Slide Time: 05:18)

Hope this is clear for the 1 bit full adder. This is again 1 bit full adder, if I consider this

particular portion this is nothing but the previous eight input combinations with the output

values associated with it. Here the addition is nothing but the propagate and the generate

bit I think this is going to be very useful in designing the higher order at a subsystem level

the higher order the adder blocks; and this propagate and generate bits which are kind of

evaluated from the input combinations and that will be used for generating the higher order

adder bits.

Just to complete the truth table I have added the propagate and generate bit and let us take

a look at the propagate first and then take a look at the generate bit. The propagate bit it is

1 and 1 here, when you consider the Cin the carry input is 1 here which is propagated to

the carry out or if the 0 is there it is propagated to the carry out.

It is 1 here, it is propagated to the carry out here. Similarly, Cin is 1 here it is propagated

to the carry out and if it is 0 it is propagated to the carry out. For the other combinations

when the Cin is 1 it is propagated as 0. That will not be considered. What I meant is this

1 and 1 bit, the propagate is 1 only when we consider for an input combinations when the

Cin is 1 and it is propagated to the carry output, without generating the carry.

Now, what do we how do we define the generate. The generate signal is without Cin, if

the inputs A and B it is able to generate the carry, that is possible only when A and B are

1 and if it is able to generate the carry here then the generate signal is 1.

Out of all these 8 combinations we can see that the carryout is actually 1 in three of the

combinations or rather in this four combination the three of the combinations this one this

one and this one and this one in the two combinations. The carry input is 1 here and that

is how it is generating the 1 here in the carryout and when the carry input is 1 we are

getting the Cout to be 1 here.

Only for these two conditions the carry output is 1 and it is inherently generating a carry

because of A and B both of them are 1. The generate bit or whatever the G is nothing but,

G = A. B

Inherently it generates a carry that is when the generate bit is 1, the propagate bit is 1 when

we say that the Cin is propagated to Cout without inherently the A and B is generating a

carry.

That is possible only in this particular two combinations, when Cin is 1 and Cout is 1, it is

propagated to 1 and then when Cin is here this 1 is propagated to the carry output as 1. The

only because the A and B here either of them is 1, that is when and then Cin is 1 then that

is how the Cout is propagated.

For the propagate signal it is these two combinations is 0, this is 0 because anyways Cout

is 0 and this is 0 because A and B is inherently generating a carry that is why we say that

it is not propagating rather it is generating. This is 1 and 1 because, here the Cin which is

generated in the previous lower bit the generated carry is kind of propagated in this present

bit.

(Refer Slide Time: 09:34)

Because, my A or B one of them is 1, that defines the generate and then the propagate bit

which will be useful which will use it to design the higher order adder systems. Generate

means without Cin A and B should be able to generate a carry and then propagate means

Cin should be propagated to Cout without generating carry.

(Refer Slide Time: 09:53)

Hope that is clear. At a transistor level how do we design this 1 bit a full adder circuit, the

sum bit is given by this particular expression of,

Sum = AB̅Cin̅̅ ̅̅ + A̅BCin̅̅ ̅̅ + A̅B̅Cin + ABCin

The adder circuit as such and if I consider the sum and then a carry out it is nothing but it

is a mirror topology. Mirror topology in the sense, if I actually get whatever is there in the

pull up side the same thing can be done in the pull down side or vice versa. This particular

expression can also be written as within the CMOS technology if I want to have a pull

down circuit.

Then I will get a complement of that and this AB̅Cin̅̅ ̅̅ when it goes under a complement bar

under an inverted bar. I will actually get a inverted topology here, that will be instead of

AB̅Cin̅̅ ̅̅ it will become A̅BCin, it becomes kind of an inverted expression of this.

The A̅BCin̅̅ ̅̅ will become this particular expression will become AB̅Cin and then, A̅B̅Cin

will become ABCin̅̅ ̅̅ and ABCin will become A̅B̅Cin̅̅ ̅̅ .

