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Lecture - 38 

Decoder Design 

 

Hello students welcome to this lecture on 4:16 decoder design. We will be designing a 

4:16 decoder by optimizing the sizes and optimizing the number of stages and also what 

kind of gates should go into that particular decoder design, that we eventually get a lowest 

or the minimum delay. 

(Refer Slide Time: 00:44) 

 

This is an example I have just taken it from the western Harris textbook and one can read 

the whole description of this particular exercise or an example that is given in the textbook. 

Just to simplify I have drawn a block diagram of 4:16 decoder, 4 inputs and the 16 outputs 

and I have returned it in the form of A0, A1, A2, A3 as the inputs and the 16 outputs being 

a y0 to y15. 

In that particular example, in the description it has been given that there is a 16 word 

register file to drive the 32 bit each. What it means is, this particular 16 output bits which 

is generated from the decoder its actually used to design the 16 word register file and each 

of this outputs it goes into individual bits. 



This particular output is driving that another 32 bit system and each of this bit sees a 

capacitance of 3C. We have the 16 output bits coming out from the decoder and each of 

these output bits sees a 32 bit system, each of the 32 bit is estimated to have a load 

capacitance of 3C, where a 1C indicates the unit NMOS capacitance. 

3 of this 3C represents 3 times the unit NMOS capacitance and we have 32 bits. Each of 

this output coming from the decoder or I can consider the 16 word register file, where one 

register file is seeing a load of 32 x 3C, around 96C. Each of these output bits sees a load 

capacitance of 96C. 

It is also given that particular exercise is the inputs driving capacitance of 10C. What it 

means is if this input is connected to an inverter or to a NAND gate or to a NOR gate and 

whatever we have that first stage it is accommodating a 10C capacitance and then we have 

the load capacitance of 32 x 3 which is around 96C.  

With this particular configuration we are supposed to design the best number of stages for 

this 4:16 decoder block, the best sizes that we will get the minimum delay, hope the 

problem statement is kind of clear, I just simplified this particular problem statement and 

then given it to you. 
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Let us begin with the decoder design. What we have studied in the digital design course 

the decoder design can be expressed as the product of all the inputs. We have y0 to y15, y0 



all the inputs being 0 we will get y0 as the output y1, if all the 3 inputs are 0 and then one 

of the lowest significant bit if it is 1 we will get the y1 and similarly y2, y8 or y7, y8 and 

similarly y14 and y15, y15 represents where all the inputs are one we will get the y15 bit. 

When I have drawn this particular schematic a gate level schematic for y0 to y7 and in the 

next slide I have the schematic for y8 to y15. In this particular y0 = A3
̅̅ ̅ A2

̅̅ ̅ A1
̅̅ ̅ A0

̅̅ ̅ connected 

to this AND gate and then we will get this y0 and similarly y1 = A3
̅̅ ̅ A2

̅̅ ̅ A1
̅̅ ̅ A0 and not take 

it from the A0
̅̅ ̅. That is a slight difference here between y0 and y1. This one being A0 and 

not A0
̅̅ ̅ and similarly we will have the y7 = A2 A1 A0 A3

̅̅ ̅. If I consider the A3
̅̅ ̅ input that is 

going to generate y0 that is going to generate y1 that is going to generate y2, y3, y4, y5, y6 

and y7. 

This A3
̅̅ ̅ line is actually going to 8 such output logic generation, to 8 such gates. So, as to 

generate 8 output logics of the decoder block, that means that A3
̅̅ ̅ is actually having an 8 

branches. It is having an 8 branches that is going and feeding into the next gate.  

