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Hello students, welcome to this particular lecture on Elmore Delay. In this particular 

lecture we will look into one particular model of delay that is called as an Elmore delay 

model. We will arrive at the estimating the delay of second order circuits using an Elmore 

delay. We will be deriving the expressions that has been used for the Elmore delay method. 

One of the reasons for having this particular Elmore delay method is to make use of this 

model for a higher order RC circuit and this RC circuits are nothing but it is a model 

switching resistance and then the parasitic capacitances that has been modeled from the 

transistor-based circuits.  

If I am looking at a very higher order digital circuits, looking at the higher order digital 

circuits we will then approximate into an higher order equivalent switching resistance and 

in the capacitance model. Applying the Elmore delay method on this higher order RC 

circuit should be able to give us the propagation delay, falling or rising or even the 

contamination delay falling or rising.  



To obtain those values, we use this particular Elmore delay method are turns out that the 

Elmore delay method is kind of a non-linear model, but it is very very effective and it is 

very very handy, handy to use or rather it could be very easy to use as well. Let us draw a 

3 input or a 2 input NOR gate. 
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Let me draw a very simple one a 2 input NOR gate. I am going to draw on the PMOS side. 

This is a 2 input NOR gate connected to the Vdd source and this is a PMOS transistor and 

then this is my NMOS transistor. 

That is output and here I have the pull down circuit, I have the NMOS transistors this is 

my A and B and then this is my subsequent A and B on the pull up side, this is a 2 input 

NOR gate. 

Let us say that I have the switching resistance also estimated for each of this transistor 

assuming that the widths and then the lengths of the transistors are the same on the PMOS 

and NMOS side. Let us say that I have this is nothing but an equivalent resistance of R 

and if I want to find out what do you say the propagation delay of the rising. 

If I want to find out the propagation delay rising for the circuit, I need to have the 

capacitance I know at the output node I will have some kind of an equivalent capacitance. 

I am just going to write it as Cload for time being we will be able to estimate it the exact 



value of the capacitance at the output node when once we learn the diffusion capacitances 

and then we will also have some kind of a capacitances here.  

I am going to draw that some kind of a capacitances at this particular node. I am going to 

write it as Cdiff. What we have is a source node here Vdd and then a switching resistance 

of the PMOS transistor A and then connected to the Cdiff capacitance. 

Then we will have one more switching resistance of the transistor B and then we will have 

the load capacitance load capacitance or the C output capacitance, it is basically a two 

order circuit. If I want to draw it in terms of RC circuit it will be in this form Vdd and then 

I have the RA PMOS transistor and then I will have the capacitance here, I am going to 

write it as C diffusion and then I am going to have this RB side and then we will have the 

Cload capacitance or the C output capacitance.  

This is my output node Y and then this is my the source power supply Vdd. In this case if 

I want to find out the propagation delay rising tpdr rising, for the output node y it becomes 

a two or second order RC circuit. It is an RC circuit, but it is a cascaded RC circuit or a 

second order RC circuit.  

If I have a 3 input NOR gate, in fact for calculating the propagation delay rising, I will 

have a third order RC circuit, one more RC network will get cascaded. I will have RACdiff 

RBCdiff and then RC along with the Cload or the output capacitance so on. If I want to find 

out the N input NOR gate rising delay I will have N such ordered RC circuits. 

In the other way on the pull down side if I want to find out the propagation delay falling 

for a 2 input NAND gate, again instead of the Vdd we will have the sourcing the node or 

the sinking node will be the ground. 

Instead of this Vdd we will have the ground and then the capacitances will be discharging. 

The Cload will be discharging through the two of the transistors A and B because on a 2 

input NAND gate we will have on the pull down side, the transistors A and B will be in 

series and on the pull up side we will have the A and B transistors to be in parallel.  

In a digital circuits, if I want to find out an equivalent the propagation delay falling or 

rising for a higher order digital circuits, then we need some method which will be able to 

simplify our higher order RC circuits. Because RC circuit is actually coming from 



simplifying or approximating our transistors into an switching resistance and then the 

capacitance, anyways we are going to do that. Ultimately, we will have a much higher 

order RC circuits, and we need to find out a method which will help us in establishing the 

delay for this higher order RC circuits and Elmore delay is one such method. 
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Moving ahead. I have taken a very simple second order RC circuit. I have R1 and C1. R1 

here and then C1 again cascaded it to R2 and C2 and we need to find out the delay of the 

RC circuit. I have two nodes one is the output node here Vout another one at this point of 

time I am going to call it as V1, there are two nodes V1 and Vout. 

