
Digital Circuits and Systems 

Prof. Shankar Balachandran 

Department of Electrical Engineering 

Indian Institute of Technology, Bombay 

And 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Module - 11 

Minimization of Multiple Output Functions 

 

Hi there, welcome to module elven. In this module what we are going to do is, we are 

going to learn minimization of, what is called, multiple output functions. So, far we have 

seen several kinds of circuits. So, just the last module I introduced the notion of multiple 

outputs, till then we had only single outputs. And even in the last module we looked at, 

for example, BCD incrementer. We had four values W, X, Y and Z and we came up with 

the expressions, which are individual map, that are made one at a time. We made a map 

for W, we made a map for X, and so on. So, I am going to now make a case for 

minimization of multiple output functions, where you consult all the tables together and 

see if you can minimize the hardware. 

(Refer Slide Time: 01:04) 

 

So, let us look at this example. Let us say I have two outputs. So, I have 3 input bits, that 

are coming in, namely a, b and c and let us say I have a function. So, I have two outputs 

coming from the circuit one, one output called F, which is the sigma of 0, 2, 6 and 7 and 



another input called G, which is the sigma of 1, 3, 6 and 7 and we can go and put them in 

the K-maps. So, we, we have it here. So, one on the left side is for, sigma 0, 2, 0, 2, 6 and 

7 and one of the right side is sigma of 1, 3, 6 and 7. 

Now, you want to minimize this. This is sum that you can do for F. This is a bar, c bar 

plus ab. So, this is the term, which is a, b and this term is a bar, c bar. And for G, this 

term is ab and this term is a bar c. So, we can go and implement them separately. We can 

implement them as two separate systems, one circuit for implementing F and another 

separate circuit for implementing G. If you did that then we would have needed overall 6 

AND or OR gates plus 3 inverters. 

So, for example, you would not need inverter for a bar here or c bar here. You would 

have needed another inverter for a bar here because we did not share anything. We 

designed this as two separate circuits, then you would have needed one, 1 AND gate 

here, 1 AND gate here, 1 OR gate here. Similarly, 1 AND gate here, 1 AND here, 1 OR 

gate here. We have needed 6 AND or OR gates plus 3 inverters. But from the expression 

you can see, that ab is actually common to both F and G, right. So, it is probably apparent 

you because even in the minterms we have 6 and 7, which are in the, which are common 

to F and G. So, this 6 and 7 as in in turn resulted in one term called ab, which is common 

to both, right. 

If we actually allow for sharing, then we can do something better. If you notice, that ab is 

being shared, then we can do something better. So, there is a circuit, which allows for 

sharing. So, in the top we have the function F in the bottom, we have the function G and 

you have a bar, that is given as input here and c bar given as input here. So, that is a bar, 

c bar and this is ab. So, a bar, c bar plus ab is derived as F and a bar c plus ab is derived 

as G. So, we do not have two copies of the AND gate. So, what is not shown is, that a bar 

itself can be shared using just one inverter. We do not need two inverters for the 

expression on the left hand, expression on the right we can use just one inverter. The 

inverter is not shown in this circuit. So, if you throw in the inverter also, then overall we 

would have needed 5 AND/OR gates plus 1 inverter. 

So, with sharing you would have needed 5 AND/OR gates plus, oh, so, it is 2 inverters. c 

also needs an inverter because of c bar. So, we need 2 inverters, sorry about that. So, we 

need 2 inverters plus 5 AND/OR gates. So, clearly there is a reduction in the number of 



hardware circuits that we are using. So, 1 AND or OR gate less and 1 inverter less. 

Again, remember, in terms of cost this has lesser cost and it has exactly the same 

functionality as designing it has two separate circuits. So, clearly this is useful and we 

would like to do this in a more systematic manner. So, this is a simple example. We 

would like to do this in a more systematic manner. Let us see another example. 

(Refer Slide Time: 04:43) 

 

So, in this example what we have is, I have given you the truth table and the expressions 

here. So, we have two 1s here and a loner 1 here. So, this gives us the term. So, this gives 

us the term a bar b bar and this gives us the term a b c bar. So, here we have two 

groupings of two each. So, this vertical one gives us the term b c bar and this horizontal 

one gives us the term a bar b. So, now if you go and look at these two, it is not quite 

apparent whether there is anything common at all. 

You notice here, at least in the previous one, there was a term ab, which is common to 

both here. We have a bar b bar. You do not have a bar b bar on this side. Then you have a 

b c bar. You do not have a b c bar on this side, instead we have a b c bar, right. So, it is 

not, it is not immediately clear where the sharing is coming from, right. So, if you do not 

do any sharing, you will need 7 AND OR gates plus 5 inverters. So, you will need 3 

inverters for this side, 2 inverters for this side and you will need 7 either AND OR gates. 

So, in fact, you need 2 OR gates and 5 AND gates, but you can do something slightly 

better. 



So, you notice, that we earlier had grouped these two together, right. We had grouped 

these two together resulting in a term called b c bar. So, now, if you do not group it and if 

you leave it as it is, you would have, you would have got a bar b for this term and this 

should have remained as a b c bar, right, and this is interesting. 

So, when I talked about K-map, I always said, you should go and maximize the number 

of 1s that you are grouping. And argument is, if you maximize the number of 1s that you 

are grouping, the number of literals go down and therefore, the number of AND gates 

will go down if you are doing a product, sum of products. So, if I group eight 1s together, 

then I am knocking off variables, right. So, this is something that we saw earlier. We will 

knock off variables to this group’s eight 1s together. 

