Digital Circuits and Systems
Prof. Shankar Balachandran
Department of Electrical Engineering
Indian Institute of Technology, Bombay
And
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module - 42
GCD Testbench

Hi, welcome to the forty second module for the course, and this is the last module for
this week. In this module what we are going to do is, we are going to put the whole thing
in a test bench, and check that we designed earlier is correct or not. So, when you design
test bench is one of the thing that we have to do is come up with what is called a test
plan. So, remember we agreed on some kind of a protocol between the machine that we
design and the external world. Unless you do that we cannot expect the machine that we
design to work under all possible conditions. So, some of the protocols that we agreed on

are that, if the state machine still working, then we are not suppose to give more inputs.

So, this is some protocol that we have to agree on. And because if we do not agree on
that, and then we can keep giving inputs at any point of time. The other thing that we
agreed on is we will give the inputs, and then we will turn on the go signal. So, that the
inputs becomes table, we agreed on that. So, will have to come up with the test plan
which take care of all of these things. So, what | have done is, | have return down

tentative test plan for this testing this particular design. So, the test plan is like this.



(Refer Slide Time: 01:39)

I will start with resetting the chip. So, the first thing that we need to do is reset the chip,
because the chip is not reset then it is not expected to work anyway. So, once we reset
the chip, we place the inputs; once the inputs are placed, we can turn on go, which means
from the external world point of view, there is the inputs are ready.

However this does not mean that the state machine can start working. So, it is possible
that we need to wait for the state machine to finish. So, we will wait till this done signal
becomes 0 for whatever reason, if done is 1 will have to wait, wait till done equal to 0 at
this point we remove go. So, once you remove go the state machine will start runny; the
state machine, it is starts working will have to wait again till done becomes 1. So, that is
the sixth point, we will wait till done becomes 1. And once done becomes 1, the output is
ready; if the output is ready, we may have to copy it, print it, whatever at in the
simulation we will go and printed when you if you actually design a chip which needs
GCD, it will take the output and maybe copied locally and what not. And then it is ready
to go back it place the next set of inputs.

So, what we are going to do is, we are going to follow this protocol will reset the chip
place the inputs turn on the go signal, wait till the done signal becomes 0, because if it is
not 0; it means that there is something that is happening in the chip. And once that is over
we then remove go which means this is the pulls that is given to the state machine, the
pulls comes and goes the state machine will start working, and then we can do the rest of
the stuff. So, this is what we are going to do in the test bench.



(Refer Slide Time: 03:40)

@plcyaround

You have gone full screen. Bl full screen (F1)

desi

T

WOoRAFTIS T es =

34 //in2_t <= 0; mux

35 #100
A Better Investment Fonchmm 38 St <a 0; regi:
» Languages & Libraries ;; subt
v Tools & Simulators © 39 :'nl_t <= 10; com

; ” 40 n2_t <= 5; 0

lcarus Verilog 0.9.7 P #100; &
Compile & Run Options 42 ¢ 5 A
A ° // 6ep(10, 5) = 5
Wall datapath.v mux.v register.v 44 go_t <= 1; 9 .
2un Options 45 while (done_t == 1) bagin #50; end

46 go.t <= 0; e
¥/ Open EPWave after run a7 while (done_t !== 1) bé&gin #50;

end
| Download files after run a8 Sdisplay(" done = ¥b out =
Ab",done_t,out t);
» Details 49 2
» Examples -
T 62 #2000 $finish;
3 63 end

| 54 endmodule

NETEL S 2
ALDEC A .Wﬂh dumo.ved opened for outout.

THE OESIGH VIR KATION COMPANY

So, what | have done is, | have already written this test bench now.

