
(Refer Slide Time: 00:02)

Hi everyone again welcome to this session of the LPS today probably will be the last lecture we

have covered so many things over the last several weeks started with looking at the Linux then

went into programming we started with Perl we covered TCL then we also covered Python and

today we are going to talk about new files are one of the e-utilities or the running net program

automatically, the reason why we move make else is because we want to capture the

dependencies.
And essentially like new the dependency to do certain things as well as not do certain things , so

in a serial processing of files basically if you are doing something to one side and then you are

going to doing something else and if you if there is an error occurring at one point maybe you

need to back out to some place before you can continue at the same time if you find some error

and then you have done some already like you processing steps.
You do not want to go back all the way the beginning and then do the first thing all over again

you want to capture from the middle wherever it is if it is successful from that point onwards you

one more forward and for these kind of things and make files lists are used there you can capture

the dependencies in a serial fashion basically and then you can use that to your advantage.
In terms of what needs to be done and what does not need to be so a make file is forwarding

away for a separate compilation describe dependencies, among the project plans and then that is

the make you can use the make you ability to do the comparison ,so in a typical process for

compilation.
You will have like meaning number of programs click .C and they will probably share a common

header file from the H common. H and then now so this is basically in a typical C environment

where you have multiple stuff and then basically like they are assembled ethnicity and then from

the assembler you generate the part over the executable. which essentially link it endowing can

link it and then you can convert this program so now if you want to change the C but you do not

I mean the green dot C but not the blue dot C.
You do not want to compile the blue .T again so you only want to compile the theme the green

dot C so a make file once you specify how they are dependent it looks at the timestamp and

looked at what changed and it is nothing as change then it would not touch the particular file.
(Refer Slide Time: 03:18)

So let us look at that so using the make file basically lights also in a file or make five uppercase

M definitely look at that those are kind of ones even you can do other file powerful and to run

the make it basically simply the make is the commanding and then you can tell like make – f file

name if the name of the file is not going to be fun otherwise it will just run with me fine and then

you can also say like make a target mean which is a more kind of target that you want to meet.
(Refer Slide Time: 03:59)

If the target is not included in the make file itself, so a simple make a sample made file this is

essentially like a mean or the main element in the sample the rule of the main file import folder

the rule is simply target : dependencies and then you can also like use tab or any kind of

commands to get the particular type, so it is an example so the target is what is called my in the

corporal and then the dependencies are a valve .O and main .O so the top defined these two.
Now once these dependencies are satisfied which command so here we run the D ++ which is a

compiler and then - o it is the output will be remind prog and then the inputs are eval dot o and

now we go hierarchically and describe each one of the dependencies so for example, eval .O

depends on eval .C.
And evaluate .H this is essentially you can think of this as a green. P and the image the previous

one in the eval. H is the error and then how do we get to the eval .O basically we do a C++

compiler and eval .C so this will generate the eval .O now let us look at the mean .O the main

auto again its components or the dependencies are main . C and eval. H is all alright you notice

that they are thing from both sides.
And now the command to generate the main .O is G ++ and then we say - compile -P and then

we do main. C, so we can also specify the comments using hashes that we already know it gives

so the syntax is very similar to any other feedback regular T programming feedbacks ,you can

say so basically like the - O if this executable file name –P compile no link so the - O does the

compiler thinking of V – basically.
(Refer Slide Time: 06:50)

So you can also make a file with programming constructs such as variable user variables so here

the old way we figure on the left end time that you see it until it there we specify the top-level

target and then each dependencies and then we go have a higher and define differences visit

exact same activity for the my prog but if you want to use the variable then we can define the

variable constant at the head of so for example, C is defined as V++OBJ of the object is eval .O

and main .O and then the headers are eval . H.
so now we simply contain that my frog is eval .O main .O that is the dependencies but the

command is essentially like dollar P this is D ++ and then the arguments are for the input is

basically like dollar of PS which is these two inputs and then we also now go and do the same

thing again for eval.O all this is the subsequent targets and then the main .O and then here we

define the key like the one more additional one which is the dollar obj s it is target basically or if

dependent P is located.
Which is the eval. H and essentially like I mean so only making on develop eval. H present then

it starts working on working there so this is convenient mainly because now if you want to

replace the D ++ compiler it a CT compare go take a compiler then all you want to do is this

change that thing and in fact you do not even have to change it inside of a file, but just define it

like make t = cc and then automatically like everything is fitted with CP and though they take

presents over the variables defined inside of client dynamic so finally simple enough.
(Refer Slide Time: 09:10)

And now there are some implicit rule essentially the implicit rules are standard for making one

type of file from another type there are numerous rules for making .O file from a. B file from a

dot T file a etc.. And make usually applied the very first rule that means if you have not defined

the rule for a given object file make will apply an implicit over for example our make file please

specify basically like eval. O main .O and then we say like them taller see and so Prog the

objects and then ball of this dollar fit is so here we omitted the eval .O and main. O target.
So it applied the implication and then basically creates its equivalent of creating this rule where it

is eval .O depends on eval .C and then this is comparative eval .C and main. O compare eval. C.
So this is the way that the make understand this small Meet which indicate it is okay but make

sure that if some something that if you are not explicit about it make file will assume and then

start reporting this way.
(Refer Slide Time: 10:39)

Now let us look at another way basically visible using the percentage, percentage .O is

percentage. C and then this is a very way of representing a rule and essentially like. I mean again

here this is it that replaces all these things with the profit stuff and then course if it works its way

to do the me ,so here you can see that once you specify that and then now basically they give the

same thing but at the same time if you do an empty command then it would not apply the

implicit rule.
So it is as good as specifying a rule and then specifying and empty command so just take care if

you do not want any rule to be applied then you can specify that an empty commands and that

really the implicit rules will not get applied , so that is one way to empty command.
(Refer Slide Time: 11:57)

