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Module - 3 

Boolean Theorems, Binary Numbers 

 

Welcome to module 3 of this course. In this module, we will learn basic Boolean 

theorems. So, from module 2, we will do a few more theorems and I will also introduce 

you to be concept of binary numbers. 
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So, let us start with DeMorgan's theorem. This is something that you must have seen 

even in set theory. And this is a very useful theorem to know and you will see it used in 

several places. So, DeMorgan's theorem basically says that, if you have n terms of the 

form let us say X 1 or X 2 or X 3, so on up to X n. And if you take the complement of 

that; so that is what you see in the topmost line here. The complement of X 1 or X 2, so 

on up to X n. It is a same as X 1 complement and X 2 complement and so on up to X n 

complement. Similarly, the dual of that is if you take AND of X 1, X 2, so on up to X n 

and if you take the complement; it is a same as the logical or of X 1 bar plus X 2 bar plus 

so on up to X n bar. So, these two… You can imagine this one; for instance, if you 

substitute plus with union and bar with complement and AND with intersection; you 



have the set theory. In set theory, you must have learnt DeMorgan's theorem. So, 

remember – you have keep to this in mind – if I have two terms of the form X and Y and 

if I have X and Y; if I take the complement of that; it is not the same as the AND of the 

complements. So, complement of the AND is not the same as AND of the complements. 

Similarly, complement of the OR is not the same as logical OR of the complements. So, 

keep this in mind, because this is a common and usual mistake that people do. So, keep 

this in mind however. 
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So, let us look at a few basic proof techniques. This will come in quite handy. So, we 

have seen Boolean algebra; we used bit of manipulations in the last module. We will see 

a few more of these things, because these things come in handy when you design circuits 

later. So, we will deal with algebra for some more time before we jump into circuits. So, 

let us start with the first one here. So, I have several such examples that follow. So, let us 

start with this – x plus y and z is x plus y and x plus z. So, this is actually the 

distributivity property. But, let us see how to prove something like this. So, in the last 

module, I showed how to the prove some of these things using truth tables explicitly. 

But, I want to be able to do this just using algebra, because truth table is laborious and 

you have to be very careful with all the 0’s and 1’s and so on. 

Let us see if we can do it with basic algebraic techniques and the rules that we know 

already. So, let us start with this x plus y and x plus z. So, I start with the right-hand side; 

you can rewrite it has x and x plus x or z or y and x or z, because you have these two 

terms and you have these two terms. In some sense, it is like expanding the expression, 



which you do in regular algebra. So, now, you have x and x plus z; you can write it as x 

and x or x and z. So, essentially, you are taking the product into the terms here. So, that 

gives you four terms here. And if you look at these three terms here; there is x, which is 

common in all of these. So, you can rewrite it as x and… So, this gives you 1; this gives 

you z; this gives you y. So, 1 or z or y. And you have y and z, which we keep as it is. So, 

we know that, 1 plus any variable or any expression for that matter is actually 1. So, in 

this case, z plus y is an expression. So, 1 or z or y is actually 1. So, we have that here. 

And finally, x and 1 is x itself. So, this is the same as what we have in the left-hand side. 

So, hence, this is correct. 

So, the key thing that we did was here – this is fairly like what we do with regular 

algebra. So, if you have sum of two variables and sum of two variables and so on; 

expanding up to here is probably straightforward. And taking a common term out for 

AND is probably also straightforward. So, the only thing is we have 1 plus z plus y, 

which simplifies to 1, because this is Boolean logic. So, 1 or z or y is 1. So, this is a 

fairly straightforward example; where, this is much more easier than all the tables than 

other things that I did earlier. Let us look at a slightly different examples to see all the 

different Boolean techniques that we need to know. 
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So, I want to be able to show x or x or y is x. So, this is actually called absorption rule – 

x or x and y is x. Let us see how to prove this. Again we start from this case the left-hand 

side. So, one usual technique is try and introduce a term; in this case, x is ANDed with 1; 



sometimes you OR it with 0. So, here we want to simplify x or x and y. So, if you 

introduce a term and 1; it does not change the value of the expression. Now, once you do 

this; then you have x, which is common to both the terms. So, you can take x out. So, 

this expression here is the same as x and 1 plus y or 1 or y. So, 1 or y we know is 1. So, x 

and 1 is x. So, in this proof, what we have used is we have introduced a constant here. 

