
Digital Circuits and Systems 

Prof. Shankar Balachandran 

Department of Electrical Engineering 

Indian Institute of Technology, Bombay 

And 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module – 43 

Pipelining 

 

Welcome to the 8th week of video lectures. So, in this course Digital Circuits and 

Systems, we are getting towards the end. So, upfront I want to tell you that, there is some 

material that is not been covered so far and there were a few E-mails on the forum, 

things about number representations and about arithmetic circuits. So, I decided to 

actually take one more week to cover that. So, this week is not the last week in terms of 

videos. 

So, there will be one more week in which I will cover basic arithmetic circuits as well as 

number representations. So, this is the last, but one week, so we are in the 8th week now 

and this week, what we will look at is, an interesting topic called Pipelining. So, 

pipelining has a lot of... So, we do a lot of things in the real world which are actually 

pipelined, we never call them pipeline though, we will take a real world example of that 

sort and we will see, what is the inspiration in digital circuits to make them faster. 

So, this is a very important topic and this is usually not covered in at least second year 

under graduate material. This may be covered in either, 4th year under graduates or in the 

first year graduate level. But, it is a very useful technique to know and if you understand 

this well, you will be able to understand processor design. If you are going to take any 

course on CPU’s and how they are designed, this is very useful. 



(Refer Slide Time: 01:46) 

 

So, the part of the material for this week’s videos are actually taken from this course 

from MIT and this is called computational structures, the course number is 6.004. So, 

MIT in the US has been offering a course on computational structures for a long time 

under what is called Open Course Ware, OCW they call it. And, so they allow professors 

and others to use this, so it is under what is called creative commons license. 

So, if I attribute to it and as long as I am not using it for commercial purposes and 

whatever material I am making as long as I share it with others, MITs license allows me 

to do that. So, I am going to use some of the material from the computational structures 

course to teach this. 

(Refer Slide Time: 02:36) 

 



So, let us now look at a real world problem, so let us say we have a laundry to do and a 

laundry typically requires you to wash and dry them. So, let us say I have two different 

machines, I have a washer, the washer needs to fill up, needs to agitate and spin and let 

us say washers propagational delay is 30 minutes. So, it takes about 30 minutes to wash 

clothes. Dryer, on the other hand is a separate device is available as a separate appliance, 

you can buy a dryer and there are dryers which will spin and even apply heat to it. So, 

that when you get the cloth outside from the dryer, they are already dry, you can fold 

them and put it aside, you do not even have to hang them for drying. So, these appliances 

usually take more time, let us assume that the dryer take 60 minutes. So, this is typical of 

a washer and dryer combination. So, in India when we usually by dryers, they do not dry 

them completely, so they are still wet and you have to hang them in clothes and so on. 

But, there are these appliances available where you can actually dry it, it will come out 

hot and all you have to do is just fold and keep it aside. So, we have a washer which 

takes 30 minutes and we have a dryer which takes 60 minutes and let us see how notion 

of laundry, if you want to wash clothes how it can get done. 

(Refer Slide Time: 03:59) 

 

So, if we do one load at a time then what we can do is, we can load the clothes, when we 

load the clothes in the washer it is going to take 30 minutes and during that time, let us 

say I have this dryer also, the dryer is not going to do any work. So, when the washer is 

washing, the dryer is not doing any work and once the wash is over, I have to take the 

clothes from the washer, put it in the dryer that is in step 2. So, when the clothes are 

drying, the washer is not really doing anything. 



So, clearly this is not a smart thing to do. So, if I have one load of clothes, let us I have 

only one basket of clothes I have to wash, then for 30 minutes I will wash and for 60 

minutes I will dry. But, when I am washing the dryer is not used, when I am drying the 

washer is not used. This is okay, if I have only one load, but if I have let us say 5 loads of 

clothes that I want to wash, not using the washer and dryer is not sensible, so it is not a 

very smart thing to do. If I take one load at a time and I use only the washer and then 

only the dryer and so on. We will see how this is related to circuits in a little while, but 

let us take this real world example to it is logical conclusion. 

(Refer Slide Time: 05:10) 

 

So, the first thing will note down is, the total time taken is the propagational delay of the 

washer plus the propagational delay of the dryer. So, that is 30 plus 60 minutes that is 90 

minutes. 