I know this current i1 which is flowing across this capacitance C1 will be nothing but, 

i1 = C1

dV1

dt
 

This is my charging current, again we can consider this R1, C1, R2, C2 as nothing but an 

approximated RC equivalence circuit coming from the 2 input NOR gate. 

I have my this current i1 and I will have my current i2, which is flowing along this branch 

of C2 can be considered as, 

 

 



i2 = C2

dVout

dt
 

This is again a capacitor charging current equation. Now, what we really want is to find 

out an expression for Vout at this point of time and similarly once we will be able to identify 

the Vout expression we should be able to find out what is the expression for V1. 

What we had seen in an inverter circuit Vout initially it was a linear and then exponential. 

Similarly, V1 or rather the output of the inverter circuit we has a linear and an exponential 

model and then from there we were able to find out what is the propagation delay falling.  

For an inverter also what we did was we calculated the switching resistance and then the 

capacitance and now we are stating that whatever is the load capacitance seen at the output 

current multiplied by the switching resistance will be my propagation delay. 

Assuming this R2 and R1 are my switching resistances, these are nothing but the switching 

resistances coming from the transistors switching resistances. Here also this is nothing but 

the switching resistance R1 and R2. C1 and C2 are coming from the whatever is the 

capacitances seen at the node V1 and seen at the node Vout.  

C2 can also be considered as the parasitic capacitances, or the depletion capacitances, or 

the diffusion capacitances of those particular transistors as well as the wire capacitances 

as well as the input capacitances coming from the next stage.  

If the there are two stages one stage cascaded to another stage, the output node we will 

have an equivalent or the sum of all the capacitances will be nothing but the diffusion 

depletion capacitance plus the wire capacitances plus the input capacitances coming from 

the second stage, that is about the C1 and C2.  

What I am going to do is we want to find out the solutions of Vout and V1. In that case we 

will try to apply some KVL method. One KVL we will apply it in this particular branch 

and another KVL we will apply it in this particular branch. This with the 1st KVL is this, 

Vdd − (i1 + i2)R1 − V1 = 0 

                                         Vdd − R1 (C1
dV1

dt
+ C2

dVout

dt
) − V1 = 0                                  (1) 

 



I have this one particular equation coming from the KVL loop of one. On the 2nd one on 

the 2nd KVL loop here we will get, 

V1 − i2R2 − Vout = 0 

                                                V1 − R2C2
dVout

dt
− Vout = 0                                     (2) 

Let me minimize this, I will have perfectly ordered maybe little bit more and I think this 

is perfect. Moving ahead I have two KVL equations. Let us go back what we want is 

basically a solution of Vout at this point of time.  

If I can somehow have this either of one or two equations only in terms of Vout. It could 

be first order differential of Vout it could be second order differential of Vout also. But there 

should not be any V1 terms among this 1 and 2 equation, what we are going to do is 

substitute 2 in 1. Put this in here and we want to erase out V1.  

Vdd − R1C1 [
dVout

dt
+ R2C2

dVout
2

dt2
] − R1C2

dVout

dt
= Vout + R2C2

dVout

dt
 

That I will have an all the first equation of the first KVL loop derived equation everything 

in terms of the Vout. 
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If I look closely into this I will have a constant value and I have this dVout by dt on the 

left hand side common, 

Vdd = Vout +
dVout

dt
[R1C1 + R1C2 + R2C2] + 

dVout
2

dt2
(R1C1R2C2) 

This particular term we are going to neglect it, saying that the second order differential 

with respect to time is going to give me a very very small magnitude value and that is 

something we are going to ignore. 

This assumption we are going to ignore this and this assumption we are making it, because 

as we have seen from the inverter output voltage profile it is going to be linear profile and 

then it is going to be gradually going towards the exponential profile.  

