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Logical effort and Parasitic delay for different gates 
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What we had done was for an N input NAND gate, we had said the logical effort will be 
N+2

3
 

and then the parasitic is N. Similarly, for the N input NOR gates we had said the logical effort 

is 
2N+1

3
 and the parasitic is N. Let us try to validate this result, validate in the sense the linear 

delay model what we had used, I mean why we are using is to estimate the delay p + gh = d, 

normalized delay.  

The absolute delay will be nothing but (p + gh)3RC. Let us take a quick example here, if I 

want to take a very simple example of a 2 input NAND gate, I will have the p value as 2 and 

the g value for this particular NAND gate is 4/3. Now, this particular NAND gate is going to 

another NAND gate for a 2 input NAND gates again and this output gets connected to one of 

the inputs. 

What we are interested in this particular A point to this particular X point, the delay of this 

particular first stage, we are not bothered about the other stage at this particular point of time. 



What should be the propagation delay from A to X and I have written a smaller d here, that 

means that I am interested in the normalized delay. 

Using my p + gh model, the linear delay model this particular p + gh model. I will use for this 

particular delay, for this particular gate of 2 input NAND gates I know that the p value its 

parasitic delay is nothing but 2 because it is a 2 input NAND gate, g for this particular logical 

effort of this particular first stage 2 input NAND gate is 4/3 and then h again it is a normalized 

value. 

What should be h here? h is nothing but whatever is the load capacitance coming from the next 

stage, the load capacitance coming from this particular stage is nothing but it is a 2 input NAND 

gate, it will give me 2C + 2C = 4C of its own parasitic. 

If I draw 2 and 2, that will be 2 from the NMOS side and 2 from the PMOS side, it will be 6C. 

Now just to separate it out 6C and then 4C, 4C is coming from this particular input of the next 

stage. This h value the electrical effort of the fan out is nothing but whatever is loaded from 

the second stage, whatever is the load capacitance, which does not include its own parasitic. 

6C is not getting involved here in estimating the value of h or the electrical effort because the 

electrical effort or the fan out is basically considers whatever is loaded. It is not its own stage 

parasitic capacitance, it is the external load capacitance, that is coming from the next stage the 

input capacitance divided by its own input capacitance. The own input capacitance is nothing 

but 4C because it is an AND gate only. I will have 4C/4C, which is nothing but 1. 

Finally, what I have is the normalized delay from A to X, using my linear delay model which 

is nothing but, 

dA→X = p + gh = 2 +
4

3
=

10

3
 

This is my normalized delay, hope this is clear. Let us try to validate this using my own 

capacitance model, I have written the capacitance model here of 6C and then 4C. The overall 

delay although I mean I need to find out the normalized delay.  

I am going to write the overall delay assuming that the switching resistance here for the 

charging and for the discharging whatever it is R linear delay effort. 



d =
R(10C)

3RC
=

10

3
 

This delay is nothing but whatever is the capacitance in the output node which includes the 

parasitic of 6C and then the 4C capacitance coming from the next stage, which will be 10CR, 

the switching resistance either falling or rising and then divided by 3RC coming from the 

inverter, it will be 10/3. This particular value of 10/3 matches with that of this 10/3. Our p +

gh model or whatever we have generalize the p and the g factor or the g values or the 

expressions, it eventually should give us or should lead us to the same delay. 

One more important aspect to notice here is because I have cascaded the stages, while cascading 

the second stage I will use a different color. This particular second stage, I am going to write it 

as the second stage and this is my first stage. The second stage is going to load some 

capacitance at the X node, at the output of the first 2. While I am calculating the parasitic 

normalized delay the P value is by the definition of the parasitic capacitance seen at the node 

X. 

P =
6C

3C
= 2 

Now this 6C is actually coming or drawn from its own parasitic and we have not included this 

4C here. We have not included the input of the second stage into our calculation of our 

expression for the parasitic delay, that is important. The parasitic delay for the first stage, p +

gh for the first stage, the p value, how do we calculate this? This is nothing but its own parasitic 

capacitance 6C/3C inverters, its own parasitic capacitance giving the same output current for 

both the gates. 