However, here I am making the case for not, not doing maximal grouping. So, this one 

was not grouped, this one, instead this if you keep it as a loner, then you have a bar b bar 

plus a b c bar for this one and for, for this one you have a bar b plus a b c bar. Now, with 

sharing you can see, that first of all the inverters go down in number. So, you do not need 

a bar and c bar on both sides. So, you, you need 3 inverters, one for a, one for b one for 

c. So, you get 3 inverters and otherwise, this term requires two AND gates. So, 

remember, a b c bar, it is 2 AND gates, 1 AND gate here and 1 AND gate for this one and 

this one requires 1 AND gate, this one requires 1 AND gate. So, that is 4 AND gates plus 

2 OR gates plus 3 inverters. So, we have reduced the hardware cost by AND gate. 

(Refer Slide Time: 07:44) 

 



So, the general philosophy of doing multiple output minimization is, look at the 1s of 

each function that are not 1s of the other function. These must be covered. So, you go to 

this example, you look at 1s. For example, these two 1s here are not here and these two 

1s here are not here. So, there is possibly no sharing, that you can have with them 

anyway, right. So, this term is unique is only for F and this term is only for G. You cannot 

do anything about them, you have to have those terms anyway. So, that is the first bullet. 

Look at the 1s of each function that are not 1s of the other function. They must be 

covered and then start looking for the terms that can be shared. And when you do that, 

((Refer Time: 04:43)) so for example, you see, that these terms can be shared here and 

here. If I had not been careful I would have grouped this. However, if I see that it is been 

shared, may be just allowing for sharing it is better than cutting down the hardware only 

for G, but you will still have that number of gates for a. So, it is better to make only one 

copy of these terms here and leave it as it is. 

(Refer Slide Time: 08:53) 

 

So, a few more examples here. So, in the left side we have a function on four variables, 

a, b, c and d and on the right side you have function on four variables again on the same 

way, same into a, b, c and d, two different sets of terms. And if you notice, you have 

these 1s is red, the red colored 1s are unique. So, these three 1s appear only in F and 

these six 1s, 1, 2, 3, 4, 5, so these five of them appear only in G. They are, they are 

unique only to that their respective outputs. So, what we can do is, we can start with the 



red ones first. 

So, these are red one and these two are red, we will start grouping the red ones first. So, 

you have all these 1s and these two taken care of. Similarly, these and these taken care 

of. So, you take, you do maximal grouping if you can for the red, red ones here. All the 

red ones are now taken care of. They are, they are peculiar or unique only to those and 

after that you are still left with two of these 1s. And if you notice, these two 1s are also in 

the same position in G. So, I do not have to make a separate circuit for this term and 

separate circuit for the same term in G. I can insert, share that circuit. 

So, what we have is, in terms of an expression we have a c bar d bar, which comes from 

one of these terms and a bar b d bar, which comes from the other term, but the common 

red term is b c bar d. On the right side we have a quad here, that gives us bc. We have 

group of two, which gives us a bar b bar d bar and we have bc bar d, which is common. 

So, with sharing we actually get 7 gates and a total of 20 gate inputs. So, the number of 

inputs that come into the gates is actually 20. So, ignore this for a while. Now, you need 

only 7 gates in this. So, this is a very useful thing to have. So, without sharing you would 

had 8 different gates. So, let us just leave this for a while. You can see, that the b c bar d 

being shared is useful. 

(Refer Slide Time: 11:11) 

 

So, these are some do it yourself excises with some marking already made. So, we have 

two sets of minterms here and the 1s in red here and the 1s in red here are unique to F 



and G, but the ones in blue are actually common across F and G. I want you to go and 

think about how you will do minimization for this. 

(Refer Slide Time: 11:32) 

 

So, there is another exercise, which is on three different outputs. This is slightly more 

tricky. So, you have to now see what is common across several outputs. So, earlier we 

said, go and look at what is shared between F and G, now we have three different outputs 

and the truth table is already given, I am also going to give you the groupings. So, the 

various groupings are given to you, right. These are the groupings that are possible and I 

would like you to go and think about what you want to share across what and so on. So, 

there is some color scheme that is used here for sharing. So, I would like you to go and 

think about why that color sharing makes sense and what the, what is the impact of that 

grouping, go on and count the number of gates that you have for each one of them. 

So, in, in essence what we have done in this lecture is, we looked at the case for sharing 

terms across different outputs in what are called multiple output functions. So, 

minimization of the terms in the presence of multiple output functions is not an easy 

task. So, sometimes if you share, it is better; sometime if you share, it is actually going to 

be worse. So, you have to be careful about when to share and when not to share. In 

general, beyond a point this becomes very cumbersome for human beings to actually go 

and do, what is called, optimization. 

So, if you want to go and look at the smallest number of gates that is needed to 



implement these three input, these three four input, three output circuit, it may not be 

possible at all, right. We may not be able to get the optimal one for every single 

combination of three outputs and so on. So, instead what we actually start looking for is, 

we start looking at synthesis of circuits. Synthesis means, we want to create a gate level 

description of these truth tables, however we may or may not have the smallest number 

of gates. So, this getting the smallest number of gates is not always possible. This is 

actually hard even for single output case. But even when you have multiple outputs, this 

problem is not easily solvable. It is a hard problem to solve. Instead we go and try and 

minimize as many as possible and not necessarily look for the optimal number of gates 

or the absolutes smallest number of gates. We may not look for that number. This brings 

me to the end of module 11 of week 2 and in module 12 we are going to see, so we will 

conclude this week with module 12. 

Thank you very much. 