So, we know that, x and 1 is x. So, if I give you this one; you would easily write it as x; 

but, sometimes it is useful you go and take something like x here and write it as x and 1. 

So, in this case, we can see that, it brings x as a common term between these two. 

(Refer Slide Time: 06:48) 

 

Let us see another example here; x and y plus y and z plus x complement and z is a same 

as x and y plus x and z. So, what we have is we have these two terms, which appear as it 

is on the right side. And magically, one term seems to vanish. So, this is what we are 

going to show. So, this is actually… So, this is a slightly tricky thing and this is called 

the consensus theorem by the way. So, x and y plus y and z plus x bar and z is the same 

as x and y or x bar and z. So, let us see how to start with this. So, you have this 

expression here. So, the first thing I am doing is I am taking out this term and ANDing 1 

with that. So, that is correct because 1 and any term  is the same as the term itself. So, 

here we have 1 and yz is the same as yz itself. Then, I take this 1 and use the previous 

technique. I introduce a constant; but, I am replacing the constant with the expression 

here. So, earlier I used the constant AND; I took something out in common. Here I am 

replacing 1 and I am introducing a function. So, we know that, x plus x complement is 1. 

So, I did that here. And once you have this; I can separate this term and this term. So, I 



have a product here and I have a sum x or x complement. What I am going to do is I am 

going to take this out. So, y and z and x. And similarly, y and z and x bar here. So, this 

and that gives this term here. 

And now, we have these two terms, which can group; and these terms, which we can 

group. So, there are common things here. You can see that there is x and y here; there is x 

and y here. So, 1 plus z is the expression, which comes from these two. Similarly, we see 

that, there is x bar z, which is common to this term and this term. So, we can take that 

out and we have y or 1. We know that 1 or z is 1 and y or 1 is 1. So, it simplifies to xy 

and xy or x bar and z. So, what happens is this term vanishes and you have xy or x bar 

and z. So, in this example, what we have done is we have introduced a constant here and 

we have introduced a function in terms of the constant. Usually we do the other way 

round; if I give you the expression x or x complement; I would expect you to write 1. 

But, sometimes it is useful to take 1 and expand it to a function. So, this is a bit of… This 

takes a bit of work to understand and appreciate; it is not easy to come up with 

something like this in the first go; I do not expect you to do it right from the beginning. 

So, this case, I know that, I want to get rid of yz. So, I have to do some manipulation in 

that term. So, I could have started here; I could have started here; it could be any of 

those; but, I started with the middle term, because I wanted to get rid of that term. And 

when I wanted to get rid of that; so it is a y and z.  

So, it is natural to put a 1 there and expand it in terms of something that is there on both 

the left side and right side. So, if you look at the left side, there is x; and right side, it has 

x. Left side has y; right side has z. So, the reason why I wrote x plus x complement here 

is it looks like there is some function of x which is here and some function of x which is 

here. So, there is x bar here and x here. So, I rewrote it as x plus x bar. And then the rest 

of these steps follow. So, this is not something that I expect you to do right in the 

beginning; but, it is good to know some of these tricks, so that you can employ them 

later. 
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Let us look at another proof. So, we have x and y or x and y and z or y and z. So, the 

LHS is this expression. This is another common trick that can come in very handy at 

times. So, I am going to take this term here – x and y and z and make a copy of that. 