This particular calculation or estimation does not include the next stage input capacitance, that 

is anyways taken care by the factor of h here. When we do p + gh, this h value or this particular 

h value is going to consider the next stage input capacitance. This particular parasitic is its own 

stage the first stage or the second stage whenever we are calculating the delay of the next stage. 

We will calculate the p value for the next stage, its own stage parasites we will estimate, that 

will be 6C/3C = 2 for in this particular case, hope this is clear to some extent. 
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Moving forward, what we will see is a slightly different circuits, although developed from the 

CMOS families, but it is called as a tristate circuit. What we will do is we will establish the 

logical effort and then the parasitic delay for a very primitive tristate circuits and then we will 

go on to the little bit more accomplished circuits. 

What is a tristate circuit? Tristate is defined it consist of 3 states, one is the high state or a low 

state and then the last one is called as an high impedance state. What it also means is nothing 

but a floating state, we will come to it. This is the schematic representation of the tristate 

circuits, given the A input the y should be nothing but A if the enable is enabled or activated 

or if the en = 1 we will have y = A, if A = 0 we will have y = 0, if A = 1, I will have y = 1.  

That is how this 1 and 0 are covered. Now, what is this high impedance state? If theen = 0, if 

it is not activated or the enable pin is disabled (not enabled) at all, the y input is called as the Z 

state, which is nothing but the high impedance state. It is also called as a floating state because, 

if I consider the capacitance here at the y output, it will be either be charged or discharged. It 

will either be charged to Vdd or it will be discharged to 0, it will either be holding a value of 

logic 1 or logic 0 depending on the previous state. 

Previous state means whenever the enable was active, whenever the en = 1, whatever was the 

input whatever the output is likely to hold it, that is why it is called as the floating state and the 

high impedance is coming because you do not have a connection at the enabled side, it is 



basically an open circuit the y is not connected to the ground or to the Vdd and that is why we 

say that it is having a very high impedance, the floating state is its appropriate definition.  

One can easily visualize if it is a floating state, that means that it should carry the previous state 

when the en = 1 what should be the output y value. In a CMOS circuit representation, the most 

primitive circuit for a tristate family will be nothing but tristate inverter. The tristate inverter 

means nothing but I will have the circuits connected like this where the output y = A̅. 

Whenever the en = 1, that means in this particular transistor this will be on, en̅̅ ̅ will make this 

PMOS transistor on, when en = 1  and this output is going to either discharge or charge to Vdd 

or discharge to 0 based on the input A, if input A = 1 this will be on, input A = 1 then this will 

be on and this will be off. 

I will have my output discharge to ground. If input = 0 this will be off, this transistor will be 

off and then the PMOS will be on and then I will have my output charge to Vdd. When en = 0 

here, that means both these transistors will be off, y will be disconnected from the transistors 

which are connected to the A input. 

When en = 0 this will be off, en = 0, en̅̅ ̅ = 1, that means the PMOS transistor will be off, y 

will be disconnected from the Vdd or the ground rail, it will hold at the previous state. Now, 

what should be the logical effort of the input A? Input A is connected to these 2 transistors and 

again by the same definition, if I want the same falling resistance or the rising resistance I will 

have this sizes accordingly made selected, the size of 2 and 2 because this both of them are in 

series. 

I will have a size of 2 and2 which will give me a falling resistance of R, and the size of 4 and 

4 here which will give me a rising resistance of R. Here a 2 and 2 will give me a falling 

resistance of R, my logical effort for the input A is nothing but this particular size 4 and then 

this particular size 2/3, that will be 6/3 which will be nothing but 2. 

Normalized parasitic delay gA and p value will be nothing but whatever is the capacitance is 

here. The capacitance here is nothing but coming from 4 and 2 is 6C capacitance. That is why 

4+2

3
. The logical effort and then the normalized parasitic values, we will use the same 

definitions. For the normalized parasitic it is nothing but the output capacitance, its independent 

stage standalone gate whatever is its output capacitance divided by the benchmark inverters 

output capacitance giving the same current. 



