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Module - 31 

State machines 3: State Minimization 

 

Welcome to module 31 of week 6. In this module, we are still going to look at State 

Machines and we are going to learn something very fundamental state machines, which 

is called State Minimization. So, before we look at state minimization, I will show you a 

design example first, which is another very interesting example and a very simple 

example to understand. I will show that, and then we will talk about state minimization. 

So, let us look at this design example. 
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So, this is called a tail light controller. So, if you drive a car and we have going to design 

a state machine, which are going to control the tail lights of a car. So, we are going to 

have a car, which has three lights on left side and three lights on the right side. We are 

going to control it to turn signals, which means, if I want to a left turn, I want to show 

that I am turning left. If I want to do a right turn, I want to show that, it is turning right or 

I may have a hazard. 

So, hazard means, there is some problem in my car, so I want to press a button inside 



that, there is some panic and anyone, who is behind me should understand that, there is 

this lights blinking, which means there is a problem in the car. So, these are controlled by 

let us say left right in hazard signals. So, from a car control point of view, when I drive, 

so if I press down the indicator, I want to indicate left, if I press up, I want to indicate a 

right, and then if I press the button, I want it to press this hazard. So, let us assumes that 

they are 3 inputs; left, right, and hazard, which are given to the circuit and I want to 

control the tail lights accordingly. So, let us see what the tail lights are, the tail lights are 

going to have some interesting thing. 
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So, there are 3 inputs left, right and hazard and I am going to have 6 outputs, L C, L B, L 

A are 3 left side indicator lights and R A, R B, R C are right side indicator lights and the 

car I have is something like this. So, this is my car here, I have three lights on the left 

side and three lights on the right side and if I press left, then what I want is… So, you see 

the thing that is happening here, I want to start from the left most bulb, then turn on this 

one, then turn on this one and come back in turn off all of them, this is what I want for 

left. 

So, for the right similarly, I want to start from here, then turn on this one, turn on this one 

and then comeback and then keep doing this over and over, let us say that is the thing 

that I want. So, this is not a typical signal that you will see in cars. So, in most cars, you 

see just one light on the left side, which keeps blinking and one light on the right side, 

which keeps blinking. But, this is a very simple example to give you, how to design a 

controller. 



And if it is a hazard signals, what I want is, all the lights should blink and go off, it 

should keep blinking as long as the hazard is on. So, as long as I keep, if I have left 

indicator on, then I want this bulb, this bulb and this bulb to glow, then all of them goes 

off. Then, again this bulb, this bulb, this bulb glows and all of them goes off and so on, 

this keeps happening for a ever, until I remove the left indicator. 

Similarly, for right indicator and if I want to indicate hazard, I press hazard equals 1, if I 

put hazard equals 1, all these lights should all blink. So, which means it should go to 1, 

go to 0, go to 1, go to 0, all together. So, let us say, this is the circuit that I want to 

design. 
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So, let us design a state machine to that. So, the ideal state, we will mark it as all 0’s. The 

ideal state is one, you are driving, there are no conditions, you are going straight, you do 

not have a problem in the car, so all the outputs are 0. So, L C, L B, L A are the three left 

indicator bulbs and R A, R B, R C are the right indicator bulbs, all of them indicate 0. 

And if all the inputs are 0, I do not have any conditions, so I will stay in the ideal state of 

the lights itself, the lights are not glowing. 

The moment I turn on the left indicator, the left indicator is turned on, names L equals 1, 

R equals 0 and H equals 0. The moment I do that, the first thing I want to do is, turn on 

the bulb called L A. Then, turn on the bulb called L B, turn on the bulb called L C and go 

back to the idle state. So, let us see this one here, I press the left indicator, the moment I 

press a left indicator, then the cycle that I want is, L 1 should glow then in the next cycle 



L 1 and L 2 should both glow, then in the next cycle both L A, L B and L C, all 3 should 

glow. 

So, I said L 1, L 2, L 3 are the state names. So, at L 1, I want L A to glow, at L 2, I want 

both L A and L B to glow and at L 3, I want L A, L B, L C all of them to glow. And I 

want this to happen as long as this hazard light is not turned on, maybe I put the left 

indicator on, but suddenly I see a problem, immediately I press the hazard, I want to be 

able to take care of that. 

As of now we are explicitly checking, whether the hazard is 0. So, if the hazard is 0, then 

I go to the next state from L 1 to L 2, if the hazard is still 0, I go to L 3, if it is 1, we have 

to do something about it. So, this is for the left indication. Similarly, I will put something 

for the right indicator. So, as long as R is 1 and the other two are 0, I will go to the right 

indicator mode, the right indicator mode I start with arrays as one first. 