Vdd −
dVout

dt
[R1C1 + R1C2 + R2C2] − Vout = 0 

If I consider a decreasing linear profile or increasing linear profile in this particular case 

for the charging for the rising time. The increasing linear profile if I do a first order 

differentiation it will be a constant and if I do one more time of a differentiation it will be 

a 0. 

If it is a linear profile or if it is an exponential profile going towards an exponential profile, 

we are assuming that it will be somewhere there and thereby its second order 

differentiation will be very very small, we are going to ignore that. Ignoring that what we 

get is the first order differential Vout term and then Vdd. 
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Vdd − A
dVout

dt
− Vout = 0 

Where, A = R1C1 + (R1 + R2)C2 

Let me go back a bit just to identify this particular expression, which is kind of very very 

important. I have R1C1 and then this C2 if I get it common I will make (R1 + R2)C2 in 

brackets very very important at this point of time. 

Moving ahead, I have this particular equation and then this particular equation we have 

anyway seen in the capacitor charging profile.  

∫
dVout

Vdd − Vout
= ∫

dt

A

t

0

Vout(t)

0

 

We are interested in finding out what is the Vout(t). Then if I solve this particular integral 

I will get the solution of this particular integral on the left hand side will be nothing but, 

[
ln (Vdd − Vout(t))

−1
]

0

Vout(t)

=
t

A
 

Further resolving this, 



ln (Vdd − Vout(t))

Vdd
=

−t

A
 

Eventually I should be able to find out what is Vout(t). 
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1 −
Vout(t)

Vdd
= e−t A⁄  

Vout(t) = (1 − e−t A⁄ )Vdd 

Vout(t) is nothing but our capacitor charging current equation, charging voltage profile 

equations. This expression is very very similar to our capacitor charging. 

Consider this A value that is coming from that constant A = R1C1 + (R1 + R2)C2, this is 

what the profile I have drawn here. The Vout profile I should have written Vout(t) with 

respect to t and at 63 percent it is a τ, which will be nothing but my A. Again, this second 

order 
dVout

2

dt2  is something we have ignored and then we got this approximated capacitor 

charging profile, which turns out to be very very close to our if I consider the R1C1 and 

R2C2 and put some values in R1 and C1and R2 and C2 and find out the output voltage, this 

comes out to be even if I consider the second order differential. 

If the spice considers that and then if I find out the Vout with respect to time either in a 

multisim or in a in an Ltspice I will get close to this particular voltage profile. Ignoring the 



second order output voltage is giving us a very close value. Although not accurate value, 

but it is a very very approximate value, in that sense we are good. This is what we get and 

if I look into the input side and then given to a circuit and then taking the output. 

What we have analyzed is, for an inverter circuit it will be RC and that will give me the 

propagation delay to be very very conservative assuming that the input side is a step, its 

not a step input it will be some kind of a ramp input then at a conservative approach. We 

are saying at the output side tpdf = tpdr = RC that is what we will come to. This time 

constant also it looks like a time constant. 

This becomes our delay parameters assuming that the input to the 2 input NOR gate is not 

a step input it will be a ramp then this becomes my rising propagation delay rising for the 

2 input NOR gate. 
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Now, what we are interested is there were two nodes V1 and Vout. We are also interested 

in finding out the V1 and I have two KVL equations written down. What we want is 

basically from those two KVL equations we want all the terms in V1. Whether it would be 

dV1

dt
, that is also fine V1 and then constant that is also fine, but what we do not want is 

anything Vout. If I go back to this particular starting equations. 

I have these two equations, what we want is everything in terms of V1, because we have 

anyways calculated the solution for Vout. Similarly, we want to derive an expression for 



V1. I have this in the first equation, I have this V1, this particular term to be 
dV1

dt
 and then 

this is anyways a constant value. I need to replace this Vout term. Second equation gives 

me Vout in terms of 
dVout

dt
 and then V1. 

If I put this 2 in 1 here, I will get this differential of this Vout. I have to do a differential of 

this particular terms. I will get a second order differential of 
dVout

dt
 square and then I will 

anyways get a single order differential of V1 and then second order differential of Vout 

anyways we are going to ignore it. That is the same thing which we have done in the last 

solution while we were trying to find the solution of Vout. 