As to produce the 8 output signals kind of very important to incorporate this branching 

factor into our design. Similarly if I notice A3
̅̅ ̅ is getting branched 8 times I am sure that 

A3 we will also get branched 8 times starting from a y8 to y15 output generation. 
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Let me go to the next slide. This is what the schematic says A3 is going now to 8 such 

NAND gates to generate the 8 outputs of the decoder block y8 to y15. A3 is also getting 



branched 8 times. In fact, we can have a closer look at all the output logics and we can say 

that A3 will drive 8 NAND gates, A3
̅̅ ̅ will drive 8 AND gates, A3 will drive 8 AND gates, 

A2
̅̅ ̅ will drive 8 AND and then similarly A1

̅̅ ̅, A0
̅̅ ̅, A1 and A0 all of them will be driving 8 

NAND gates. 

If I am considering A3 or if I am considering A3
̅̅ ̅ or any of the inputs and its complement, 

I can say that each of these input is having a branching factor of 8. It means that it is going 

to get branched 8 times to generate the 16 outputs, hope this is clear. 
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Moving forward, let me take a very primitive design stage, a primitive step towards 

building the optimized or the most optimized 4:16 decoder. Let us say that this is my A3
̅̅ ̅ 

and then an inverter which sees the driving strength or the driving capacitance of 10C that 

means, that this inverter will have some size. The input of A3
̅̅ ̅ has a capacitance of 10C and 

that is something given to us in the design stage, this is the output of this particular inverter 

is going to the next stage of the AND gates. 

Now as we have clearly seen A3 is getting branched 8 times. I have drawn this the branches 

kind of a dotted lines I have not completed this, but let us assume that this A3 goes to 8 

such AND gates, the output of this AND gates is going to produce the output of the decoder 

and then I have stated this particular logical expression for one of this output of the decoder 

which is A3 A2 A1 A0 = y15. 



A3 going to the AND gates and then generating the y15. In fact, A3 will go to the other 7 

AND gates and then it will generate y15, y14, y13, y12, y11, y10, y9 and then finally y8. 

Basically, A3 is getting branched 8 times to get the outputs of starting from y8 to y15 and 

each of this output sees a load capacitance of 32 into multiplied by 3C the input is anyways 

10C. 

I will start with A3
̅̅ ̅ have an inverter and then we will have the A3. Similarly we will have 

to generate A2 it will come along with an inverter and then the input to that particular 

inverter will be nothing but A2
̅̅ ̅ and then similarly if I want to generate A3

̅̅ ̅ which will get 

branched to 8 AND gates. So, as to generate y0 to y7, here I need A3
̅̅ ̅, that means the input 

to this inverter will be A3. 

That will be my structure and in this particular structure what we are seeing is we are 

having not only the 4 inputs, but also the 4 complementary inputs as a requirement. Let us 

say if I go back to this slide number 2 and the example or the description says that not only 

the 4 inputs are fine, but its complement is also perfectly fine, while you are considering 

or while you are designing this 4:16 decoder. 

Basically, we are considering 8 inputs, 4 of the A0 to A3 and then 4 of this complementary 

inputs and at the output we are generating y0 to y15 and it is not necessary that it could be 

an active low or an active high output. That is also being stated in this particular 

specification we could generate a y0̅̅̅, y1̅, y15̅̅ ̅̅  or we can generate y0 or y1, y15, either active 

low signals at the output or active high signals. 

But the only one specification is we have to generate output either active low consistently 

for all the 16 outputs or active high signal consistently for all the 16 outputs, it should not 

be like y0 will be an active low signal and y1 will be an active high signal and y2 will be 

an active low signal and so on. We have to maintain that consistency throughout the 16 

output bits. 

Going back to the present slide, this is what we have. We have 4 of the input and its 4 of 

its complementary input. We have total 8 inputs getting branched 8 times each of the input 

is grading branch 8 times generating an output starting from y0 to y15, each of the output 

sees a load capacitance of 32 x 3C which is nothing but 96C. 

The overall gh, what we need is the path effort and I can calculate the path effort, 



F = ∏ gihi 

In this case we have an inverter here and then we have an AND gate. In the CMOS AND 

gate can be represented by nothing but the 4 input NAND gate followed by an inverter. It 

is a very simple form of representing the AND gate. If I consider that I can find out what 

is the g could be the multiplication of this particular inverter, g the 4 input NAND gate, g 

the logical effort and then the inverters logical effort.  