(Refer Slide Time: 03:42)

@plawround =

. D RA F T | module Testbench; | fdata
| 2 reg clk.t, rst.t, go.t; mux
| 3 reg [7:0] inl_t;
AB«uovlnvmmomPo@mavﬁ & reg [7:0] Anzoe: regit
» Languages & Libraries g Yea triol subt
‘ wire [7:0) out_t;
~ Tools & Simulators © 7 wire done_t; !
Icarus Verilog 0.9.7 2 3
e e 0 ged_machine GeD(cTk_t, rst_t, go_t, E
Compile & Run Options inl_t, in2_t, out_t, done.t); 1
10
Wall datapath.v mux.v register.v . always W
un Options 12 begin
13 clk.t <= 0;
¢/ Open EPWave after run 14 #25;
Download files after run :g :;:T‘ g}
» Details e
v 19 initial
Exii\Ples 20 begin
2 Sdumpfile("dump.ved");
o 4 | 22 Sdumpvars;
N 0. % 23 Sdumpon; v
NBTEL ~ rpmm bl e
ALDEC . vep info: dumofile dumo.vcd opened for outout.

THE ORSIGN VURW KATION COMPNY

So, just the test bench the test ((Refer Time: 03:42)) is relatively simple to write, | have
already written the test bench. So, the test bench has clock reset and go which has
suppose to be given as inputs to the machine that I design, and it has two inputs which
has suppose to be locally generated within the test bench, there is an output that is
supposed to be coming out and this is also a done signal that is out from the GCD
machine itself. So, the GCD machine has clock reset go input 1, input 2 which are all

going in, output and done which are coming out.



(Refer Slide Time: 04:16)

@plawround =

WORAFT| .
6 wire [7:0] out.t; mux
A Better Investmont Benchmark | Wire done_t; rogis
» Languages & Libraries O gcdomachine Geo(clk.t, rst_t, go.t, subt
- inl_t, in2_t, out_t, done_t);
~ Tools & Simulators © . - i
- 1" always 0
Icarus Verilog 0.9.7 12 begin ?
Compile & Run Options :: :;‘s‘-‘ <= 0;
“Wall datapath.v mux.v register.v 18 clk.t <= 1; g
tun Options :9 '"P'zs;
¥/ Open EPWave after run 18 '
19 dnitial
Download files after run I 20 begin
21 Sdumpfile("dump.ved");
» Details 22 Sdumpvars;
23 Sdumpon;
» F.xa_nlples 24 #40000 Sdumpoff;
£ 0N 26
2% end

L1 dadad ey

vep info: dumofile dumo.ved opened for outout.

And | have return a small always block which simulates the notion of a clock. So, all this
does is it makes clock equal to 0 wait for 25 units make clock equal to 1, wait for 25
units and then repeats this over and over, which means this is a clock of with 50 time

units.

(Refer Slide Time: 04:38)

@pluwround

desis
B D RAF T tniscassi -
22 Sdumpvars; mux
A Better Investment Benchmark. = ** Sdumpon; regi:
i : 24 #40000 Sdumpoff;
» Languages & Libraries 26 subt
: 26 d
~ Tools & Simulators © 2 - g
lcarus Verilog 0.9.7 v 28 initial o
20 begin
Compile & Run Options 30 // reset A
Wall datapath.v mux.v register.v A rst.t <= 1; b
32 go_t <-p;
un Options 33 //inl_t <= 0;
Rl //in2._t <= 0;
¥ Open EPWave after run 35 #100
Download files after run I gg rst.t <= 0;
N 38
Details 3 IALr <= 20)
» Examples 40 in2_t <= 5;
i 4 #100;
&2 42
43 // 6Cp(10, 5) = §
44 go.t <= 1;
vep info: dumofile dumo.ved ovened for outout.

Then this part of the code takes care of printing way forms and what not, let see whether
the test plan is correct or not. So, we initially make reset equals to 1. So, we first go and
reset the chip, and we ensure that go to the go signal is 0. So, the go signal is 0 and then
we wait for this has 100 means wait for 100 time units.