(Refer Slide Time: 05:23) 

 

Let us say I want to do n loads of laundry, so I have some number n and if you want to 

do it in what is called the combinational way or the non smart way of doing it. I have, so 

many clothes and what I will do is in step 1, I will take one of these laundry baskets 

wash it, that will take 30 minutes. Then, I will take those clothes which are washed, put 

them in the dryer that will take 60 minutes. So, 90 minutes one load is done, then in the 

90th minute I will take the second load, put it in the washer, that will take 30 minutes. 

So, 120 minutes over all plus another 60 minutes to dry the second load, so in 180 

minutes I will finish two loads. 

So, if I want to finish n loads, then I will take n into 90 minutes, so the combinational 

way of doing it. So, each wash in dry cycle takes 90 minutes and I have n of these loads, 

so over all I will require n into 90 minutes. And you can see the problem here, at any 

point of time, so I have one single washer and one single dryer, when the washer is in 

use, the dryer is not being used, when the dryer is in use, the washer is not being in use. 

So, in the real world if you had n loads of clothes, you would really not operate it, in this 

way. Would you think about using only the washer or only the dryer? So, you would 

think about, when the washer is washing, you would put clothes. So, when the first load 

dryer cannot run, so you will wash it and as soon as the wash is over, you put it into the 

dryer, now the washer becomes free. So, in step 2 the washer is free, you can technically 

go and put another load inside and this will take 30 minutes to finish, but over all this is 

going to take 60 minutes. 



So, by the time you wash two loads of clothes, you would have done only one load of 

drying. So, you need to wait for the dryer and then, put it and so on, we can figure out 

how to do these things. But, clearly taking only one wash and one dry at a time and not 

using the other one does not make sense. 

(Refer Slide Time: 07:35) 

 

So, the smart way to do that is doing what is called pipelining. So, the way the pipelining 

would work is, ideally we would like this. So, initially the dryer is not being used, you 

take the first load and put it inside for wash and that takes 30 minutes. Whenever it is 

done, take it and put it in the dryer and take the second load and put it in the washer and 

whenever the dryer is ready and when if the clothes are washed, you take the wash, put it 

in the dryer, take a new load and put it in the washer and so on. 

So, doing something like this is called pipelining, so this pipelining is something that we 

do in the real world more often than we can imagine. So, if you are cooking for instance 

you do the same thing. So, when you are... So, may be you put something on the stove, 

but then you are cutting some vegetables, you are boiling the water also and so on, it is 

not that you do all of these steps sequentially. So, when something is cooking, you go 

and prepare something else and when that is cooked, then you move that to the stove and 

you start preparing for the next dish and so on. So, that is also actually an example of 

pipelining. 

So, pipelining is the smart way of doing activities and what pipelining gives you is, it 

gives you two things, one these units are going to be busy, we are not going to under 



utilize the washer or the dryer. So, in 90 minutes if I use 30 minutes for washing, 60 

minutes for drying. So, in 90 minutes the washer is not used for 30 minutes and the dryer 

is not used for 60 minutes, so it is not an effective use of the appliance. Imagine, I have 

to rent the washer and dryer, I want to get as many loads as I want, clearly you would not 

do it this way, so that is one thing that you get from pipelining. 

The second thing from pipelining that you get is, if we have n washes and dries that you 

have to do run, then it reduces the amount of time that you need for doing this. So, let us 

see what it will take, the total time it will take is n times not the summation of washer 

plus dryer, but the max of washer plus dryer. So, the one that is constraining the load to 

go is washer any way gets done in 30 minutes, the dryer takes long a time, so for a every 

load... 

So, let us look at this, the very first load will take 30 minutes and once that 30 minutes is 

over, I take that and put it in the dryer. With this, this is going to take 60 minutes, but 

mean while I can get another load washed. So, I wash it now, so the maximum of these 

two tasks is going to take 60 minutes and that is what this max is. So, max of washer and 

dryer is 60 minutes, it is n into 60, so over all you will require something which is n into 

60. 

So, this is actually an approximation, technically you actually need n into 60 minutes 

plus the 30 minutes for the very first washer, when there is no drying that is happening. 