Why can I do that? I can do that because of I know that, from the single variable 

theorems, x plus x is x; which means even if I have n copies of x all or together, is the 

same as the term x itself. So, if you take the term x and y and z; even if I make multiple 

copies of those; it is the same as one term itself. In this case, we are doing the other way 

round. We take one term and then we take multiple copies of that. In this case, two 

copies of it. And once we do that; we can see that, x and y is common to these two terms; 

and y and z is common to these two terms; and this will ((Refer Slide Time: 11:33)) 

simplify things. So, x and y and 1 or z – that is…  

So, this is 1 or z goes away; x or 1 goes away. So, it gives us x and y plus y and z; and y 

is common between these two terms; I can write it as y and x plus z. So, in this example, 

we introduced a copy of this term x and y and z and we got to y and x plus z. So, there is 

a much simpler way to do this; you go and think about that. But, I wanted to show these 

examples, so that you know this particular technique that, in Boolean algebra, it is okay 

to copy terms like this. So, if you do this in regular algebra; if I give you x plus a; you 

cannot go and write it as x plus a plus a. So, this is not true for all values of a. However, 

in Boolean algebra, if I give you x plus a; it is okay to go and write it as x plus a plus a, 

because you have a plus a is a; we know that already. 
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So, let us look at a few exercises; this is something that I want you to do later. So, I am 



not going to teach this; but, I suggest that, you go and prove this later. So, we have the 

absorption loss, the combining loss, and the DeMorgan's laws. So, I suggest that, you 

prove it either using Boolean algebraic techniques or at least using truth tables. Once you 

get comfortable with truth tables, maybe you can move to algebraic techniques; but, it 

gets easy as you go along. DeMorgan’s law of course, you can prove it with Venn 

diagrams also; but, typically, we avoid proving with diagrams when we do Boolean 

algebra, because doing it with the few variables is okay if it goes beyond a few variables 

and gets complicated to do Venn diagrams. But, I give this as an exercise to you. Go and 

do this. So, let us go back to Boolean functions. 

(Refer Slide Time: 13:25) 

 

So, we looked at this circuit yesterday; where we have a power supply and a light and we 

have two switches: x 1, x 2 in parallel and x 3, which is in series. And if I give you such 

as switch; we argued that, either x 1 or x 2 should be on; and x 3 must be on definitely 

for the light to glow. If you want to write this as an expression; so you have let us say f is 

the expression for whether light is on or off. So, f is 1 if the light is on; f is 0 if the light 

is off. If you want to be able to write expressions for these; so let us go back to what I 

said in English. Either x 1 or x 2 must be on. So, we know that, the expression – the way 

to write that is x 1 or x 2. And because of the series connection between this circuit and 

this circuit here; we need AND x 3 on. So, if x 3 is off, we know that, light cannot turn 

on. So, we have AND x 3. So, you can see the parenthesis also, so that it shows how 

things are grouped. 

So, now I am going to write it as a Boolean expression; instead of using the word OR 



and AND, I am going to use the symbols that I introduced in the previous module. So, x 

1 or x 2 is x 1 plus x 2; and AND is replaced by a dot. So, x 1 plus x 2 and x 3. So, if you 

want a circuit out of this; we know that, x 1 or x 2 – you have an OR gate; you put x 1 

and x 2 as the two inputs; the output will be x 1 or x 2. And x 3 here is ANDed with this 

term here. So, we put an AND gate and add these two terms here. So, this is supposed to 

give us the expression that we need. So, if I… We can mentally simulate it also. Let us 

say these are both 0; and let us say this is 1; which means both these switches are off and 

this is turned on. So, if I put a 0 here and a 0 here; this will be a 0 here because 0 or 0 is 

