
Hi everyone welcome to the LPS session , in this lecture we are going to continue to look at

Python, just as a recap ,we covered the many things with Python ,as you may recall ,we started

with the basic data structures ,we went through some of the control structures, we started talking

about some of the advanced data structures like those lists and then , we went into the dictionary

essentially , which is the associated ,associative arrays.
 Then in the last lecture, we covered new items like λ , it is like a function generator and then we

went over ,some of the default functions that are provided with as a part of Python, so I hope like

coming,  all  those  things  are  clear  ,today  we  will  ,  start  with  the  actually  ,another  section,

basically one more, this is I am going to talk about the exception handling.
(Refer Slide Time: 01:57)

 So this is like, when you have some exceptions and waited, inside code or how does the program

handle it, how do we handle it, think like that ,that is what we talked about .
(Refer Slide Time: 02:07)



So the exception in general is recognized ,type of error and handling is what you do, when that

error happens , so the general syntax of exception handling is this, call called try, very similar to

a function, but this is not a function, it is a predefined function and then basically ,what we say is

,we say try the code ,you want to run ,except order the exception ,so exception 1 and then it is

exception 1, so for that what is the block of the code.
Then we do exception 2 and then we would do and all the way up ,to the last exception n and

then  we specify  that  as  variable  1,  so  essentially  like  and this  is  the  general  syntax  of  the

exception handling, so now, what this means is this code, means is that is an error , occurs and if

it is of exception type 1 ,which is here , then we set the variable 1, it becomes an alias to the

exception object .
So  that  is  specified  here  and  then  this  block  of  code  ,starts  executing,  exception  1  block

executes ,otherwise Python tries the exception types 2, all the way up to n ,until the exception is

caught, or else the program stops ,with an unhandled exception ,the hash variable is an optional

one and this will not work, with the order form ,this is like 3 and above .
(Refer Slide Time: 04:12)



 So let us look at a quick example, so value error ,this should be py, so here we say, try i =int

(snakes) and then print the integer is something, except value errors ,here we omitted that as

variable , print oops invalid value.
(Refer Slide Time: 05:11)

 Now ,there can be other exceptions ,one of the exception ,is this end of file exception , end of

file error, is raised at the end of the file, the index error ,happens if we use an invalid index or a

string or a collection ,example if we try to get arg v1, there is only one command line argument,

which is basically like arg v 0 ,then it generates an index error, another one is called type error,

which is if you are trying to compare two different types ,incomparable types like string versus

float or something ,again that is the type error.



So essentially like I mean, in general like a value error ,end of file error and then an index error

and then the type error, so these are the general exceptions ,so that you want to keep in mind . 
(Refer Slide Time: 07:06)

Now let us look at ,some of the Python modules ,so in this section ,we are going to talk about,

the basic of modules , import and from ,import statements and then how do we change data

inside the module, we will also talk about reloading the modules, then we will talk about the

module packages, then name and the main, then finally how do we import as statements, so now

let us look at the Python modules .
 So a couple of more things ,regarding ,before we go into the modules, I want to also highlight

some of the other things, about exceptions ,so we talked about some of the things basically, so

the other ones ,essentially you can also have standard error, which is basically, which can be like

in any ,all the built-in exceptions except, the stop iteration generator ,exit  keyboard interrupt

,things like then our system exit.
 They are all the standard the error and then we all can also get an arithmetic error, which is the

essentially  like I mean ,various types of arithmetic  operations,  which can be generated from

arithmetic operations like overflow error ,0 division error or floating point level and then there is

also  buffer  error  ,which  is  essentially  like  I  mean  the  buffer  related  operations  cannot  be

performed, you can get a buffer error.
And then there is also look up error ,which is the index error ,is one of them ,since it or even the

key error is also the other one, is only classified, under look up error and then the things like IO

error ,even this end of file error, these are all under the environment error, which is concerning

with outside Python system, so IO error ,OS error and also be with them environmentally and



there  are  some assertion  errors,  basically  when  an  assert  statement,  attribute  errors  then  an

attribute reference or attribute assignment page.
 We also have talked about the floating point error, basically when the floating point operation

fails and then there is the generator exit, so all these things comes under the exception class of

the Python ,so they are basically like, it is a base class, that is for all the exceptions , so now let

us look at the modules ,Python modules .
(Refer Slide Time: 11:32)