If you go and look at the clock period, it is 50 time units. So, we are having the reset on
for two clock cycles; once the reset is gone we pull down reset. So, the resetting the chip
means, bring it to 1 and then bring it back to 0. So, that will reset the chip at this point all
the registers will have 0, and if you remember the state register also has a reset input, it
will goto 00 0, and 0 0 O is first state s 0. So, this will take it to state s 0. At this point go

to is 0 which means it will loop back in state s 0 itself.

(Refer Slide Time: 05:39)

@plawround =

B0 RAF TS T
26 end mux
A Bettor Investment Benchmark | °/ ioiagad i
» Languages & Libraries ;g bco}n subt
Y / reset
v Tools & Simulators © 31 rStot <= 1; com|
lcarus Verilog 0.9.7 . 33 ’3Ttl<: 0; o g
ni_t <= 0;
Compile & Run Options ‘ 34 //in2_t <= 0; 4
Wall datapath.v mux.v register.v ig ::got o i
un Options }; =
¥/ Open EPWave after run 39 inl.t <= 10;
40 i - 5
Download files after run 4 ;235? e I
42
» Details 43 // GeoC10, 5) = 5
» E 44 go_t <= 1;
EijPIes 45 while (done_t == 1) begin #50; end
40 go_t <= 0}
3 a7 while (done_t !== 1) begin #50;
end :
yeo_info: dumofile dumo.ved ovened for outout.  *

Then we go and place the inputs. So, this is the second part of the test plan, place the
inputs in this case | am testing the GCD of 10 and 5. So, | am giving 10 and 5, I am and |
am giving two cycles a study value. So for two cycles 10 and 5 will be placed studiedly

at the input of the data path.



(Refer Slide Time: 06:02)

@plawround —

@
. D RA F T 33 //inl_t <= 0; * data
34 //in2_t <= 0; mux
3% #100
A Botter Investment Benchmark™ =/ Fetitrenls regis
» Languages & Libraries 3‘; subt
+ Tools & Simulators © 39 ;'nl_t <= 10; com)
, 40 n2_t <= 5; on
Icarus Verilog 0.9.7 5 #100: &
Compile & Run Options :g ” (10, 5) =S
6en(10, =
Wall datapath.v mux.v register.v 44 0ot <= 1: lIg
un Options 45 while (done_t == 1) begin #50; end
46 go.t <= 0;
¥/ Open EPWave after run 47 . while (done_t !== 1) begin #50;
en ]
| Download files after run a8 Sdisplay(" %one = % out =
» Details | denetut -ty
50
» ExaTPIes P
F0) 62 #2000 $finish;
53 end
| 54 endmodule
vep info: dumofile dumo.ved ovened for outout.

Then | make go to equal to 1. So, that is the third step turn on go. The fourth step says
wait till done equal to 0. So, wait till done equal to 0 is equivalent to while done equal to
1 wait. So, if you have to wait till some condition happens, then is as good as saying
while the negation of the condition is happening wait. So, this is checking while done t
equals 1 then wait, it means we are expecting. So, if you are and state s 0. So, whatever

reason the done signal is not 1, then there is some faulty condition.

(Refer Slide Time: 06:48)

@plawround =

designsy  datapathy x mux.yv x registery x
BDORAFT|E™ o n comunons » I
+ + 48 always @(go or a_gt.b or a_lt.b -
A Better Investment Benchmark! //Verlog or a_eq.b or cstate)
i ystblenc ae begin
» Languages & Libraries w?,. 50 case(cstate)
: e I 61 50: begin
+ Tools & Simulators ©® don 52 a_sel <= 0;
lcarus Verilog 0.9.7 . et 63 b_sel <= 0;
: 54 ald <= 0;
Compile & Run Options g 66 b_1d «= 0;
Wall datapath.v mux.v register.v [ 56 done <= Of
ged 57 output_en <= 0; end
Run Options _ma 88 s1: begin a_sel <= 1;
chi 69 b_sel <= 1;
v/ Open EPWave after run ne 60 a.ld <= 1;
Download files after run ??‘I) g; z;;"g = 3'
4 k_t 63 output_en <= 0; end
Details . 04 52: begin a_sel <= 0;
» Examples rst 65 b_sel <= 0;
7 8 66 a_ld <= 0;
00 67 b_1d <= 0;
X N o 00 done «= 0;
T in « | 89 output_en <= 0; end
ALDEC vep info: dumofile dumo.ved ovened for outout.
THL OABAGN VADRP K ATION COMPANY v