So, you still need to spend that 30 minutes, so I suggest that you go and work this out, so 

what we are doing is, at any point of time we keep one wash ready. So, there all lots of 

loads of cloth that we need to wash, at any point of time, if you want one of them ready 

for that dryer and whenever the dryer is ready, if you want to put it for wash, put the 

wash clothes for drying that is the set up that we have assumed here. This will require n 

into 60 minutes plus 30 minutes. 

So, in the steady state if I have an infinite supply of inputs, then n into 60 will be much 

greater than 30. So, saying that the total time taken, if you have a pipeline system is n 

into 60 minutes is okay. Imagine, n being 10, 20, 100 and so on, if I want to wash 100 

loads of clothes, this 30 minutes is not a big deal. The very first 30 minutes that we use, 

when the dryer is not being used is not a big deal. So, n into 60 is a good enough 

approximation, we can forget the fact that we took another 30 minutes in the beginning. 



(Refer Slide Time: 11:41) 

 

So, let us look at the so called performance measures that are relevant to pipelining. 

There are two measures that are relevant to pipelining, one is called latency and the other 

is called throughput. Latency is defined as the delay from when an input is established, 

until the output associated with that becomes valid. So, essentially for our cloth washing 

example, the latency is if I have some unwashed load of clothes, it will need at least 30 

minutes for washing and 60 minutes for drying, so it will take 90 minutes. 

So, the latency if I do it combinationally it is 90 minutes, whereas if I do it in a pipeline 

manner, let us go back to the picture ((Refer Time: 12:29)). So, if I take the load then I 

put it for wash which takes 30 minutes, but if the dryer let us say, I start wash and dry at 

the same time so, at the time step 2 I have taken the first wash and I have put it here and I 

have taken a new load and put it for wash. When I have done that, then this wash will 

actually get over in 30 minutes itself, but we are waiting for another 30 minutes, so that 

the dryer is ready. 

So, I have already spent 60 minutes in some sense, for 30 minutes for washing and 30 

minutes for waiting for the dryer and then, another 60 minutes for drying. So, which 

means the latency in the pipeline set up requires 120 minutes. So, the assumption is that 

wash is started as soon as possible and waits in the washer, until the dryer is available. If 

you are allowed to take the wet cloth out, you can actually load it with another set of 

clothes. 

So, we are assuming that the wet clothes remain in the washer itself till the dryer is 



ready. So, if you make that assumption, then the pipeline system has a latency of 120 

minutes. So, latency is from the time when you started the work, how long did it take 

you to finish the work, so that is called latency. So, the pipeline systems may add to the 

latency of the work, so instead of 90 minutes we have taken 120 minutes. 

So, a single load of clothes may take more time to wash, but what you get from a 

pipeline system is higher throughput. So, throughput is defined as the rate at which the 

inputs or outputs is processed. So, let us look at this, for the combinational set up once 

every 90 minutes you get an output. So, you wash and you dry and once every 90 

minutes you get a load. So, the combinational throughput is 1 over 90 outputs per 

minute. 

So, on a permanent basis if you ask, then I can say that 1 by 90 loads are getting done in 

every minute. So, even though it takes 90 minutes to produce the first load, it just like 

measurement, it just a rate. So, the rate at which the loads are process this 1 over 90 

outputs per minute, whereas in a pipeline system every 60 minutes you are ready to take 

the next load because... So, you will move it is from the washer to the dryer, the washer 

becomes free, we can take the next load and put it. 

You know that in the next 60 minutes, the dryer will become free, you can take the wet 

clothes, put it in the dryer, the washer again becomes free and so on. So, for every 60 

minutes I can go and put a new load of clothes in, so the throughput on the pipeline 

system is more than that of the unpipeline system or the non pipeline system. So, the 

pipeline system is able to process 1 over 60 outputs per minute. So, it is going to give... 

So, 1 over 60 is larger than 1 over 90, so the throughput of the pipeline system is better 

than the throughput of the combinational system. 



(Refer Slide Time: 15:33) 

 

So, let us get back to circuits, let us say have a circuit like this I have X which is an 

output and I have 2 inputs F and G which they go to H. So, assume that F, G and H are 

all combinational to begin with. So, what we are getting out of the circuit P of X is some 

composition H of F of X and G of X, so H is some function. So, you can think of it as F 

is some AND gate, this is some OR gate that is some XOR gate or something like that let 

us assume that all these are combinational blocks let see how this whole thing works. 