Sum = A̅BCin + AB̅Cin + ABCin̅̅ ̅̅ + A̅B̅Cin̅̅ ̅̅̅̅ ̅

This particular sum is equal to the inverted expression of the individual expressions of the

sum expressions that is been written here and then it becomes a complement of that. The

advantage of complement is we can easily have this circuit design the circuit in the pull

down side and then take the output as directly the complement of whatever we have given

here.

(Refer Slide Time: 11:47)

The sum is nothing but this particular expression which we have seen and now how do I

actually design this at a transistor level. The transistor level we will take A and A̅. I will

design this transistor as A and A̅ and then, we will have B̅ here B here B̅ here.

I need four such transistors. I will have B and B here on the extreme sides and then B̅ with

input given to the two transistors. If I connect either A to here or A̅ to here it will be actually

be A in series with that of B̅ or A in A̅ in series that of B̅.

Finally, if I want Cin and Cin̅̅ ̅̅ , so I will take you know the two transistors here with one of

them as Cin̅̅ ̅̅ the other one is Cin. I can easily connect in series between this 1 2 3 4 5 6 7 8

transistors and then get this 4 different expressions. Which will give us this pull down

output.

If I connect this A to that of B and then B to that of Cin̅̅ ̅̅ , I will get ABCin̅̅ ̅̅ expression. The

ABCin̅̅ ̅̅ is done and if I connect A with that of this one B̅ and then this gets connected to

Cin. I will get AB̅Cin, this one gets now we have arrived at the transistor level connection

to get this particular expression.

This two we will see with A̅. The A̅BCin, this particular connecting these two transistors

and then this two transistors by this blue wire. I will get this particular expression A̅BCin

and then finally A̅B̅Cin̅̅ ̅̅ . I have connected this particular blue wire and then this particular

blue wire completing this expression, having this completes our pull down design, now

the pull upside is nothing but a mirror topology.

I will have the same level of same transistors Cin̅̅ ̅̅ Cin and B B̅ B and then A and A bar on

the pull up side which will be connected to the ground rail instead of which will be

connected to the Vdd rail instead of the ground rail. Then, I will do the similar connections

and then the inputs will be similar A A̅ B B̅ B Cin̅̅ ̅̅ Cin.

I will do the similar connections on the pull upside and then I will achieve the same

expressions. In fact, I will get the same expression here. The sum will be nothing but the

complement bar or rather the bar here and then this particular four expressions which will

be the output.

The output here if I complete the pull upside I will get the y as nothing but the sum output.

Remember that generally in a conduction complement topology what we will do is, if I

have two of the transistors in series in a conduction complement topology in the pull up

side I will have the two of the transistors in parallel. Whereas, in a mirror topology here it

will be the same topology which goes onto the pull up side.

Then the reason is nothing but if I actually change this instead of A A̅ I will change it to A

B̅ to B to B̅ and Cin to Cin̅̅ ̅̅ I will actually get the same expressions, then that is the reason

why the mirror topology is kind of very useful for the adder as well as the adder circuit

especially to extract the sum and then the carry output bits.

(Refer Slide Time: 15:32)

Cout = A̅B̅ + C̅(A̅ + B̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 16 + 10 + 6 = 32 Transistor

Going forward the carry output here, with this particular expression we will get A A and

B̅ in series. This completes this particular expression A̅ and B̅ and then, C̅ in series with

that of A and B which are in parallel. The A̅ B̅in parallel with that of in series with that of

C̅. That completes this particular expression.

I will have 5 transistors on the pull up pull downside and then I will have the similar mirror

topology. I will have to complete this Cout, I will have the 5 transistors on the pull upside

with a similar arrangement and then we will get the Cout expression, which will take

around a 10 transistors.

Remember that this A̅ and then this B̅ and then this and then in the previous sum expression

we had A A̅ B B̅ C C̅. I need to get the complement of the inputs. The complement of the

inputs means inputs are A B C and the complement of that will be A̅ B̅ and C̅. I will require

an inverter circuit.