So, act the s 0 state, | think we initialize done to 1, let me go check in the s O state. So, it
looks like, I am not may done equal to 1 in the start state in the s O state. So, | will make
that 1.



(Refer Slide Time: 07:04)

@pluwround —

design.sv
WORAF T| =5« s
42 muxy x
A Better Investment Benchmark. 43 // GED(10, 5) = § register.y x
- 44 0.t <= 1;
» Languages & Libraries 45 &,n, (done_t == 1) begin subtractor.y »
; #50; end 1 comparator.v
v Tools & Simulators & 46 go_t <= 0;
lcarus Verilog 0.9.7 . 47 while (done_t !== 1) begin
#50; end
Compile & Run Options a8 Sdisplay(" done = Xb out = —
Wall datapath.y mux.v register.v Ab'",done_t,out t); SV/Verlog |
49
un Options 50 Desgont
61 roll
¢ Open EPWave after run 52 #2000 $finish; "‘Ik
Download files after run 63 end (e
54 endmodule :_“
» Details ‘ go.
v a9
Exan‘\Ples b
N ae
| a_l s
ALDEC) -
THE CRSAGN VIBUP K ATION COMPY v

Save it, if | go back to the controller now, | go back to the controller. So, the controller is
going to wait when the done signal is 1, which means for whatever reason the state s

naught, if you are not there I will wait, till s naught is till we are an s naught state.

(Refer Slide Time: 07:27)

@plawround =

. design.sv
. DR A F TS 1=
ig b"}’/‘ - muxy X
rese
A Better Investment Benchmarki STt <= 1: registery x
» Languages & Libraries 2 go_t <= 0; subtractory »
33 //inlt <= 0;
~ Tools & Simulators © 34 //in2_t <= 0; SOTARIOnY

lcarus Verilog 0.9.7 L ig ::.(‘)0‘ <= 0: P
37 - '

Compile & Run Options .

Wall datapath.v mux.v register.v 30 inl_t <= 10; SV/VO'IIIO:J |
W 40 in2_t <= §; t
un Options % #100; Des%;"l
¥ Open EPWave after run 42 er

43 // 6€p(10, 5) = § (e1k

Download files after run a4 go_t <= |L; .

46 while (done_t == 1) begin ¥
» Details #50; end " r;:'

46 go_t <= 0; ag
4 ExaTPIeS a7 while (done_t |== 1) begin

A #50; end ae
48 Sdisplay(" done = %b out = q.b,

", done_t,out_t); £ all |
-

ALDEC) JE=

THE DB VAR K ATION COMPRNY

And then when we remove the go to signal. So, if we remove the go to signal, go to of 1;
at this point when go to equal to 0, the state machine starts working. So, at this point the
state machines starts working, and the state machine is suppose to a change a lot of
things, and then finally bring it to the done state at the, when it goes to the final thing
again done becomes 1. So, will have to keep waiting in the test bench till the done

becomes one. So, while done t is not equal to 1, this point we are saying that if it is not



equal to 1, then the state machine is still working. So, I will have to wait.