What should be the multiplication of all individual stages electrical effort which will be 

nothing but and I have stated here H is nothing but I can consider it to be the multiplication 

of all H is which will be nothing but a total capacitance of 32 x 3C, which is 96C and there 

is a branching of 8,  

H = ∏ hi =
32 x 3C

x
x

8x

10C
 

H =
32 x 3C x 8

10C
 

What we have done is we have understood the problem statement and we realize the 

problem statement in terms of a very simple design just to mention that this is not the final 

design this is just a simple design. 

We are trying to evaluate eventually if we want to evaluate what is F the path effort and 

once we have the path effort then we are going to have the best stage effort and then we 

will realize a higher level design. In this particular process what we have identified is the 

capital H. 
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Moving on, this is what we have realized an AND gate can be represented in the form of 

a 4 input NAND gate followed by an inverter we know its logical effort is 2, the logical 

effort of the inverter is 1. The overall path effort for an inverter followed by a 4 input 

NAND gate followed by an inverter will be nothing but with the logical effort is nothing 

but g = 1 here for an inverter. The first stage is nothing but an inverter which goes into the 

NAND gate which goes into an inverter. We will see the logical effort, 

G = ∏ gi = 2 

F = 2 x H =
2 x 32 x 8 x 3

10
= 153.5 

Here we have used 3 stages, my individual best stage effort will be nothing but, 

f̂ = F1/3 = 153.51/3 = 5.26 

In our overall design rule we have stated that anything between 2.4 to 6 for a general circuit 

it is appropriately fine because we are going to get a delay which is 15 percent tolerable, 

which is 15 percent more than the best design, 5.26 is going to it is kind of falls in between 

range of 2.4 and 6. If I design the 5.26 individual stage effort, my delay should be kind of 

acceptable. 



But the question is can we get the stage effort closer to 3.59, can we improve our design 

in such a way that the delay is not only15 percent, within the 15 percent range of the best 

design, but also very very close to the best design for this particular circuit, the 3 stage 

which is nothing but an inverter which is kind of branched 8 times and then followed by 

the 4 input NAND gate followed by an inverter here. 

The overall delay for this particular 3 state circuit will be nothing but, 

Delay = 3 x 5.26 + 6 = 21.79 

If I want to find out the absolute delay it will be nothing but 21.79 x 3RC and if rc turns 

out to be 1ps it will be 21.79 x 3ps, hope the very first step to get into the 4:16 decoder 

design is clear. 
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But what we really want is an f̂ = 3.59 to get closest to the best delay and my capital F = 

153.5. What should be the best stage, 

N̂ =
ln (F)

ln (f)̂
= 3.93 ≈ 4 

If N=4, 

f̂ = 153.51/4 = 3.51 



In that sense if I choose the number of stages to be 4 and I can easily do it with this 

particular design, because I have the 4 input NAND gate followed by inverter and before 

that we had an inverter, I will follow it with one more stage of an inverter. This is an 

additional one extra inverter to our last circuit design. Let me start with A3
̅̅ ̅ here at the input 

side because we are perfectly fine with the complementary inputs that what is up that is 

something the problem statement specify. 

Then we have this inverter which is giving me A3 goes to the 4 input NAND gate and then 

I will get some particular expression here, of course here it is coming from A2, A1 and A0 

which is also coming from its respect to inverter output. The output of the NAND gate 

which is to go to the inverter and then it will give me A3, A2, A1, A0 and then additional 

inverter just to ensure that we are having the best delay or closest to the best delay. 

Then the output of this will be nothing but A3, A2, A1, A0 and then the bar of that, this 

represents an active low output, 32 x 3C is its load capacitance alright. This is our design 

this is now our second circuit remember that the first circuit had inverter followed by the 

4 input NAND gate followed by the inverter this one we have added one more inverter 

here or one extra inverter here. 