0; and 0 with a 1 here; 0 and 1 will be a 0. So, the lamp will not turn on. However, if I 

have one of them to be a 1 here; let us say I have one of them to be a 1; then the output 

of OR will be a 1. I still need x 3 to be 1, so that the light turns on. So, you can also 

mentally simulate and check – given a circuit, whether it is trying to do what you want to 

do or not. 
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So, let us look at a slightly different problem now. This is a design problem. So, this is a 

common problem if you have a stairway or a staircase and you have two switches. This 

is something that you probably having in your homes. So, you have a switch in the – let 

us say in the ground floor and you have a light that you want to turn on for the staircase; 

either you can turn it on from the ground floor or from the first floor. So, this is a two-

way switch. This is something that you probably have in your homes. So, we want to be 

able to design a circuit, which takes care of that. So, what we want to do is we have two 

switches that are there; we want that to be connected to a logic circuit in such a way that, 



if both the switches are off or on, the light is off; if one of them is on and the other one is 

off, the light is on. So, this is fairly straightforward. So, you might see this in staircases; 

you also see that in reading lamps and so on. So, sometimes you have light by the bed 

side and you want to turn on or off the tube light by the switch that you have in the bed 

side. So, this is a common thing that we have at houses. So, let us see how to think about 

this. If both the switches are off or on, the light is off; if one of them is on and one of 

them is off, the light is on. So, we want to be able to think in terms of expressions for 

these or… So, we will start with the notion of a truth table for this. So, what we have is 

we have this expression – if both the switches are off. 
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So, I am going to assume that, there are two switches x and y. And I want to be able to 

design the logic for L. Let us see how to go about writing a table for this; if both the 

switches are off or on. So, let us see all the possibilities that x and y can take 0 0, 0 1, 1 0 

and 1 1 are the four possibilities for x and y. And what we want is when both of them are 

off, the light should be off. So, that is this row. When both the switches are off, the light 

must be off. When both the switches are on, the light must be off. So, this takes care of 

the first bullet. Let us look at the second constraint; if one of them is on, the other one is 

off; that is true for both of these rows. One of them is on, the other one is off. In that 

case, I want the output to be 1 or the lamp to glow. So, this is the truth table that we 

want. Sometimes you are given a problem in… So, the real world problems are always in 

English descriptions; you want to be able to take that and move it to tables. So, that is 

what we have done now. We have a truth table for this function. So, this is the same table 



as what I did on paper. And this is the first time. Let us say I want to realize a circuit, 

which does that. So, I have a truth table; this does not give you a circuit. 
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So, I want to be able to get a circuit, which does that. So, the first thing I want to be able 

to do is I want to write a Boolean expression for this. So, let us see how to write a 

Boolean expression for something like this. 
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So, what we do is we start from the right side. So, we start… We look at the output; we 

look at all the places, where we have a 1. So, there are two rows: this row and this row 

here, which have a 1. And what we are going to do is wherever there is a 1, we go and 



looked at the left side. So, the left side is either we have 0 1 or 1 0. So, if you want to 

read it in English, lamp is on when either x is on and y is off or when x is off and y is on. 

So, let us look at the first condition – either x is on; x is on can be checked by checking 

the switch on x; and y is off; either that condition must be true or x must be off and y 

must be on. So, this term comes from this row here. So, x is on and y is off. And this 

term comes from this row here; x is off and y is on. So, now, from a truth table, we have 

an expression. And once we have an expression, we can do several things. So, the first 

thing is once I have an expression, I may want to realize a circuit out of this. So, let us go 

and try and realize the circuit out of this. 
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We have the expression x and y complement or x complement and y. I want to realize a 

circuit for this. Let us see how to realize a circuit for x and y complement first. x and y 

complement. So, if I give you y as input, I cannot use y directly; I want y complement; I 

know that, y complement can come if I have a y and if I stick an inverter there. So, this 

will be y complement. So, this is x and y complement. Similarly, if I take x, take its 

complement and AND it with y; this gives me x complement and y. So, this takes care of 

the two terms; but, we still have this logical OR in between; I can do that by putting an 

OR gate here. So, this is the circuit, which can realize the functionality that we need it. 

So, what we have is the logic network that we need. 
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Or, the circuit that we need is essentially slightly redrawn version of this. So, in the 

paper, I had two different x inputs and two different y inputs; here I am showing that, it is 

actually coming from the same inputs. So, x… This line goes as x and this comes as 

complement. And if you notice, there is a filled circle here. In electrical circuits, we use 

that to denote branches. So, you probably know that, from the basic electric circuits that, 

when you have a dot on a line, it means that you are branching. So, x is branching here 

and branching here. This line comes as x complement; this line goes as x. Similarly, for y 

here, this line goes as y; this line goes as y complement.  