(Refer Slide Time: 08:04)

yPievoround =

m design.sv
- D R A F T 7 go.t <= 0; * datapathy x
3 //inl_t <= 0;

34 //in2_t <= 0; S
A Better Investment Benchmark | % #100 registery x
» Languages & Libraries §| 37 rst.t <= 0; subtractor.y >
+ Tools & Simulators © 38 ERPAIRIOF.Y
3 inl_t <= 10;
Icarus Verilog 0.9.7 v 40 in2_t <= §5;
Compile & Run Options | & #100; kpmm
Wall datapath.v mux.v register.v | 43 // GeDC10, §) = § 8VIVerilog |
e a4 go.t <= 1; t
{un Options 45 while (donet w= 1) begin Desm.'
¥ Open EPWave after run #50; end er
46 go_t <= 0; (elk
Download files after run 47 while (done_t !== 1) begin =
#50; end rst,
» Details 48 Sdisplay(" done = % out = ;:'
Ab",done_t,out_t);
» Examples . done_t,out_t) :3.7°
o 50 ae
| q.b,
62 #2000 $finish; i
3 and -, P

And when the exit this while loop, we are ready to print out the output. So, when exit the
while loop we know that done is actually equal to 1, at this point the output is correct.
So, this is the basic test bench plan. So, again let us go and look at the review the plan,
reset the chip place the inputs turn on go, wait till done becomes, because if done is not
equal to O there is something wrong, wait till done become 0; once done become 0 you
remove the go signal, FSM will actually start working. And then we wait till done equal
to 1, because at this point the state machine is working, now we have to wait for done
becoming 1. And when you come out of that output is ready, and we can print it or view
it or whatever. And what that enables has to do is another interesting thing, once output is
ready we can actually go back and place the next set of inputs. So, let me first try this, I
will run this and try.



(Refer Slide Time: 09:08)

Waves Loaded

Use Get Signals button to add more signals to the waveform view.

So, it is opening a way form.

(Refer Slide Time: 09:12)

@plawround

EPWave

Scope

l Testbench
! GCD
| c1

Let me get the appropriate signals.



(Refer Slide Time: 09:15)

2gnar Nname

a_eq. b
) a_gtb

output_en

NPTFERL

In the GCD machine I have | need clock reset, the two inputs go done and the output. So,

these are all the things that my GCD machine has... So, | select all of them.

(Refer Slide Time: 09:35)

Get Signals Radix» @ Q@ 100% “« »

A Vv 2 Testbench/Gen/go

€0k T L OO G i

|

rst |
inl[7:0]+% X'
)

@

in2(7:0)
Q0

S done
outl7:)

N&?‘T?%ven to EPWave opening in a new browser window, set that option on your user page

And let us look at it. So, clock seems to be something that is periodic, and let me
rearrange the signals, so that it will make some logical sense. So, | am going to bring the
reset to the very top, and done should go to somewhere in the bottom the two inputs. So,
this is logically sequence now. So, according to the test plan, I will initially bring reset

the chip which means I reset the chip and i. So, | put it at 1 and I bring it down to O.

So, the reset part of the test plan is correct. Once the reset is done | am going to place the



inputs. So, in this case | am placing the input a, and five. So, a is for 10, and b is for 5.
So, | can convert the radix. So, it seems to be only hex and binary. So, its leave it at x
itself. So, this is 10 and this is 5. So, we have 10 and 5, once these are ready | am making
go equal to 1. So, go becomes 1 and when go becomes 1 it checking what the done signal
is, the done signal happens to go to 0. So, also becomes 0. So, go becomes 0 at this point
the state machine is beginning to work. The state machine is doing its work for whatever
number of cycles, and it is ready to give the output at that point done becomes 1 and
when done becomes 1, you can see that the output that you are suppose to get is 5. So,
done becomes 1 and this output becomes 5. So, looks like it is ok so far. So, I am go to

try another set of inputs. So, I can actually go and place another set of inputs now.

(Refer Slide Time: 11:23)

@plawround —

®
BWOoRAFT|: wea s
| 20 begin muxy X
A Baetter Investment Benchmark 30 // reset registery x
: : " rst_t <= 1;
» Languages & Libraries 32 go_t <= 0; subtractor.y »
- 33 //inl_t <= 0; comparator.v
+ Tools & Simulators © 34 //in2_t <= 0;
Icarus Verilog 0.9.7 . 35 #100 m
38 = 0!