That we will get closest to the stage effort will be closest to 3.93 or rather the stage effort 

will be close to 3.59. In that sense I will have 4 stages, if I have 4 stages the f̂ =3.51 which 

is very very close to 3.59 which is very good, the overall delay here you can calculate, it 

will be nothing but 4 x 3.51 plus 1 inverter parasitic of 1, 1 inverter parasitic of 1, 1 inverter 

parasitic of 1 and then this parasitic of 4, it will be 7. It will be nothing but if I calculate 

this it will turn out to be,  

delay = 4x3.51 + 7 = 14.04 + 7 = 21.04 

If I take the previous case where I had 3 stages, I had the delay of 21.79 and now in the 

current circuit design I have 21.04 as a delay. hope this is clear at this particular point of 

time. What we had seen is the 2 circuits which we have arrived with our primitive 

expressions of the decoder outputs and we have seen two circuits, one circuit is giving 

21.79 as the normalized delay and another one is 21.04. 
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Moving on, this is our previous circuit. We have represented this sizes for input NAND 

gate as X inverter of Y and inverter Z this particular inverter has a size of 10 and this is 

what we have arrived at 21.04, this is our circuit one with N = 4 stages. I am considering 

this as circuit 1 because circuit number 0 which was previous to this had 3 stages inverter 

followed by the 4 input NAND gate followed by an inverter. That used to give us 21.79. I 

am not going to use that because we have evolved this particular circuit from that particular 

circuit. This seems to be the best circuit at this particular point of time, comparing both the 

circuit 1 turns out to be the better circuit for N = 4 stages. 
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Moving on, this is another circuit here, circuit number 2 with N = 4 stages. Now I have 

got a hang of 4 stages. Why not make some changes to the 4 input NAND gates and 

recreate that output logic, why do you have unnecessarily 4 input NAND gates which sees 

a logical effort and the parasitic to be larger. The 4 input NAND gates had a parasitic of 4 

a logical effort of almost 2N + 2/3, which will be 4 + 2, 6 / 3 the logical effort is 2. 

Why not I can improve, I mean the question is can we further refine the 4 stages into a 

smaller number of NAND gates. I have now got 2 such 2 input NAND gates, instead of 4 

input NAND gates, I am creating 2 such 2 input NAND gates here, the 2 input NAND 

gates requires me to add one more 2 input NAND gate in the path, as to get an output of 

the active low output signal. 

This is basically the active low y15 output, there is a slight modification in a design A3
̅̅ ̅ goes 

to the inverter very similar here it is, now instead of the 4 input NAND gate it is now 2 

input NAND gates again A3A2
̅̅ ̅̅ ̅̅ ̅  will be generated and then it goes to the inverter producing 

A3, A2 and then goes to the NAND gate giving us the active low y15 output. 

Active low y15 output, A3 here gets branched to another two input NAND gate which is 

size of X again, we need a same size here and again the same size here of Y of course, it 

produces A3A2
̅̅ ̅̅̅ ̅̅ ̅̅ ̅. That it should be able to create not only this 4, the other 4 output signals, 

A3 gets branched 2 times to generate the other 4 output signals and similarly we will have 

A3
̅̅ ̅. This A3

̅̅ ̅ is actually generating this A3 signal goes to the 4 goes to the 2 branches to 

generate the 8 outputs, similarly here if I consider the counterpart of A3 going to an inverter 

and then generating A3
̅̅ ̅, now it will go to 2 branches and generate the remaining 8 output 

logics. 

In this particular path very interesting to see in this particular path of A3
̅̅ ̅ to y15 here it will 

get branched twice and then somewhere here once A3 and A2 are generated it is going to 

get branched 4 number of times. 4 times it will get branched one to generate the y15, the 

other one to generate the y14, the other one to generate y13 and the other one to generate 

y12. 

This design is kind of very very homogeneous in that sense in every path from the input 

to the output. In this particular path or every other path it gets branched in 2 points or in 

two intermediate points. One at this particular level it will get branched twice and then the 



another one it will get branched after this particular inverter state it will get a branch 4 

times.  