So, this one is for x and y bar; this is for y and x bar; and that is l. And this is such a 

common thing that we have a symbol for it by itself. This is called the XOR gate. So, the 

XOR stands for exclusive OR – EXOR or XOR – stands for exclusive OR. Exclusive OR 

means if I have two inputs; exactly one of them must be 1, the other one must be 0. So, 

previously, we looked at OR – the logical OR, which is also called inclusive OR. So, it 

allowed the case where if both the inputs are 1, the output is 1. Whereas, in XOR, if both 

the inputs are 1, the output is 0. So, exclusive OR essentially says exclusively one of the 

inputs must be 1, which automatically means the other input is 0. So, what you want for 

this two-way staircase or this bedside lamp – bedside switch for a tube light, is 

essentially an XOR gate; it is as simple as that. 
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Let us look at another design problem – design a circuit, which realizes the following 

truth table. So, we have two inputs: x 1 and x 2; and we have one output: f of x 1 x 2. 

There are four combinations that x 1 and x 2 can take. The first thing I want you to think 

about is what is the way in which we can write this expression down. So, I have written 

the same thing on paper here. 
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So, we have four terms: 0 0, 0 1, 1 0, 1 1; there are four combinations of x 1, x 2 and I 

have f. So, just like what I said earlier, if I want to write a Boolean expression for this; 

we want to be able to look at all the 1’s here and look at the corresponding terms on the 

left side and combine them properly. So, let us start with the row here. In this row, there 



is a 1. And what is the combination of x 1 x 2 that gives a 1 there; x 1 must be off and x 2 

must be off; correct? So, that gives you 0 0 here; then let us get to this row. So, this gives 

you the case, where x 1 must be off and x 2 must be on. And finally, this row says x 1 

must be on and x 2 must be on. 

So, we have three 1’s here; these three 1’s correspond to these three terms here. So, one 

thing you have to do is we know that, either if this input is given or if this input is given 

or if this input is given, the output must be 1. So, we stick plus in between these terms. 

That is the Boolean expression that we need. So, the Boolean expression for f is x 1 bar 

and x 2 bar; or, x 1 bar and x 2 or x 1 x 2. So, eye-balling the truth table and being able to 

right Boolean expression like this is very useful.  

So, sometimes, you will be given the Boolean expression; you have to write the truth 

table; but, more often they are not coming up of the truth table is fairly easy to write and 

then there are the techniques to go and write it as Boolean expressions and do several 

things with it. So, this is a very useful skill. Start from a row, which has… So, look at all 

the rows, which have a 1; and wherever there is a 1, go and look at the corresponding left 

side and come up with a term like this, which looks at the correct conditions, which will 

make them a 1. So, if x 1 is 0 and x 2 is 0, the output must be 1. That is what this one 

captures and so on. So, this is the same thing that I used in the previous example. For 

XOR also I used the same trick. This is a slightly different example; that is all. So, to 

implement this circuit; so it is a… 
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We have the Boolean expression here and we have three terms here. We need three AND 

gates for that. And we need to be able to be combine three of these inputs using OR. So, 

instead of using a two-input OR, I have used a three-input OR gate here. A three-input 

OR gate can take three inputs and the output will be 1 even if one of the inputs is 1. So, 

even if one of these wires – if they have a 1, then the output will be a 1. The rest with 

these two inverters are just used to get these corresponding terms and so on. So, if you 

look at the circuit carefully, you will realize that, this term is capturing x 1 and x 2. So, 

that is this; then this one is capturing x 1 complement and x 2; and this one is capturing x 

1 complement and x 2 complement. And these three are logically OR together to get the 

final output. 
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So, sometimes it is useful to go and simplify this. We will take the expression that we 

had earlier. x 1 complement AND x 2 complement plus x 1 complement AND x 2 plus x 

1 x 2. So, this is the expression that we had earlier. So, now, I am going to try and 

simplify this; it looks like it is a big expression; I am going to try and see if I can 

simplify it. So, this is x 1 complement and x 2; I am going to take this term, which is in 

the middle and make two copies of it. So, I showed this earlier to you. I made two copies 

of this. And for this part, x 1 complement seems to be common; and for this part, x 2 

seems to be common. So, once you have that, then we have x 2 complement plus x 2; 

that is the same as 1; x 1 complement plus x 1 is same as 1. 