Both the gate should give me the same output current. That is why we have selected those sizes 

appropriately. The logical effort again based on the sizes we have to select the sizes, such that 

it will give me the same output current and the sum of those sizes on the PMOS and NMOS 

side which divided by the 2:1 inverter’s input size will give me the logical effort, hope that is 

clear. 
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Moving on what we really want to see is tristate is a kind of very very useful for designing the 

multiplexer circuits and one of the reason is, tristate is very simple to implement. You are going 

to have a mirror topology, whatever is there implemented on the NMOS side, the same thing 

is gets implemented on the PMOS side. Whatever is implemented on the pull down side gets 

implemented on the pull up side, that is one advantage. 

The second advantage it simplifies the circuit although the output will always be a 

complemented output of the input. In both the sense it could be also be the other advantage is, 

it can be easily be constructed from the CMOS circuits. In that sense the tristate based circuits 

are kind of very easy to implement and multiplexer is one such application where the tristates 

are heavily used. But before going into the tristate multiplexer let us try to understand the 

multiplexer output logic expression.  

What I meant was if I want to define the multiplexer. What it means is I have an input, the 

basic multiplexer will be 2:1 mux. I have A and B as an input and y should be my output and I 

should have a select line here. I can also say this is the select pin, s pin. Whenever s = 0, we 



will get y = A. It is nothing but the input pin number 0 and 1. Whenever the s = 1 we will get 

the output y = B, this is what the basic definition of the multiplexer is, y as an expression I can 

say that it is nothing but when s = 0, I will get A and then when s = 1, I will get B, this is 

what we want, going from the tristate, hope you know this is something everyone should be 

aware of. 
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A 2 input multiplexer which is made from the tristate, tristate will always give you an 

complementary output. What we are seeing is a y is nothing but, 

y = S̅D0 + SD1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

It is a basically an inverted 2:1 mux. How will we draw this? We see this as a 2 branch, S̅ and 

D0 as one segment and S into D1 as the another segment. What I meant was segment is, this 

particular part of the circuit is going to give me S̅D0 and this particular part of the circuit is 

going to give me SD1, tied together both of them will give me the complement of it. Let us try 

to understand the design of the circuit. In this particular part the input D0 is connected to the 

transistors PMOS and NMOS transistors which are very close to the rails, Vdd rails and the 

ground rails.  

The select line S̅ is connected to this NMOS and S is connected to the complement of S̅ will be 

nothing but S is connected to the PMOS. Whenever s = 0, this will be on, s = 0 PMOS on this 

side will be on and based on D0 I will get the output here and on the other segment we have 



the D1 connected to the PMOS and NMOS transistors which are closer to the ground and Vdd 

rails and I have S connected here and S̅ connected here. 

What it means is if s = 1 here this will be on and then S̅ will make it 0 and then this will be on. 

When s = 1 this branch will be off. This on will go off when s = 1, PMOS1 will be off and S̅ 

will be 0 and that will be off and then this will be on and then this will be on. I will get the 

output y based on the D1 input. 

When s = 0, I will get y is nothing but based on the D0 signal. It is basically y will be D0
̅̅̅̅  or y 

will be D1
̅̅ ̅, that is what the output is. If I connect this both the branch outputs, I will get y = 1 

of the outputs. Now coming to the sizes. What we are seeing is one of this particular branch 

will be operative or will be connected to the output. I need to size it accordingly such that I will 

get y connected to the Vdd or y connected to the ground. 

If I take this particular segment, I will have the size of these 2 transistors as 2 and 2, the reason 

is, in the worst case condition this will be off. This will not have any discharging path and I 

will have the discharging path connected only from y to ground. I will have a size of 2 and2 

giving the equal falling resistances R of the 2:1 inverter. 