For each of them I will require 2 transistors, for 3 inputs I will require 6 transistors. The

total number of transistors that will be required to extract that the sum and then the carry

output for 1 bit full adder design will be nothing 10 transistors for the Cout and then, 16

transistors for the sum. Then the 6 transistors for getting the complement of this the inputs,

I will get actually get need to design 32 transistors.

(Refer Slide Time: 17:34)

The 32 transistors it turns out to be very large for a single 1 bit full adder. If I want to

actually do for a 32 bit adder system it will be 32 transistors multiplied by 32 pretty large.

Now, can we actually save some of the transistors can we make it little bit more compact.

One such design is this particular compact design, where we can actually write generate,

S̅ = ABC + (A + B + C)Cout̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Cout̅̅ ̅̅ ̅̅ = AB + AC + BC̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = AB + C(A + B)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

To extract Cout I will have an inverter here from the Cout̅̅ ̅̅ ̅̅ , but nevertheless if I can do the

Cout̅̅ ̅̅ ̅̅ and then take an inverter and then get the Cout and if I can get some bar and then

take the inverter and then get the sum and having a in the number of transistor designs if

it drastically reduces or whatever the number it reduces, if it is still less than 32 it is worth

pursuing them.

Remember that A B here will be nothing but two transistors in series and C transistor will

be in parallel with that of A and B transistors and then the output of that will be the Cout̅̅ ̅̅ ̅̅ ,

this sum the complement sum expression or the sum bar expression is written as the whole

bar and not only that it will be AB +AC+BC the handing with that of the Cout̅̅ ̅̅ ̅̅ which is

generated here.

This Cout̅̅ ̅̅ ̅̅ goes here, this Cout̅̅ ̅̅ ̅̅ will goes to a transistor and then this transistor on the pull

down side which will be in series with the three of the transistors in parallel and then this

will go in parallel with that of three of the transistors in series and then we will get the sum

bar output. Once we get the Cout̅̅ ̅̅ ̅̅ and then a sum bar output we will be able to connect to

the inverter and then get the sum output and then the Cout output.

(Refer Slide Time: 19:55)

What I meant was we will first generate the Cout̅̅ ̅̅ ̅̅ and I have written only the pull down

circuit the pull up side will be exactly the mirror topology. It will be the similar transistors

and then the mirror of that which will come on to the pull up side. On the pull down side

as we said C will be C transistors in parallel with A and B and then here the A and B will

be in series we get connected to the Cout and then this particular line will be Cout̅̅ ̅̅ ̅̅ .

The Cout̅̅ ̅̅ ̅̅ will go to a transistor which will be in series with that of three of the A B C

transistors in parallel and this will go in parallel with that of A B and C which will be in

series. I will be able to generate sum bar I will be able to generate the Cout̅̅ ̅̅ ̅̅ . If I now try to

calculate the number of transistors it will be 1 plus 2 plus 1 2 3 4 5 and then 6 7 8 9 10 11

12.

Then, 12 transistors on the pull downside and then 12 on the pull upside we will get a 24

transistors to get Cout̅̅ ̅̅ ̅̅ and S̅ and then if I connect an inverter here to generate a Cout and

then I connect an inverter here to generate this sum I will have to spend 2 transistors here

2 transistors here.

I will have two add 4 more transistors and finally, within 28 transistors I get the Cout and

then the sum expression. The Cout logical output and then sum logical output we will be

able to extract.

(Refer Slide Time: 21:24)

With that 28 transistors. Now, just to complete the 1 bit full adder using a 28 transistors I

have just drawn the layout diagram here. The stick diagram basically, and then the stick

diagram and then this I have completed both the PMOS side as well as the NMOS side,

that means that the N diffusion line here.

Then the P diffusion line here and then this is the Vdd rail and then this is the ground rail.