And we know x 1 complement and 1 is x 1 complement; 1 and x 2 is x 2. So, this is a 

much simpler expression than what you have here. So, the way to interpret this 



expression is… So, we want to be able to sometimes read in English and I understand 

whether what you have done is correct or not. Yes, I did start with this table here in slide 

11; I started with this table here; but, I want to be able to take this expression here and 

understand whether it is correct or not. So, what does this expression say? Either x 1 

must be false or x 2 must be true. So, that is what this one says; either x 1 must be false 

or x 2 must be true. Let us go back and check the table. Wherever there is a 1, either x 1 

must be false or x 2 must be true.  

So, if I take this row, x 1 is false. So, this is a 1. In this row also, x 1 is false. So, this is a 

1. So, this is okay. In these two rows, x 1 is false is not correct. So, x 1 is actually true in 

these two rows. However, x 2 is true only here. So, that row gets a 1 and the other row 

gets a 0. So, again, x 1 must be false; this is true for these two rows. So, automatically, 

they became a 1. x 1 is false is not correct for these two rows. In this case, we expect x 2 

to be 1 or true. And therefore, only this row gets a 1; the other row gets a 0. So, this is a 

fairly quick way to check whatever expression you have is it what you want from there. 

So, sometimes it is useful to think in English and go and justify that, the Boolean 

expressions are correct or not. 

And once you have this, it is not just a mental exercise; it actually does something to the 

circuit. So, what it did is if we take x 1 complement or x 2; now, x 1 complement 

requires one inverter and we have a logical OR here that requires one OR gate. So, it 

looks like we used one OR gate and one inverter as supposed to the complicated circuit 

that we had earlier. So, if I charge you; let us say 1 rupee for each of these gates. Then, 

you will pay me 2 rupees: one for the inverter and one for the OR gate here. Whereas, if 

you did not minimize, you have two inverters, three AND gates and one OR gate; you 

would have paid me 6 rupees for it. So, in engineering, it is always about cost. 

Sometimes its cost is directly related to money. In this case, if I go and ask you to buy 

these components from a shop, if you did not minimize, you would have spent 6 rupees 

to do this circuit. If you minimized it, you would have spent only 2 rupees on the circuit. 

So, it is good to think about whenever you want to minimize, you are actually cutting 

down the cost in some sense. In this case, it is the count of the number of gates. 
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So, I want to do a slight switch from the Boolean expressions and give a very simple 

description of what number system means, because this is useful in the later modules. So, 

let us look at a decimal number like 756. So, what do we do? We start with hundreds, 

tens and ones. We usually start from the… If I give you a bigger number, you do not start 

from the left side; if I give you 756, you can read it a seven hundred and fifty six. If I 

give you 7564, you may read it as seven thousand five sixty four; but, if I give you 10 

digits, you do not usually start from the left side. Usually start from the right side; you 

say that, right-most digit is for ones; the next digit is for tens; then it is hundreds, 

thousands ten thousands and so on.  

So, if I give you this, in the decimal system, we have the positions; and the positions 

come with certain weight; the position – the rightmost position has a weight of 10 power 

0 or 1. The position slightly to the left of it has a weight of 10 power 1 or 10; the position 

to the left of that has a weight of 10 squared or hundred and so on. So, if I actually want 

the value 756; so it is equivalent to 7 into 10 into 10 plus 5 into 10 plus 6 into 1. So, that 

is what gives me 756. So, this is a system, where we have used 10 as the base. So, the 

base is 10; which means the weights that we are using are all increasing powers of 10 – 

starting with 10 power 0, going to 10 power 1 and 10 power 2 and so on. 