Similarly, for this particular 2 sizes I will have it 4 and 4. So, that one of this path will be on 

and I will get the rising resistance as R and if I have the sizes as 4 and 4 which will give me a 

rising resistance of R and then 2 and 2 which will give me a falling resistance of R, that means 

I will get the equal output current same as that of the 2:1 inverter. 

Similarly, if we have designed it for this particular branch we should be able to design it for 

this branch also very very similar. I will have 4 and 4 and 2 and 2, so that in the worst case 

condition this will be off and then this will be on and similarly when this is on this particular 

path will be off, I will have a size of 2 and 2 and 4 and 4. 

If I have this selected size of 4 and 4 and 2 and 2 on both the branches, at the output side if I 

want to find out the parasitic capacitance, I need what is the overall parasitic capacitance seen 

at the output node y. Turns out to be nothing but this 4, this 4, this 4, this 2 and then this 2 will 

contribute to overall I will get 6C x 2 which is nothing but 12C. 

The normalized parasitic delay will be nothing but, 



p =
12

3
= 4 

 This 3C is now our 2:1 inverter parasitic capacitance. The logical effort, I mean there are D0 

is one input, D1 is another input, S is another select signal. If I want to find out the logical effort 

of D0, it is nothing but its capacitance seen here which is coming from the PMOS, another one 

coming from the NMOS,  

(LE)D0
=

4 + 2

3
= 2 

Logical effort of D1 will be, 

(LE)D1
=

4 + 2

3
= 2 

For the select line, 

(LE)s =
Input Cap of S and S̅

3C
 

In this case for the select line S and S̅, 

(LE)s =
12C

3C
= 4 

What we are saying for the select line is the logical effort, for the select line is we are 

considering the input capacitance of S, not only S but also for the S̅ and the reason is very very 

simple is because this S̅ will be generated from the S signal somewhere in the circuit. 

Somewhere before the circuit we will have an S signal directly connected to this particular 

circuit, this particular module S̅ will be there somewhere generated from an inverter and if we 

do not know the size of that particular inverter it is better to take its own sizes here in this 

module, it is a very conservative approach and then calculate and estimate this particular g 

value for estimating the delay. In that sense we are taking all the input capacitance of not only 

the S as well as its own complemented input, I will have S and S̅. It will be 12C/3C which will 

be nothing but 4. 

Hope this is clear, the logical efforts and the normalized parasitic delay for the 2 input tristate 

multiplexer. 
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Continuing further what should be the 4 input tristate multiplexer? If I have 4 input, we will 

calculate, we will have an expression like this, 

y = S1̅S0
̅̅̅D0 + S1̅S0D1 + S1S0

̅̅̅D2 + S1S0D3
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

S1, S0, I will have a D0 signal, when for 0 1 case it will be D1, for 1 0 case it is D2 input and 

then 1 1 case it is D3 input. 

There are 4 inputs D0, D1, D2, D3 which gets at the output based on the 2 input select lines. S1 

and S0 are the 2 input select lines, this is the expression. I will have basically 4 branches, one 

branch is this, another branch is this, another branch is this and another branch is this and this 

2 input is going to one NMOS transistor and one PMOS transistor. This D0 is going to one 

NMOS and one PMOS. 

In each branch I will have still 4 transistors, again these 2 input combined will go to one NMOS 

and one PMOS transistors, of course its complement will go to the PMOS transistors, again 

complement will go to either PMOS or NMOS and D1 will go to the transistors PMOS and 

NMOS transistor which are closer to the rail. 

I am still imagining or visualizing this as a individual branch as a 4 transistor circuit, 2 transistor 

on the pull down side and 2 transistors on the pull up side and we will have the same sizes 



because it is still the 4 transistors, either one of these branches will be on. I will have the PMOS 

to NMOS transistor ratios will still be 4:2. 