Similarly for finding the solution of  𝑉1 are going to ignore the second order differential of 

𝑉𝑜𝑢𝑡. Moving ahead, we were somewhere here finding the 𝑉1,  

Put this is 𝑉𝑜𝑢𝑡 = 𝑉1 − 𝑅2𝐶2
𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
 into a 1.  

𝑉𝑑𝑑 − 𝑅1𝐶1

𝑑𝑉1

𝑑𝑡
− 𝑅1𝐶2 (

𝑑𝑉1

𝑑𝑡
− 𝑅2𝐶2

𝑑𝑉𝑜𝑢𝑡
2

𝑑𝑡2
) − 𝑉1 = 0 

𝑉𝑑𝑑 − (𝑅1𝐶1 + 𝑅1𝐶2)
𝑑𝑉1

𝑑𝑡
+ 𝑅1𝐶2𝑅2𝐶2𝑅2𝐶2

𝑑𝑉𝑜𝑢𝑡
2

𝑑𝑡2
− 𝑉1 = 0 

Then ignoring the second order differential. 
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Finally, we will get, 

𝑉𝑑𝑑 − 𝐵
𝑑𝑉1

𝑑𝑡
+ −𝑉1 = 0 

Where B = (R1C1 + R1C2) 

Everything is in terms of V1(t) and this Vdd is anyways a constant.  

V1(t) = Vdd(1 − e−t B⁄ ) 

Again, I mean, how do we get arrive into this particular expression to this particular 

solution is integrating on the both sides and then putting the limits of 0 to V1 and then 0 to 

t on the time side as well as on the voltage side. We should be able to get this particular 

expression very very similar to what we had derived for the Vout expression. 

The propagation delay rising is,  

t pdr
Vdd→Vout

= ln(2) (R1C1 + (R1 + R2)C2) 

t pdr
Vdd→V1

= ln(2) (R1C1 + R1C2) 

I am actually ignoring a log of 2 here. Log of 2 you can take it with the consideration, that 

the input will be a step input, but if the input is not a step input then we will take the 

conservative approach and they have only the sum of this products of R and C. This is 

what we get the propagation delay rising for the Vout node and then the V1 node. Looking 

closely at it, I have 1 term (R1C1 + (R1 + R2)C2). 

I have this term, there is one R2C2 is extra as compared to that of the propagation delay 

rising for the V1 output node. If I compare actually these two equations what we get is, the 

delay for the  Vout node to reach to the 50 percent or the halfway point of that Vdd is actually 

more, this is R2C2 more. 
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I hope you have understood this or you have analyzed that. Coming back to our original 

circuit of Vdd and then R1 and C1 and then I have this C1 here and then I have this R2 and 

then I have this C2. What it says is, the propagation delay rising is nothing but the 

summation of R into all the node capacitances also called as the leaf capacitances.  

t pd
rising

= ∑ RCi 

The capacitances connected to the individual nodes. I am going to write it as 1 and then 2. 

It is nothing but the propagation delay rising or falling, in this case it is rising because the 

Vdd is connected. It will anyway is going to charge the capacitance C1 and C2. The rising 

propagation delay will be nothing but some R multiplied by this capacitance C1 and then 

some R and multiplied by this capacitance C2. It includes all the leaf capacitances, it 

includes all the node capacitances. Now, this particular some capacitance are here some 

value of capacitances is it depends on the node I am selecting. 

Let us say that I am selecting a node1 here. We are interested in finding the propagation 

delay of the node1. The node1 achieves the 50 percent or the halfway point of the Vdd. 

What is that particular duration once it reaches the halfway point of the Vdd.  



In that case, this is my node of interest. My propagation delay rising turns out to be from 

my previous second order R and C network calculation, it turns out to be R1 C1 + R1C2. It 

is very very interesting that it does not accommodate R2 at all.  

Although we know that in charging this particular capacitance C2 it takes R1 and R2 path, 

but for approximating because we have ignored that second order 
dVout

2

dt2  and because of this 

ignoring this particular term we have actually made the second order RC circuit equivalent 

to a single order RC circuit and then estimated the time constraint which is nothing but a 

propagation delay rising. 