Then, in the next cycle, I will make R B as 1, the next cycle I will also make R C has 1 

and I will do this as long as the hazard signals is not turned on. And the moment I 

finished one cycle, no matter what happens I come to the ideal state. So, I indicate, so R 

A turns on, R B turns on, R C turns on and all of them go to 0. So, that finishes this and if 

my right indicator is still on, then I will keep doing the same cycle over and over, till the 

right indicator is removed. So, this is for the right indicator. 

Finally, if I want the hazard, so if the hazard light is turned on, if I press the hazard 

button on my car, I want all the lights to glow and they should all go to 0. So, this gives 

you the feeling that it is blinking. So, all of them turn on, all of them turn off, all of them 

turn on, all of them turn off and this will keep happening as long as the hazard is 1, no 

matter whether I turned on the left and right indicator. 

Even, if I turn on left and right indicator my, as long as the hazard switch is pressed, I 

want this blinking action. So, this blinking action will come using the state H 1. Now, I 

have to take care of several other transitions. So, if I from L 1, I have a X X 0 transitions, 

it means, it is take care of all combinations of L and R, but H to be 0. What about the 

case, where H is 1? So, if H is 1, even from L 1, I press the left indicator, but I see a 

problem, immediately I want to go to hazard. So, that means, from L 1 you directly go to 

H 1.  

Similarly, from R 1, you directly go to H 1, the moment you see that there is a hazard 

and you will need that form L 2 also. So, the left light L A came on, then L B came on, I 



suddenly press the hazard, maybe I was turning and then I have to break, because there is 

I see somebody in the front, I press the hazard light immediately. So, in that case, you 

should immediately go to hazard and this is the overall circuit. So, the overall state 

diagram is, if from L 1 and L 2, if you see that hazard gets turned on, then you want to go 

back to the hazard itself. 

But, from L 3, if you see a hazard, you press 1, what would happen, let us say hazard 

gets turned on now. Then, any way in the next cycle, you come to idle and after that, you 

will any way go to the hazard state. So, instead of having a transaction from L 3 to H 1 

directly, we have one cycle delay to go from L 3 to H 1. So, let say that is the state 

machine and we can do, what is called state encoding. 

In state encoding, what we do is, we for each of the state, instead of symbols H 1, R 1, 

idle and so on, we give bits. So, let us see the number of states here, there are 3 states for 

the left, 3 states for the right and 2 states for this, that is overall 8 states, 8 states can be 

represented using 3 states registers or 3 flip flops in the state register. So, there are 3 flip 

flops which means, they can take eight different combinations. 

So, to the idle state, I am going to denote it as 0 0 0. So, let some Q 2, Q 1, Q naught, if it 

is all 0’s, it means we are in the idle state, then we are given different names to different 

things. So, 0 0 1 here, 0 1 1 here, 0 1 0 here, 1 0 1 here, 1 1 0 here and 1 1 1 here and for 

H 1, we have showed 1 0 0. So, for whatever reason, we have done this. 
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And this big table tells you the state register, the state table. So, the present state could be 



Q 2, Q 1, Q naught, there are 3 bits. So, there could be eight different combinations and 

for each of the combinations, you go and write, what are the conditions under which it 

should go to different states. So, this is the much more precise or concise thing, not 

precise. So, this is precise as well as concise. 

So, what we have is, for Q 2, Q 1, Q naught which is all 0’s, if L or H are all 0’s. Then, 

you want the next state to be idle, which is all 0’s and we can get that by making D 2, D 

1, D naught as 0. So, this would mean all the lights will be 0. If left indicator is turned on 

and if right is off and hazard is off, then you want to turn on L A, to turn on L A, you 

want D naught to be 1. And you will see that at this point, the outputs are all 0’s even 

now, so because it is dictated on the state. 

So, based on what state you are in, if you are in an idle state, you always have all the 

lights turned off. If you are in state L 1, you have L A turned on, if you are in state L 2, 

you have both L A and L B turned on, if you are in state L 3, all three lights are turned 

on. Similarly, R 1, R 2 and R 3 you have the output describe. So, there is the much more 

concise representation. 

Instead of looking at L R H, which is 3 bits and Q 2, Q 1, Q naught which is 3 bits. 

Ideally, it should be writing 2 power 6 or 64 lines of the truth table, the state table. 