Just to get back into the transistor level diagram, first we will be generating the Cout̅̅ ̅̅ ̅̅ and

then going and ahead and then generating the sum expression. It is similarly in the layout

also we will start from the left side here and then go to the right side of the transistor

design.

Looking at the left side this will be nothing but the C transistor the polysilicon of the C

will go here and then the diffusions of here one will go to the Cout the other one will be

will be going and connecting to the A and B transistors which are in parallel. The other

diffusions of A and B are connecting to the ground.

If I want to do that in the stick diagram. I will have this A and B A and B transistors and

especially if I have drawn for the pull down side and I said that it will be a mirror topology

mirror replica image of the on the pull up side. Let me have a look at the N diffusion and

then the P diffusion will be nothing but the similar thing similar connections the only thing

is the connections will be to the Vdd rail and here it will be towards the ground rail.

Looking into the N diffusion lines here if I have A and A and B polysilicon on one side it

gets connected to the ground both A and B transistors on the other side it gets connected

it is get connected to the C transistor. I will have the A transistor which gets connected to

the C transistor here, the C diffusions and then, anyways B is anyways having the merge

diffusion with that of the C.

I have this connection and then this connection, that completes this particular portion. Then

the next portion is A and B which will be in series and then connected to the ground. I will

have the A and B polysilicon on one side it is connected to the Cout and then the other

side it is the ground. This completes the Cout on the pull down side and the pull up side it

will be the mirror replica image of the same thing what we have done here because the

transistors will have the mirror replica image.

The only thing is instead of ground it will be connected to the Vdd rail and then, we will

be left with this point and then this point. We will need to have a kind of a metal connection

here metal line here which will be connecting and then saying that this will be the Cout

line or rather the Cout̅̅ ̅̅ ̅̅ line.

This completes my Cout̅̅ ̅̅ ̅̅ line. The Cout̅̅ ̅̅ ̅̅ line actually goes to a transistor here. That is why

I have drawn this Cout metal line which gets connected to the polysilicon of Cout̅̅ ̅̅ ̅̅ . Let me

go quickly and have a look at the transistor level. This will be the transistor the Cout̅̅ ̅̅ ̅̅ line

which is connected to the transistor or the gate of the transistor here.

Then we will have A B and Cin parallel on one side of the diffusion for all the three

transistors it is getting connected here and on the other side it is actually the ground. If I

look into the stick diagram here I have A B and C on one side it is getting to the diffusions

of the Cout̅̅ ̅̅ ̅̅ transistor, this is that transistor where C is anyways having a merge diffusion.

The A and B is merge diffusion is getting connected to this the same the diffusion of this

Cout transistor. All the 3 transistors are connected on one side it is connected to the Cout̅̅ ̅̅ ̅̅

diffusion and all the three transistors will go and connect to the ground. We will have the

A transistor here which gets connected to the ground and the B and C which is having a

merged diffusion which will get connected to the ground.

Similar mirror topology will come onto the pull up side, we will have these two connected

or rather these two connected here and then this will get connected to the Vdd rail. This

completes the A B Cin parallel with that of the Cout transistor which will be in series. The

final one is the A B Cin series.

The C transistor will get one side it is connecting to the B diffusion and on the other side

it is the ground, the A transistor on the other side it is the sum bar output. If I look into this

A B C I will have the C̅ the one of the diffusion C̅ is connected to the ground and then

similarly on the pull upside it is connecting to the Vdd and A B C on B side on the A side

the diffusion is getting connected to the Sum̅̅ ̅̅ ̅̅ .

Now we have this sum bar on both the pull up side and then the pull up side that needs to

be connected by a better line. This completes the layout or the stick diagram of the 1 bit

full adder and we can easily calculate or evaluate what is the area that it occupies. This

particular stick diagram on the layout form is also available in the very first page of the of

your textbook which you are referring which is the West and Harris textbook. This gives

what kind of digital design digital subsystem design blocks we will be referring to from

here on.