The logical effort of all the input signals D0, D1, D2, D3 and I am not taken the select line 

logical effort, it is only the input signals D0, D1, D2, D3 will be nothing but, 

(LE)D0
= (LE)D1

= (LE)D2
= (LE)D3

=
4 + 2

3
= 2 

The normalized parasitic delay, because I have 4 branches now the output node I will have, 

p =
(2 + 4)x4

3
= 8 

This is the number of branches and then this 2 + 4 is coming from the transistor which are 

closest to the output rail. It will be the input fed to this particular transistor will be the select 

lines and its complement. Those are I will call it as the transistors driven by the select line 

signal, 
(2+4)x4

3
, 3 is coming from the benchmark inverter 2:1, benchmark inverters output 

parasitic capacitance. 

If I look into the 2 input tristate multiplexer. If I go back the parasitic was 4, for a 2 input tristate 

multiplexer and if I come back to this current slide for a 4 input it is actually 8. For an N input 

tristate multiplexer it is nothing but, 

PN−input tristate mux =
(2 + 4)xn

3
= 2n 

This 2 and 4 is coming from the select line, the transistor and this n is nothing n number of 

branches or the n number of inputs, which will give me 2n parasitic. Remember that the logical 

effort still remains 2 here for the inputs in the 2 input tristate multiplexer it was still 2. The 

logical effort does not change for an N input multiplexer if you are doing designing via the 

tristate, that is a clear cut advantage. I am having a delay p + gh, this g value for an input does 

not change. Whereas, the p of course, it will change linearly with respect to the number of 

inputs, but this g value does not change. 

If I design it in another way, we will have a change in p, we will also have a change in g. In 

this particular case when we have it branch wise based on the number of inputs the g value 

does not change, hope this is clear. 
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Just to complete the overall the logical efforts and then the parasitic delay. Now basically the 

linear delay model what I have done here in the next 2 slides including this one will be trying 

to showcase the Elmore delay model based delay estimation and compare with that of the linear 

delay model with respect to the number of inputs. 

I have taken a simple example of an NAND gates, which is an N input NAND gates. For an N 

input NAND gates, I will have N such PMOS transistors and N such NMOS transistors and I 

will select the size of N here on the NMOS side. Because I need an equivalent falling resistance 

to be R giving the same output current of I as that of the 2:1 inverter. 

On the PMOS side the sizes should be nothing but 2, but it will have N such transistors. At the 

output node y, I will have each of this PMOS transistors contributing a capacitance of 2N and 

this NMOS transistor N closest one to the output rail, the transistor which is closest to the 

output node will contribute to NC capacitance, the overall I am seeing a 3NC capacitance. 

Using an Elmore delay method signifies that I need to account for all the inter node diffusion 

capacitance NC, NC and NC all the intermediate diffusion node capacitance, I need to consider 

that while estimating the delay. What it means is I have taken the propagation delay for the 

following, that means for the N input NAND gates all the N inputs here on the pull down side 

should be 1 so that the output will discharge to 0.  



𝑡 𝑝𝑑𝑓
𝑒𝑙𝑚𝑜𝑟𝑒 

𝑑𝑒𝑙𝑎𝑦

= (3𝑁𝐶)𝑅 + ∑
𝑖𝑅

𝑁
(𝑁𝐶)

𝑁−1

𝑖=1

 

I have taken 3NCR, R is nothing but the switching resistance of all these N transistors which 

are in series will give me a switching resistance of R equivalent falling resistance as R. It is 

3NCR, and then I need to accommodate for this particular capacitance plus N plus this 

particular capacitance and so on.  

This one 3NC is already accommodated here and I am left with now N-1 transistors starting 

from this one transistor, then the second transistor, then the third up to this N - 1 the N 

transistors its own parasitic is anyways accommodated in this 3NC. What I have done is, I have 

taken a summation signal and I is going from 1 to N - 1 transistors and its parasitic diffusion 

intermediate diffusion node capacitance is NC and its equivalent resistance in this case I am 

taking it as iR/N. Each of these transistors is showing a resistance of R/N, this second transistor 

should also should give us an R/N. 