The overall branching factor is still 8, if I want to find out the path effort for this particular 

N = 4 stages turns out to be nothing but the logical effect is 1 here, the logical effort is 4/3 

here, 4/3 here, the logical effort is 1 here. It will be 4/3 the whole square and the overall 

product of the electrical effort of all these 4 stages turns out to be (32 x 3C)/Z and then 

multiplied by 4Z/Y.  

32 x 3 x 4 will come and then we will have this stages which will be nothing but Y/X and 

here for this particular stage it will be 2X/10. The branching factor of 2 here and a 

branching factor of 4 here will come, which will get multiplied by (32 x 3C)/10. That is 

what we have (4 x 2 x 32 x 3) / 10 = 136.46, it is kind of very important that we started 

with F value which is around 153 and derived the 4 stages and then when I am trying to 

modify this particular design with the help of 2 input NAND gates, because 4 input NAND 

gates has a greater parasitic and a greater logical effort. Why not modify that with A2 input 

NAND gates turns out that the path effort is reducing, which is in a way it is good because 

the reduced path effort is likely to give me a reduce F cap and the overall delay will be 

less. 
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Let us have a look, if the path effort is, 



F = 136.46 

f̂ = F1/4 = 3.41 

The overall delay here 2 input NAND gates and then 2 inverters will give me, 

D̂(N = 4) = 1 + 2 + 1 + 2 + 4f̂ 

= 6 + 4(3.41) 

D̂(N = 4) = 19.64 

Inverter with A2 input NAND gate followed by an inverter which is followed by 2 input 

NAND gate is better than the inverter followed by the 4 input NAND gate followed by 

inverter and then the inverter because it was giving me a somewhere around 21.04 

whereas, this one is giving 19.64. This turns out to be a much closer delay value. We will 

prefer this particular circuit over any other circuits, hope this is clear. 
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Moving forward, this is what one can actually get different designs, 2 stage designs, 3 

stage designs, 4 stage designs and it turns out that the 19.64 or 19.7, whichever we have 

got that turns out to be the best design. 19.7 is our best design compared to the other 

variants. 
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This is kind of a general rule one can follow. If there is a particular example of a decoder 

design or it could be in some kind of a different logical output expression that is given to 

us. So as to do an optimized design for the minimum delay. The first step is to find the 

logic here we have identified the logic of the decoder a very simplified expression. 

We could also realize that using the gate level, we took an AND gate and determine the F. 

That the overall path effort we could define basically here we need to identify what is the 

number of branches the output expressions for the different output expressions that will 

take. That the inputs at some stages it will get branched and if we can identify that we 

should be able to find out what is the F value or the path effort value. 

Once we have the F value we can identify what is the best stages with respect to our 

generalized rule of 3.59. Individual stages seeing a 3.59 if we can get an N value which is 

closest to the N̂ value. We cannot always have an N̂ value which will give me 3.59 as the 

stage effort, but if you can calculate the N̂ value and then we can find out what is N which 

is closest to the N̂ value. 

Then we should be close to our optimized design and once we have the N value which is 

nothing but in this particular case we identified 4 as the stages, we determine the delay 

with the 4 stages and then we try modifying the design. Instead of the 4 input NAND gate 

we adopted the 2 input NAND gates and then we adopted the 2 input NAND gates in the 

final stage also, so that we will get the output expression to be that of what we expect. 



Using the N stages determine the new F. The new F turned out to be less than what we had 

calculated in this particular step instead of 153.15 it was now 136 and we will be able to 

evaluate the new N for the minimum delay and then calculate the minimum delay.  

Similarly, we can keep on reiterating this step 5 to 3 and then go down to 5 and then keep 

on doing it and we can form a table and then we should be able to compare all the possible 

designs and then find the best one. This is the process of getting the critical path delay for 

any kind of an digital output circuit. 

 