Compile & Run Options 3 Fatet el b
Wall datapath.v mux.v register.v 38 SVNerllog |
39 inl_t <= 10;
un Options 40 in%:g <= 5} Desgont

“ #100; roil
« Open EPWave after run a2 0"1
Download files after run 43 // 6e0(10, 5) = § Kok

44 go_t <= 1; '
» Details 45 while (done_t == 1) begin £ty
£ \ #50; end 1 226

» Examples 46

il e tb,
AN | 48 go_t <= 0; a.e
a0 while (done_t !== 1) begin "J’i
#50; end -
p— EPWave =

What I will do is, | will copy from here with the new set of inputs.



(Refer Slide Time: 11:58)

@pluwround =

BDORAFT T
50 Sdisplay(” . 3 *  datapathy x
%", done_t,out_" SVNerllog Testbench e
A Botter Investment Benchmark ' registery x
» Languages & Libraries ifz subtractor.y »
~ Tools & Simulators & 66 inlot <= 243; comparator.v
Icarus Verilog 0.9.7 . 56 in2_t <= 144;
67 #100;
Compile & Run Options 58 . "
‘Wall datapath.v mux.v register.y 32 ; ; _2“:92; 5) =5 SVerlog |
un Options L while (done_t == 1) begin Desgont
#50; end roll
« Open EPWave after run 62 "1k
63 go_t <= 0; (¢
Download files after run 64 while (done_t I== 1) begin :
#50; end rst,
» Details 65 Sdisplay(" done = %b out = go,
%b" ,done_t,out_t); ag
» Exg_nlples o ST
& o7 #2000 Sfinish; ae
‘ 68 end q.b,
69 endmodule ! a_l
ALDEC
M DRSAGN VI ICATION COMPWY

So, | am, let say | am going to put, let me put this, so 243 minus 144. So, | am going to
put some other numbers 243 and 144. So, in this case, | think it is the both are divisible
by 3. So, let see what the GCD is suppose to be then again I save it run. So, the way form

IS opening up, let us get the signals once more.

(Refer Slide Time: 12:40)

Bignal Naime
a_eqb

‘ agth

| o
atb

So, again all these signals are of interest to me, except the output enable signal.



(Refer Slide Time: 12:46)

@pl«wronnd

EPWave

To:
4,050s

GetSignals  Radixv @ @ 100% « »

EN
2
Nk

A v Testbench/Gen/go

O 7 W T W |
¢k AR A R AR RTRTRTA A

rst |
in1(7:0) k | &

in2(7:0) X‘. }1()

MPTEL
Ndik‘ T5Tevert to EPWave opening in a new browser window, set that option on your user page

So, let see what does happen. So, again | am go to reorder all of these. So, reset goes to
the very top, go goes next, done goes to the bottom and the inputs also ((Refer Time:
13:11)). So, go can go down, yeah. So, let us look at this now. So, we have the clock the
reset when to 0, then we place the two inputs a and 5, we give a go, the done signal
become 0 because it is not done at some point it becomes 1, which means at that point |
can go and read the output, the output is 5. Once that becomes 1, the my test bench is
giving the new inputs. So, these are my new inputs, this is 243 and this is 90; 90 is 144.
So, 90 in hexadecimal is 144, f 3 is 243. So, | given 243 an 90 or 144 as inputs then |
again give a go, when | give a go then the done signal again is pull down to 0 by the state
machine. It is now taking more time. So, GCD of 10 comma 5 is can actually be resolve
with only 1 subtraction, where as gcd of 243 and 144 cannot be resolve with 1
subtraction. So, 243 and 144 it takes a bunch of cycles, and then finally the done

becomes 1 at this point the output is 9.



(Refer Slide Time: 14:34)

cState[2.0]

clk

done

go
nState(2:0)
output_en

rst £

MPPEL

So in fact, if you want to do go and see the state transition itself, you can go and look at

the state registers inside the controller, the controller has two states, two state registers.