First for our simple simplified calculation it does not account R2 while finding the 

propagation delay for the output node 1, if my node of interest is 1 it does not accommodate 

R2. Now, this R1 and R1 here if I consider the capacitances C1 and C2. It is also called as 

the shared resistance for the capacitance C1 and of course the share resistance for the 

capacitance C2, that is how the nomenclature has come.  

t pd
rising

=Rshare C1 + RshareC2 

Now, what is this shared capacitance right? The shared capacitance is nothing but a 

common capacitance between the two paths and what are these two paths? One path is the 

path from the source to that of the node of interest. 

This is my path and here whatever the resistance I see I am going to write it down as R1 

that is one particular path. The other path is isolated or it is the other path is very discretized 

for the individual capacitances. If I am actually finding out the shared resistance for the C1 

capacitances. Then my another path is nothing but the path from the source, path from the 

source to that particular capacitance node. 

The resistive path I need to find out for C1 will be nothing but R1, I will use a different 

color. This is my 1 path, that path is common for both the capacitances C1 and C2. If I want 

to find out the equivalent or the shared resistance for the C1 and the shade resistance for 

the C2, that particular path from the source to that particular node of interest will become 

same. This is my 1st path that is a skew path, the 2nd resistive path is with respect to its 

individual node capacitance. 



For the C1, I will have the path of R1, for the C2 I will have the path of R1 + R2. In that 

sense if I want to find out for the C1 capacitance, for the C1 capacitances between the two 

paths 1 and 2, this is my 2nd path, this is I am going to write it here.  

For the C1 capacitances there are two paths one is coming from the source to that node of 

interest which is R1. I am going to take it R1 and then the 2nd path is nothing but from the 

source to the leaf capacitance or the node capacitance C1 which is R1. 

The common here the shared one, is nothing but the output of this is nothing but R1, that 

is what I am going to write. This is my R1 which is nothing but the shared resistance for 

the capacitance C1 for the C2 here first path resistive path is R1 the second path is actually 

from source to the C2 capacitance is nothing but R1 plus R2, the common here is nothing 

but R1. 

I am going to take it as R1 here. That becomes my shared resistance for the capacitance 

C2. My propagation delay rising, if my node of interest is 1 is nothing but the shared 

capacitances which is nothing but R1C1 + shared resistance C2 which is nothing but R1C2. 

If I similarly, do it for the 2nd node of intersect, the first path for the 2nd node of intersect 

will be nothing but R1 + R2 for C1 the resistive path will be R1. 

In that case my common resistance will be R1 for C1 capacitance, for the C2 my resistive 

path is nothing but R1 + R2 because this is my node of intersect and the resistance path for 

the C2 is nothing but R1 + R2, my shared resistance will be R1 + R2. 
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The propagation delay rising is considered as (R1C1 + (R1 + R2)C2), if I am considering 

the Vout node and then if I am considering the V1 node, it is nothing but (R1C1 + R1C2), I 

am ignoring this log2 that is nothing but 0.693 assuming that the input side, it is not a step 

input it could be a ramp input it could have some kind of an input transition 

The Elmore delay method is nothing but this particular expression. The tpd could be a 

propagation delay falling or rising is nothing but, 

tpd
i

= ∑ CiRis

N

i=1

 

All the capacitances at the node, I multiplied by the shared resistances for the node I and 

it could have N nodes. It will be from 1 to N nodes, it should include all the capacitances 

in that particular circuit and then multiply with that of the shared resistance seen by the 

individual node capacitances. 
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Hope this is clear. Just for a better understanding I have just written it here Ris is nothing 

but the shared resistance from the node from which the capacitance is connected to all the 

sources whether it is Vdd or ground, for Vdd for rising ground for falling output and then 

whatever node is my output node of intersect.  

The output node to that particular source power supply, whether it is the Vdd for rising and 

then 0 for the ground. In the same way what I had shared in the 9th slide, the shared 

resistance from R shared resistance R for the node C1, V1 of interest will be nothing but, 

t pd
Vdd→V1

= ∑ CiRis

2

i=1

 

= C1R1s + C2R2s 

tpd = C1R1 + C2R1 

Then we get this propagation delay rising for the V1 node of interest. 

 