So, you provide X which is a input the system, F and G are going to take their own time 

to process X. So, F of X takes some time and in this example let us assume that this 

combinational block G is going take more time. So, you have G, H you can process only 

after F and G are both study state, so you wait for both of those. So, this is the time taken 

by H once F gets settled down and G gets settled down then you have to wait and only 

then you can process H. 

So, for combinational logic the latency that we have is the propagation delay itself, so let 

us again look at this picture here. So, once I have place X, F of X is going to get ready 

after some time and since G is taking a little more time. So, it looks like G is getting 

ready only at this time point and at this time point F and G are both ready. So, H has 

some finite time and only then you process, only then you get output. So, in terms of 

delay what we have is maximum of F and G plus H that is the time that it will take. 

So, if this is 2 units delay and if this is 3 units delay and let us say H is 5 units delay. So, 

F will place the... So, if X will get transformed it two time units will be available here G; 



however, will take three time units. So, I have to wait for the latest are the one which is 

coming late. So, F of X is coming earlier then G of X I have to wait for G of X and then 

H will take F of X and G of X and take some amount of time and process it and send it 

out as P of X. 

So, the latency in combinational logic is whatever the propagation delays and you know 

how to calculate the critical path, if I give you two blocks like this and if give you 

another block this, you know how to calculate the propagational delay, we did this in 

week 6. So, if you do not remember it go back and review the videos in week 6, we did 

this. So, the latency is the time at which X became study to the time at which P of X 

became available. So, it is the time difference between this pre from here, all the way up 

till here that is the propagation delay. 

The through put is I can once I give this inputs, I have to wait and keep the input study 

till the output becomes study which means I can only give one input every latency 

whatever the latency is. So, one by the propagational delay is latency for combinational 

circuits. We cannot get a faster answer, then the latency that is given and the number of 

inputs I can give to this whole chip is constrain. So, I can I can only process as many as 

the latency will allow me to. 

So, the question is are we using this hardware effectively or not, so let see if you want to 

do it as a pipeline circuit, we are going to use registers and keep the input stable. 

(Refer Slide Time: 19:22) 

 

So, in this example what is done is we are assuming that F takes 15 units of time and G 



takes 20 units of time, H takes 25 units of time. So, in the non pipeline version the H will 

have to wait for the one whichever is delayed F for G. So, G it is 20 a time units the G 

takes plus 25 time units that H takes. So, you have to wait for 45 time units, if I place X 

the TPD in the combinational setup is 45 time units. 

But, when you do pipelining what you do is, you place what are called registers, you put 

registers here, here and here. So, the moment you do that if I go and look at the rate at 

which the inputs can be given, if I go and look at the flop to flop delay, the flop to flop 

delay is 25 time units, because in this flop this flop is 25, this flop this flop is 25 both of 

them are 25 so, the maximum is 25 and if I assume... So, if I go and look at the input to 

flop delay that is 15 here that is 20 here, so the maximum of this is 20. 

So, the input to flop delay is 20 time units and flop to flop delay is 25 time units. 

Because, this flop to flop delay is greater than the input to flop delay, I cannot give any 

inputs any faster than the flop to flop delay itself. So, I can keep giving inputs every 25 

time units. So, if I bring in an input at time unit 0, at time unit 15 it will be available here 

at time 20 it will be available here, but to the system I am going to give 25 time units. So, 

this is equivalent to the wet clothes that are waiting in the washer itself. 

So, they wait here at the 25th time unit they get registered, because the clock pulse 

comes in. Then, when the clock pulse comes in here, it will take 25 time units to go to 

this register, meanwhile you can place the next set of inputs here which will take 50 not 

20 time units to process they will wait here till the next clock pulse comes in and takes 

these in pulse. So, what we are doing is, we are essentially when you pipeline a circuit 

we are making effective use of the hardware. 

So, when H is working on Xi, so if I give X at time unit i let me call that input as Xi, this 

the 5th input or the 7th input or the 9th input and so on. If H is working on Xi, F and G 

are actually going to work on Xi plus 1. So, if H is processing the 5th input, then F and G 

will be processing the 6th input and P of X will be the 4th inputs output and so on. So, 

when H and G are working on Xi F and G I will work on xi plus 1 this allow... 