(Refer Slide Time: 14:38)

cState[2:0]
‘ clk

done

go

nState(2:0]
‘ output_en

rst

Append Splected Append All Close

We can look at the just the cState which is the current state, let me append that.



(Refer Slide Time: 14:40)

@planround

EPWave

To:

4,050

Get Signals  Radix v Q Q 100% “« » 7 9258

A v %  Testbench/Gcpn/go

ak o L)L L L L

rst 0
inl(7:0] f3f3
in2(7:0] 9090
go O
done O
= out(7:0) )2

o) 34 BHE BB B BB B BB BB ¥ b

N revert to EPWave opening in a new browser window, set that option on )%ur user page

If you look at cState, and if you expand it you will notice that they are having some nice
transitions that are display. So, let us go and look at this. So, initially we are and let we
move it to the left. So, I am | move it all the way to the left. So, it looks like initially, the
state machine is in s naught when go goes high, it goes to s 1 which is what we expected
from the state diagram, then it goes to s 2, it goes to s 3. So, we gave 10 and 5 as inputs,
from s 3, it goes to s 4, because 10 is greater than 5, that it goes to s 6. So, at this point
we have done 10 equals 10 minus 5, it again you come and check at this point 10 is equal
10 minus 5 is 5, and you are comparing you are getting GCD of 5 and 5. So, it goesto s 7
and s 7 is the final state and from there we go s naught. So, this seems to be the case for
10 and 5. So, at this point we are giving 243 and 144 as inputs. So, 243 is greater than
144. So, 243 minus 144, that is done here.

So, 243 minus 144 is 99. So, it goes to state 4, and state 6. Then we have 99 and 144. So,
if you look at 99 and 144 then again 99 is greater than the 144. So, sorry 99 is lesser than
144. So, if 99 is lesser than 144, from this state 3, it goes to 5, because 99 is less than
144. So, 144 minus 99 is 45. So, it goes to state 6, then you have you are comparing 99
with 45. So, from there on it continues 99 and 45 you compare, then you will compare
45, and so on. So, this goes on forever till the final result comes through. So, at the very

end if you notice the final result is 9. So, 99 minus 45 is 54 sorry not 44.

And if you keep repeating that eventually you will end up with 9. So, you can see the
state transitions in cState if you want. So, what we have done is in this week we have

done something very, very different from the rest of the weeks. First of all there are no



power point slides. So, you have to see the video to do this things, the other thing is | am
going to supply the verilog files to use, if you want to go back and change things and
manipulate and so on, you are ready to do it. In fact, | designed a, what is called a mealy
machine, you can go and see if it can be converted to a moore machine easily. So, my
suspicion is its actually easily convertible to a moore machine, | would suggest that you
go and try it take the verilog files and play with it, but what we have done is from a
design problem that is specified as in algorithm, | converted that to a state diagram to the
appropriate data path connected all the of them together wrote the verilog code for all of

that, and took it to a stage where it can be simulated and where the results can be seen.

So, this quite a leap from the previous set of classes, but this is interesting and important,
because this is what designers in the real world do, they have the design state machine
sometimes not just one state machine, the design multiple interacting state machines
which all take care of moving data from one place to the other at the right points of time
to get some computation done. So, what we will see in the next class is a minor variation
of the state machine and then we will go on to an interesting topic namely pipe lining and
parallelism. So, this will be the contents for ((Refer Time: 18:28)), we will see what it
means to pipe line a circuit, what it means parallelize a circuit, and what are the design

choices in doing that.

But this week is suppose to give you material on state machines and you have seen that
in elaborate detail, | suggest that you can take a problem on your own, and try and do
something like this. So, maybe | will pose something on the forum later which suggests
the problem on which you can work on a state machine. Of course, you will also have

home work problems which are all on state machine for the week 7.

So, thank you very much and | will see you in the next week bye, bye.