Instead, we are using the do not care conditions and concisely saying, I do not care about 

L and R, as long as H is 1 and if I mean the idle state, I should go to H 1 state which is 

the hazard state. But, I will still be producing all 0’s as output, because when I go to the 

state hazard 1, it will take care of blinking. 

So, at idle, I am supposed to be blank, at H 1, all lights are glow. So, this is the tail light 

control. So, it is very simple example that you can very, very quickly relate to, this table 

may look big, but the description is fairly simple. So, you go back to the state diagram 

and compare it with this, you will see that, the state diagram is captured in the state table. 

So, this is obviously a lot of states, so sometimes you wonder, whether you really need 

so many states or not. So, you can go and derive the logic equations for it and design a 

circuit for it. 
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So, in this case, let us look at the logic equations D 2, D 1, D naught, there are lots of 

common things. So, of course, these are very complicated equations. So, D 2 has 6 

variables in this term, D naught has 6 variables in this term as well as in this term and so 

on. So, let us assume that these are all correct has of now, let us not worry about the 

correctness. 

One thing that is happening is, this term here is shared with this term here, these two are 

common terms, these two are common terms or these three are common terms across 

three different equations. These blue ones are common; these orange ones are common 

and so on. So, in some sense, it is not that you have to spend so many gates, there are 

terms that you can derive and use them to derive D 2, D 1 and D naught. You have a 

single circuit which does this term and share it to derive D 2, D 1, D naught. 

Similarly, we have one circuit which will do Q 2, Q 1 bar, Q naught bar, use that for both 

L A and L C and L B and so on. So, this is something you can do. So, you can share the 

gate outputs. But, sometimes you wonder, whether all these states are necessary or not. 

So, to do that, we are going to look at what is called state minimization. 
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So, if you given a state machine, you may wonder, whether you have states which are not 

necessary or there any redundant states. So, to reduce the cost of the machine, because 

you can see this is in this example, all these comes with the cost, may be all the states are 

not necessary, I do not know. So, I need to have a systematic procedure by which, I can 

take a state machine and change it to another state machine which has much simpler 

gates, probably if you have flip flop and so on. 

So, by doing that I will reduce the cost of the state machine and to do that, I need to 

eliminate, what are called redundant states? So, if two states do the same job, I can get 

rid of one of these states. So, state minimization is the removal of redundant states. So, to 

reduce the complexity of the circuit, we need to define something called equivalence 

between states. 

Two states are set to be equivalent, in a simple state machine two states are said to be 

equivalent, if for each member of the set of inputs; they give exactly the same output and 

send the circuit, either to the same state or to an equivalent state. So, this is a loaded 

definition, but we will see an example in the next slide, this will make it clear. 
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So, let us consider this state machine here. So, this state machine has 1 plus 3 plus 3, 7 

states and there are some transitions given. Maybe, this is the state machine that you 

gave to me and I want to see, if I can minimize the state machine and I can get something 

equivalent, which means all the actions that you doing here, I should be able to do that 

also, I should not miss out anything. 

So, the correctness of the state machine, whatever state machine you gave, I want to do 

the same set of actions, except that I want to see I can cut down the number of states. If I 

cut down the number of states, the number of flip flops will reduce and the complexity of 

the circuit is will also reduce, I want to see if I can do that. 
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So, let see how to do this. So, let say this is the original state table. So, the present state is 

marked as 0, 1, 2, 3, 4 up to 6. On X equal to 1, this vector here tells you to which state 

we are going to, on X equal to 0, this vector here tells which state, we are going to and 

these are the corresponding outputs. If you are given this original state table, I want to 

see if there are equivalent states. 

So, what is the definition of the equivalent state, 2 state set to be equivalent, if on the 

same input, they give you the same output and the also move to a state, which are either 

the same or their equivalent that. So, this is the loaded definition, let see the definition in 

action now. So, let us look at state 4 and state 6, I am going to say that, they are 

equivalent, why are the equivalent, I go and look at X equal to 1 and X equal to 0. So, 

from 4, I will go to state 5 and state 0 respectively, I am also doing the same thing from 

state 6. 

State 6, on input 1, I will go to 5, on input 0, I go to 0, not only that, the output that you 

are producing for X equal to 1 and X equal to 0 at state 4 are also the same that you 

produce at state 6. So, this makes states 4 and 6 equivalents. So, what I can then do is, 

these two states are doing the exact same action, I can get rid of one of them, I will get 

rid of state 6. 