So now there are some variable you calling in the previous one to use the dollar less than so

those are what is called the automatic variables the automatic variables are used to refer to the

specific part of the rule components , so we know that basically like target dependencies at the

general structure of the room and then followed by tab and then the commands those are them

would not be a shell command.
So here you can pay basically like eval .O eval .C and eval .H and then V++ is the command and

then basically eval. C is the angular so the dollar at will determine the name of the target of the

rule in this case it is eval. O and then the dollar left an actually specifies being first dependency

this one it is eval. C so now you should go back and E with B when we specify like dollar less

than having the person dependency which is the percentage .C now dollar target is name of all

the dependencies.
That is in this eval. C and eval. H and then the dollar question mark names of all the

dependencies that are where than the target so in this case actually like I mean the nothing in this

one so basically like there is nothing that it is defined for the dollar question.
(Refer Slide Time: 13:51)

Now let us look at some of the make options -F specifies the finding which is if the make file fill

the name is not just a make file so if you certify this the make file then give or need to specify

the null back there otherwise you need to specify -N and then - T is essentially using the

command called touch to mark the targets as up to date and then the - Q is also known expected

basically it looks for whether the target are up today and if it is true then it exists to the 0 and -N

is just the print the command to execute.

But do not really do so if you do like a arm - N that make - N of your main file which is maybe

like this it will only like print all the various commands will give it - t is like G+ class and so

prog then it also kept a deeper / - eval.C and then the D++ - C main .C and it is link so one

teenage like I mean so this is one way to actually just spit out whether your dependencies are

correct this do a -N and then one thing to notice this with that –P-Q-N cannot be used together so

the only one of them should and then - S is silent mode that is it runs basically without echoing

what is secure on and then - K is keep going waiting meaning comparing all the prerequisites

even is it is not able to link them .
(Refer Slide Time: 15:58)

Now in order to make a flow work you need to also specify some phony targets the phony targets

are targets that have no dependable they are used only as name for commands that you want it

skip so there are no dependencies with so you are because basically kind of pillar for example,

there is one target called clean which is set to remove all the files ,so you can also specify a long

time with it is got phony is steamed and then pain is you can specify that clearly as the pain is

any target and then to invoke this you can get pay make in and then it will turn that so one thing

to notice like.
(Refer Slide Time: 17:01)

I mean I mentioned here once you have this is your make file you can only run subsections of

movement for example you can stay like make give eval .O and then it will only run this

command the eval .C eval. H and then D ++ actually only the one starting from the eval .O and

then goes down for example, it know the targets basically the dependencies are eval.C and

eval .H and then it will run the D + + - t eval .C eval .H if this looks for the File with a disc event

then it comes this command but then it goes to the next main .O that mark is not a dependency so

oil dependency for eval .O .
So it will stop there same thing you can run just main.O and then it will run this third thing and

then it will stop only if you specify the target as my prog then it will run everything that - only if

there is any change in the eval .O and main .O then it will start running it will evaluate the

dependency the dependencies are okay, basic phony targets.
So here similarly like I mean if you want this to move the target team with the same 18 and then

it picked a removes all the time and then the typical Phony targets basically without like to make

all the top-level targets so we call it like phony all and then always all the targets basically are

there so if you do a make all it runs with a everything been whether everything okay, and then

the other Phony target is the screen which deletes all the files, which are normally created by

make and then print with this printing between the listing of the source files that have changed.
(Refer Slide Time: 19:09)

But now another thing is basically VPATH variables because a variable that defines directory is

to be searched if a file is not found in the current directory and here you can specify a number of

benefits separated by columns ,so for example here VPATH equal to the colander : therefore all

basically the first one it is taken as a source and the second one is actually the fact to that

particular directory, so you can say back your colander this is one of them and then you can tell

like Colin the to another one.
So similarly separated one separated many as not and then if you want to specify like a directive

like the lower case VPATH that is the Selective directory search then you specify a pattern and

then what the directory is for example, with your VPATH person based on H and then that is in

headers now similar to be part there is always GPATH if you want the targets to be thrilled with

pain directly as their dependency. You specify the default.
(Refer Slide Time: 20:46)

Now there is also some variable modifying it somewhere eventually the objects essentially this is

the eval .O main.O and then we do a compile and then you know that the dollar target represents

all the targets so that evil .O main .O now the sources actually is essentially the payment of this

only thing you will be persecute the .O with. C that is what the syntax means, so when we

specify that here we can just pay forces if eval .H basically where those are the source the targets

second C eval.H.
(Refer Slide Time: 22:17)

And we can also use conditionals to change the way that the make file target get executed , so we

can specify specific things basically and then the possible conditionals are if EQ if any Q is def

idndef and all of them should be closed within endif and then the conflict one can be either new

to that Elif or else so here is one example, so here we can specify basically like before it is a

GCC or something else some other compaction and for GCC.
We can refer the library that - LGNA but the normal libraries are dependable so now if you say

basically like the if dollar PP GCC that is dollar series DC then like this dollar life GCC tell its

life is equal to dollar normal it and end it so noting that actually there are no tabs at the beginning

these are basically this assignment.
So it automatically like I mean now when you specify the particular target and the dependency

and then the actual command based on what get executed each automatically we created this one,

so that is pretty much what I have on my files if you have any other cards to share please do so

with your TA and thank a lot okay.