If you have the decimal let us say 756.4; then when you cross the dot, it actually goes as 

10 power minus 1, 10 power minus 2 and so on down. The same thing can be done with 

so-called binary numbers. If I give you a number 1 1 1; first of all, a binary number can 

have only 0 or 1; it cannot have anything else. In this example, I have a binary number, 



which has three 1’s – 1 1 1. And I want to be able to say what this binary number is 

equivalent in decimal. If I want to do that; if I want to find out the weight of the actual 

value of the binary number 1 1 1; just like what we had here; we assign a weight of 2 

power 0 for the last bit; assign a weight for 2 power 1 here and assign a weight for 2 

power 2 here. So, the binary equivalent – the decimal equivalent of this is 2 squared into 

1 plus 2 power 1 into 1 plus 2 power 0 into 1. That is what we have here. It is a same as 4 

plus 2 plus 1, which is 7. So, 1 1 1 written in binary is the same as decimal 7. So, this is 

something that is very useful; we will need it in the next few modules and so on. 
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So, I have given a whole list of things. If you have 4… So, just like saying a four digit 

numbers and five digit numbers and so on; we say 4-bit numbers here. So, in this left 

side, we are 4-bit numbers. And this list all the combinations of these 4-bits can have. So, 

0 0 0 0 0 0 0 0 1 all the way up to 1 1 1 1. And the notation here – 2 is actually written as 

a subscript – 0 0 0 0 subscript 2; which means I want to interpret this number as a binary 

number. So, 0 0 0 0 base 2 is 0 into 2 power 3 plus 0 into 2 power 2 plus 0 into 2 power 1 

plus 0 into 2 power 0. That is the same as 0. Let us look at this row here – 1 0 1 1. This is 

1 into 2 power 3, which is 8 plus 0 into 2 squared, which is 0 plus 1 into 2 power 1, 

which is 2 plus 1 into 2 power 0, which is the same as 8 plus 2 plus 1, which is 11. So, 

we use the subscript to say that, this is in a particular base. So, for example, if I gave you 

something like this without the base; let us say I gave you 1 1 1 without the base; you 

may interpret it as number 111. Whereas, I really want to say it is the binary number 0 1 

1 1. So, that is why we have this base explicitly here. 0 1 1 1 base 2 is not the same as 1 1 



1, because 1 1 1 is decimal 111. So, you want to be able to the distinguish the source. 

Same thing here for example. If I gave you 1 1 here; if I did not give the base, usually it 

is base 10. So, this is number 11; but, the same thing if I give 1 1 base 2; that will be 1 

into 2 plus 1 into 1, which should be number 3. So, this is something that is good to keep 

in mind. 
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And if you want to go from binary to decimal, all you have to do is start with 1 and go in 

multiples of 2. That gives you the weights for… So, in this case, we have four numbers; 

you put four columns: 1, 2, 4 and 8. So, it starts with 1 and it goes in powers of 2 towards 

the left and take the number, take the bit, multiply, take the number; multiply with the bit 

and so on; and add all of that up; that gives you in this case 13. Similarly, here you have 

a 128 plus 16 plus 8 plus 4 plus 1. That seems to be 157. So, 1 0 0 0 1 1 1 0 1 is actually 

the binary representation of number 157. In a later class, we will see how to go from a 

decimal representation to a binary representation. This is something that you might have 

done in school; but, I will give you a quick refresher in a separate module. So, this brings 

me to the end of module 3. In this module, we saw some basic Boolean theorems. We 

also saw various ways of explaining or simplifying expressions by using little tricks. I 

showed you how to take a description of a problem and come up with the circuit for that. 

And finally, I showed you the number representation. So, many of these skills are useful 

later. So, what I would suggest is for you to go and review the material a few times, so 

that you know exactly how to solve some of these problems, which come up later. 

Thank you very much. 