And wherever I see a transactions to 6, let see the table here, from state 5 on input 0 and 

transactions into 6. But, I said 4 and 6 are equivalent, wherever I see 6, I will put a 4. So, 

I will go and make that 4. So, wherever I see is 6, I will put a 4. Now, once more I go and 

check, if there are things which are equivalent. So, now, let us look at this, it is looks like 

3 and 5 are going to state 5, on input 1, state 4, on input 0, because earlier it was going to 

4 and 6. 

But, now 4 and 6, we have establish to their equivalent, which means, they are going to 

the same state on X equal to 0, they both seem to produce 1 0 as the output. So, this 

makes state 3 and state 5 also equivalent. So, we find out the first equivalence based on 

that now 3 and 5 becomes equivalent. Otherwise, you cannot say that 3 and 5 are 

equivalent, but we now resolve that 4 and 6 are equivalent, because of that 3 and 5 

becomes equivalent and now, I can get rid of state 5 also. 

So, you can get rid of 3 or 5; in this case, I get rude of 5 and if you do that, I want to 

replace all the 5 with 3’s. So, now, I have this state’s, I can go and check, if there are any 

more equivalences. So, I see a 3, 2 here or 3, 0 here, 3, 4 here, 3, 0 here and a 1, 0 here. 



So, maybe states 4 and 2 could potentially the equivalent, but I go and look at the output, 

one is producing 0 0 as the output for 1 0 combinations and another is producing 1 0. So, 

that makes state 2 and 4 not equivalent to each other. 

So, this leaves me with 5 states, so I can now draw simpler state table this called the 

reduce state table. So, wherever I see a 5, I put a 3, wherever I see a 6, I will put a 4 and 

get rid of the rows 5 and 6. So, that gives me the state, this example I have 5 states. So, 

the 5 states means, you still use 3 flip flops, but the logic probably reduces. So, you have 

fewer states then what you had and this will to exactly the same as what this state 

machine was doing. Whatever this state machine is doing, this state machine will do 

exactly the same, we have not change the functionality of the state machine at all. 
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So, the original state diagram was this and the current state diagram is this. So, you can 

check, whether these two are equivalent By giving in some inputs. Assume a sequence 1 

0 1, 0 1 1 and what not, you run it here and you run it here, it should, so if I give you 10 

bits, sequence of 10 bits. The 10 bits will eventually take you to some state producing 

some output have all along the way. 

The same 10 bits if I give here, it should take you through the states which are all 

equivalent, it should also I have produce the same set of outputs. You go and check that 

yourself and convince yourself that, this technical is correct. 
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So, in general what happens is, if there are two power m states in a sequential machine, 

we need m flip flops. So, if have 6 states is equivalent to 2 power 3 or 8, it is closes to 8, 

we need 3 flip flops. Reduction in number of states; may or may not reduce the number 

of flip flops. In the previous example from 6 states we when to, so we had state from 0 to 

6, then we went to states from 0 to 4. So, it is still has 5 states, which means, we need 3 

flip flops. 

However, from 7 states, we had gone to 3 states or 4 states; it would have cut down 1 flip 

flop. So, there is more mechanical way of finding out the equivalents between states and 

I am going to do that using what is called a implication table. So, I will show that in a 

little while. 
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So, there is an algorithm with which you can do this, but I will show you the picture, I 

suggest that you go back and read the algorithm, if you get some were with the example, 

you go and use this algorithm and do this yourself. I will describe the algorithm directly. 
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Let say, this is the state machine that is given to you, so there are 4 plus 4, 8 states that 

are there, the states are number from A to H and there are transactions that are given. So, 

I want to go and write in implication table for it. 
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So, the way the implication table works is as follows. So, what you do in the X axis, you 

put the states. So, if have 8 states, I am going to put 7 of this states a, b, c, d, e, f, g. So, I 

can pick 7 states, I will put those 7 in some order here. And what I will do in the columns 

is, if I have A to G here, I will put B to H here. So, we know that a state is always 

equivalent to itself, we do not need that at all, we do not need check, whether is state 

equivalent it is at all. 

A state is always equivalent itself, because it will produce us same outputs, it is going to 

the same state on it is transactions and so on, you do not need that column. So, instead 

what we have is, we have several states here, except the last state and similarly except 

the first state, you put the all the states here. So, that is in the set of rows and columns. 

Let us now go and inspect these cells that are inside. So, let us go and inspect each one of 

the cells. 