So, if we go back to the laundry example when I am drying the third load I can wash the 

4th load and the second load is ready outside. So, that is the analogy here, so here you 

will have Xi minus 1, this is Xi, this is will be processing Xi and F and G will be 

processing Xi plus 1, you cannot give Xi plus 2 at this point of time. So, this setup is 

called 2 stage pipeline, it is called 2 stage pipeline, because there are two stages to the 



moment I place the input, it goes through two stages, one stage which is here and another 

stage which is here. So, this is called a 2 stage pipeline. 

If I go and look at the number of flip flops that X has to encounter from going from X to 

P of X through this path it requires one flip flop stage and another flip flop stage here. 

So, it is 2 stages if I come from here it takes one flip flop stage and another flip flop 

stage, this also requires 2 flip flop stages. So, this is called a 2 stage pipeline, a valid 

input at X in clock cycle j will get P of X in cycle j plus 2 I already mentioned that. 

(Refer Slide Time: 23:29) 

 

So, if you assume that all the flip flops are 0 delays, then the unpipeline latency will be 

45 time units. So, it is maximum of 15 comma 20 plus 25, so it is 45 time units. So, the 

through put is 1 by 45 a 2 stage pipeline; however, will have a latency of 50 time units, 

because even though this gets ready in 55 or 20 you wait for this extra time period to the 

clock pulse to come and register here. 

So, here you will have 25 time units of processing, here you will have 25 time units of 

processing. So, over all the latency is 50, if I give an input here it will take 50 time units 

for P of X to be ready. So, the latency has increased; however, the through put is every 

25 time units I can give a input. So, it is 1 by 25, so earlier we had 1 over 60 loads per 

minute, here I can give 1 by 25 inputs per minute or input inputs per time unit, I can give 

1 by 25 inputs per time units. 

So, the latency even though it increases the through put of a pipeline system reduces. So, 

one thing that we have assumed is, we have assume that the flip flop itself has 0 clock 



queued delay and the internal delays are 0, we assume that this 50, 20 and 25 are enough 

to satisfy the setup time constrains on these flip flop, we have assumed that the flip flop 

is essentially a 0 delay structure. 

(Refer Slide Time: 25:05) 

 

So, when you do this we can construct what is called a pipeline diagram, what you have 

in the x axis is time units or the inputs. So, this is input i, input i plus 1, input i plus 2 

input i plus 3 and so on. So, the X is the input, so that is what you to see here, so Xi is 

input given at time period i, the F register and G register can only get F of Xi and G of 

Xi at time i plus 1 and this will be placed as input to the combinational logic H. So, H 

will take at the end of time period i plus 1, H will take F of Xi and G of Xi and it will 

produce H of Xi. 

So, if you notice this pink diagonal here, this Xi is input given a time i, a time i plus 1 F 

of Xi and G of Xi will be ready and a time i plus 2 H of Xi or P of Xi is ready. However, 

at i plus 1 I can place the inputs Xi plus 1 they will get ready at i plus 2 for H to take in 

and H will produce the output at i plus 3. So, this yellow one is the second set of input 

and the violet one corresponds to the third set of inputs, you can think of this as, this is 

the unwashed clothes, this is the washer and this is the dryer. 

So, the washer and dryer example we did not have F and G there was only one washer 

there was one F and one H. Whereas, here we have F and G there are two combinational 

blocks. So, the results related to a particular input moves diagonally across the pipeline 

diagram and the process inputs progress through one pipeline stage at a time. So, from 



the external input it goes to stage 1 and then goes to stage 2, it gets out of stage 2 at time 

step 2 away and this process is this goes through one step at a time. So, this kind of 

pipeline diagram is useful to imagine what is happening in the circuit. 

So, this brings me to the end of this module, in this module what we saw is the notion of 

pipelining. So, the term pipelining is used to specify this fact that we do not have to 

waste our time, waiting for some other stage to finish the work, when the next stage is 

doing some work you take the previous stage and give it some more work and this keeps 

happening in lock step fashion, eventually what you have is the latency of a single input 

to go through the pipeline stages may increase the amount of time may increase. 

However, the number of inputs that you process per time unit improves, the through put 

improves in a pipeline system. We will see the ramifications of this latency and through 

put in the next video. So, this brings me to the end of this module. 