But as we are proceeding from down to up, closer to this particular transistor of NC, it sees a 

resistance path of R/N, the next one sees a resistance path of 2R/N, the third NC capacitance 

sees a resistance part of 3R/N that is why I have made it a variable of iR/N. If I have written 

this particular generic expression for the Elmore delay then further calculating,  

𝑡 𝑝𝑑𝑓
𝑒𝑙𝑚𝑜𝑟𝑒 

𝑑𝑒𝑙𝑎𝑦

= (3𝑁𝐶)𝑅 + ∑ iRC

N−1

i=1

 

= RC [3N +
(N − 1)N

2
] 

= RC [3N +
N2

2
−

N

2
] 

t pdf
elmore 

delay

= RC [
N2 + 5N

2
] 

This is my Elmore delay propagation delay falling using the Elmore delay method. 
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If I use that particular expression to draw a profile of the propagation delay falling with respect 

to the number of inputs. If I keep N is equal to you know if let us start from a 2 input NAND 

gate, that is the most primitive NAND gates we have. For a 2 input NAND gates I will get 

N2+5N

2
=

22+5x2

2
=

14

2
.This will be nothing but 7RC absolute delay, whereas a linear delay 

model is going to give me the output node capacitance or rather the propagation delay falling 

will be nothing but whatever is the parasitic capacitance multiplied by the 3RC. The parasitic 

capacitance is nothing but we know that it will be N the output node capacitance. The parasitic 

capacitance seen at the output node we ignore the inter node diffusion capacitance completely 

in the linear delay model, it will be NRC. 

For a 2 input NAND gate, it will start from 2x3RC which is nothing but 6, for a Elmore delay 

method it gives me slightly one RC above, there is a deviation. If I go for it N = 3 input, I know 

that this value will be 9RC on the linear delay model, on the Elmore delay method it turns out 

to be 12RC. 

There is difference you know which was 1RC here in the 2 input NAND gate, now it grows to 

3RC in the 3 input NAND gate. In the 4 input NAND gate the difference is quite more, in the 

5 input NAND gate the difference is even more and so on. The difference between the Elmore 

delay method which is more appropriate than the linear delay model keeps on growing. The 

linear delay model what it says it is a of course, it is a non-linear delay model it grows 

quadratically with the number of inputs. 



The N2 here, as the N increases the number of inputs coming to the number of inputs that 

defines the N input NAND gate if it keeps on increasing. The Elmore delay method shows that 

the delay increases quadratically to the number of inputs to the gate. The advisable is beyond 

a certain number of inputs, it is not advisable to have more number of inputs in a gate. 

It is advisable to keep that number of inputs to a limit, what is advisable as given in the textbook 

Weste and Harris, if possible design the circuit still the number of inputs reaches the 5, beyond 

5 if I use a 6 input NAND gate the difference is very very huge and if I am doing a rough 

calculation by a linear delay an input NAND gate the difference is huge that is 1. 

The second thing is, if I consider the more appropriate model which is an Elmore delay method, 

if I use a 6 input NAND gate it will be somewhere here, even beyond that the delay is actually 

very very high. If I can resolve that the 6 input NAND gate, let us say a 4 input NAND gate or 

a 3 input NAND gates 2 such 3 input NAND gates if I cascade it. 

If I have instead of 6 inputs, if I can actually do it using 3 - 2 such NAND gates and that will 

be much more preferred, because my delay of 12RC as compared to quadratically increased 6, 

it will be very very high. Instead of that having a lower 12RC delay from 1 and 12RC delay 

simultaneously and then getting it connected to the next stage. 

It is always advisable to keep the number of inputs connected to the NAND gates or the NOR 

gates limited to 5. One thing is when I have more than the 5 number of inputs the linear delay 

model estimation will be completely be off and the second thing is the Elmore delay method 

which is more appropriate, but still as a delay increases quadratically you know, as a delay 

increases quadratically with the number of inputs it is you know even if you use an Elmore 

delay method it is going to be very very high. 

Why not reduce the number of inputs and then redesign the circuits, we will need the same 

output, but by using multiple such NAND gates or multiple such NOR gates, but having less 

number of inputs to those gates. 

 

 