So, I look at A and B. So, on the rows I will look at A, on the column, I look at B and I 

have some entry here. If I go to the state machine on A, on a 0 input go to H, B on a 0 

input, you go to F. If you want A and B to be equivalent, then on 0, it should go to either 

the same state or it is go to the equivalent state. So, if I want A and B to be equivalent, 

then H and F have to be equivalent; that is what you have here. 

Let us look at one transactions from A, if on one from A goes to G, one from B goes to E. 

If I claim that A and B are equivalent, then by the definition of equivalence G and E 

should either be the same state or they should be equivalent state. So, what we are 



putting here is that, we if I want A and B to be equivalent, these two conditions must be 

satisfied; that is what it means. 

If A has to be equivalent B, then these two conditions should be satisfied, H should be 

equivalent to be F and G should be equivalent to E. So, let us look at this cell for 

instance, if D has to be equivalent to F, then B should be equivalent to be E and D should 

be equivalent to. This statement for D to be equivalent to F, D to be F has to be 

equivalent to redundant. So, B should be equivalent to E, only then D can be equivalent 

to F. That is the meaning of this cell. 

Let us look at this cell, if A has to be equivalent to H, A has to be equivalent to H on 

input 0, that is trivial, if this is equivalent that is also equivalent directly and you want G 

to be equivalent to D. So, this is a new condition. So, you can for each of the cells, 

wherever you want to equivalences is put that. Now, go and look at the X’s, A on a 0, you 

produce 0, A on a 1, produces 1, let us go and look at C, C on a 1, produces 0 and C on 1 

produces 0. 

So, it is looks like, for A and C in the 0 transactions, if you have input 0, the output is 0, 

but when input is 1, A will produce an output of 1, C will produce an output of 0, this 

means A and C can never be equivalent. So, you put at X here. Similarly, you go and 

look at A and D. So, on 0, it produces 0, on 1, it produces 1, D on 0, it produces 1 and on 

a 1, it produces 0, which means, A and D can on be equivalent, you mark x here. 

So, you keep mark in all these X’s, wherever you know for sure that, they cannot be 

equivalent by the definition of equivalence. The equivalence definition says, there 

outputs must be the same and there next states must be equivalent. So, the output are not 

the same for A and C, A and D, A and F, A and H and so on. Now, what you have is what 

is called the implication table. 

Given the implication table, now we want to see, where are we can minimize the number 

of states. From these 8 states, can I come to a different state machine, which has lesser 

number of states. So, now, let us go and look at each one of these in turn. So, I go and 

look at A, I go and look at A comma B, then for A to be equivalent to B, H should be 

equivalent to F. 

So, let me go and check H verses F equivalence, from this table, I have already know 

that, H is not equivalent to F. So, H is not going to be equivalent to F, when A is never 

going to be equivalent to B, so I cross that. So, this is also becomes an F, X, A is not 



going to be equivalent to B. Then, let us check this, for A to B equivalent to E, H should 

be equivalent to C. 

So, let us go and check an H verse C, H was C is X. So, this is also not going to be 

possible. Let us go and look at the last one, for A to B equivalent to H, A should be 

equivalent to H itself. So, that is redundant statement, but G should be equivalent to D. I 

go and look at the column G verses D. So, we have not resolved with the G and D are 

equivalent yet. So, I will leave this now, I will go to the next column. 

The next column I look at, I am trying to see, whether E and B could be equivalent. For 

E to B equivalent to B, F should be, so let me go one step back. For E to B equivalent to 

B, F should be equivalent to C. So, let us me look at F comma C. So, F comma C is a 

cross. So, that is not true, then if I want H to B equivalent to B, then A should be 

equivalent to F, which we already know is not true. So, this is not possible also, this 

column says C is not equivalent to anything. 

So, this is not equivalent to anything, you know that from this columns C is not 

equivalent to anything and from this row also C is not equivalent to A and B there. So, C 

is not equivalent to any state at all. Let us look at this column, we want to check whether 

F is equivalent to D, if F should be equivalent to D, B should be equivalent to E. So, I go 

and look at B comma E, I have already know that B is not equivalent to E. 

So, I cross that, then if I want D and G to be equivalent, B should be equivalent B; that is 

trivially true and B should be equivalent to G and that is also, if D and G is equivalent 

then D and G is equivalent. So, this is actually seems to be correct. So, we will keep that. 

So, at this point we have established that, D and G are actually equivalent to each other, 

there is no precondition required anymore. 

Let us look at this one, H verses E, can H P equivalent to E, for H to be equivalent to E, 

A should be equivalent to C, which I know is not possible, so I will cross that. Finally, if 

I want to look at G to B equivalent F, I want E to be equivalent to B. So, I will go and 

look at B column and E row, I know that that is not true. So, this is also not true. So, 

what we have done is, we need at several preconditions to be true. 

So, that the row and column thus for every cell, the corresponding row and column, if 

they have to be equivalent to each other. Then the C A preconditions specified in the cell 

has to be satisfied, but it is not getting satisfied. Now, let us go and look at the table once 

more, B is equivalent to B and D is equivalent to G, which means, there is no 



precondition any more. B is equivalent to B is trivially true, for D and G to be 

equivalent, I want D and G to be equivalent. So, that is that is a tautology, it is always 

true. 

Now, let us comeback and look at this, for A and H to be equivalent A and H to be should 

be equivalent, it is trivial. So, by default you get that, but you also want D to be 

equivalent to G. We just establish that D is actually equivalent to G, so overall what we 

get is, A is equivalent to H and D is equivalent to G.. 
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So, now instead of now eight different states here, I can replace that with the diagram of 

6 states. So, A is equivalent to H and D is equivalent to G. So, from this state diagram, 

you can go and reduce the state diagram, this potentially reduces the number of state. So, 

in this case, it went from 8 states to 6 states, which means, it is going to remain at 3 flip 

flops. However, the combination logic for next state and the output logic, may actually 

reduce. 
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I want you to do this is an example. So, I give you this state machine, this is again having 

8 states and this on X equal to 1, you go to these on X equal to 0, you go to these. In this 

case, the output is not on X equal to 1 or X equal to 0. The output is defined based on the 

state, which means, this is Moore machine. So, on a Moore machine, what happens is, so 

the previous example was a mealy machine, this is a Moore machine. If I want to find 

out equivalence for a Moore machine, then state which produces us 0 cannot be 

equivalent state which produces 1. 

So, by looking at this, I can say that, A cannot be equivalent to C, E, F or H, B cannot be 

equivalent to C, E, F or H and so on, I can do this. So, what I want it to do is, drawn 

impeccant table, on the X axis should start from state A go to G. On the Y axis, you start 

from B go to H and you put all the crosses, were you know that the output of the states 

are actually different. 

So, A and C have different output. So, A cannot be equivalent to C, A and G are different 

outputs, A and E or different outputs, A cannot be equivalent to E and so on. And 

whenever the outputs are equivalent, then you need preconditions. If A as to be 

equivalent to B, you already know that the outputs are 0. So, output is not going to pose 

problem. 

However, for A to be equivalent to B, the preconditions must be, C should be equivalent 

to H and D should be equivalent to F, you put those preconditions and I want to go and 

solve this. So, you have 8 states, go and find out, how many states you want for this one. 



I will leave this as a home work problem and this brings me to the end of this lecture 

modules. 

So, what we did in this lecture module is, we started with the notion of a state machine 

and we want it is see we can derive another state machine, which has fewer states. The 

examples I should you still uses the same number of flip flops, but it is quite likely that, 

if you are not careful about the state machine, we end up with the very complicated 

machine with the lot of states. But, many of which are redundant, you want to go back in 

change it to state which has much simpler things. 

In fact I would like you to go and try this on the tail light state machine also and see, if 

you can reduce the states are not. So, many states, it had 3 state for the left side, 3 states 

for the right side, one for idle and one for the hazard, wherever 8 states, can you go and 

see whether the number of states can be reduced even by one. Can you go and check, 

whether it is possible. 

So, if you start with the state machine and if you cannot reduce the number of states, 

even by one state, then that is state machine is called irredundant, there is no redundancy 

this state machine. Every single state is important, every single transaction is important, 

you cannot get rid of the any of the states. So, that is the meaning for an irredundant state 

machine, but if there is redundancy, you want to remove it, so that the hardware becomes 

simpler. 

Lesser flip flop means lesser logic and what not. So, you want to reduce the number of 

flip flops, equivalently the number of gates in the input logic and in the number of gates 

in the output logic, may also reduce. So, I have given several pieces of home work, I 

suggest that you go back them look at this and solve these problems for yourself. So, 

thank you and I will see you in the next module 32. In module 32, we will look at what is 

called state assignment. So, state assignment is also important. So, for we have been 

using symbols A, B, C, and so on, I want to talk about state assignment in the next 

module. 

So, thank you and I will see you in a little while. 