So what is the module first of all ,each file in a in Python is considered a module ,so this module

actually like it , we say it in Perl as well, but we did not see in Tcl ,we did not see that much, but

in Perl ,we saw the modules essentially, so everything within the file is encapsulated within the

namespace ,which is basically the name of the file okay ,so to access code in another module

,another  file  ,  we need to  import  that  file  and then access  the functions  of  the  data  of  that

module .
We can do it, by prefixing the name of the module, followed by a period, but to import a module,

we just use the function called input and with the argument as sys ,so one thing you will notice

basically ,if there is no suffix for this particular module, we can also input user-defined module

or some standard modules like sys and random .
So in this case like this is like a standard module, but you can also like to import user defined

modules, any Python program needs one top-level file, which imports any other needed modules,

so the way it is organized as top-level file ,which inputs other files.
(Refer Slide Time: 13:18)



So in the Python standard library, there are over 200 modules and so essentially, like I mean you

can go to python.org and then you can, consider the consult the Python library reference manual

and for all these different modules in the standard library .
(Refer Slide Time: 14:02)

 So now ,what does the import do essentially ,so the import statement does, three things, it finds

the file for the given module, it compiles into a byte code and runs the module code to build any

objects, basically the top-level code and then variable initialization, the model name is only a

simple name, Python also uses a module search ,path to find it ,it will search the directory of the

top level module or the top-level file ,directories inside the environmental variable, called the

Python path .



And then the standard directories and then finally the directories lists, listed in any of the path

files, that is in your directory and then, here it is basically like one directory per line in a plain

text file , essentially that is how, one specifies path file , the path can be listed ,by printing sys.

path, so if you say sys.path, it will list the path.
(Refer Slide Time: 15:28)

So here is an example, for printing the command-line arguments and argv.pl ,so here we import

the sys and then the command options, are not arg v and then basically like for the initialize the

variable I and then for command in ,command options essentially which is all the forms, we just

print the argument I and then the command and it basically prints ,once we specify this and then

print arg v.pl and then test 1 and test2 .
(Refer Slide Time:16:18)



Now there is  another  module  called  random ,so random also can be imported  ,so we go to

random and then we say basically random. rand int between 1 and 100, so this is essentially if it

is a random number generator between 1 & 0, I mean sorry 1 and100 and then we can print that

and then you can also like specify ,a random got choice and then you, can pass a list and then we

can make it to print, the dinner and then it randomly picks one .
 So here we notice basically, like this random function and we also say like rand int, to make sure

that this output of this ,one and here we just specify choice and then basically like some strings

and then essentially like gets printed on.
(Refer Slide Time: 17:31)

So now let us look at , , the difference between import and from , from import basically, so from

this whole thing ,so when we say import, import brings in a whole new module essentially the

whole module ,essentially and we need to qualify the names by modeling, so that is using this

sys.arg v , but import from copies the names, from the module into the current module, so no

need to qualify that ,we do not need to actually qualify with this additional names.
So it is actually brought into the current model itself so and notice that actually these are fully

copies basically  not links so essentially you can change and basically  like it is not going to

overwrite anything changes to the original ones, so you have a your own copy and then your

copy will be different from the one inside the module itself so here an example, from module X

the input junk and then we directly call junk we do not call as Model X or junk anymore. 
So now when we specify this command the junk actually now gets transferred and then this way

it  is copied and kept it  as part of your module and not part of the X and then you can say



basically later from module X import star that gets all the top-level mod names from modeling

X.
(Refer Slide Time: 20:07) 

Now the change, changing the data inside model for something so you want to reassign a new

value to fix name from module from a module which does not change the module with changing

the mutable variables from the module, so essentially like I mean a module X import X Y then

you say x = 30 it does not change X in the module x so this is something that we talked about

earlier but if you put Y 0 =1 that actually changes Y0 in Model X, because now it has no bearing

of this zero inside this particular you are your own module and it needs to go back to the Model

X .
To find out what is y 0 and then change that so this is similar to like module exactly like the

functions so to actually change a global name in another file we could use import without the

from and qualified available, but again this breaks the data encapsulation because now we say

like Model X . X 30 and then any kind of object encapsulation that the module provides is

compelling. 
(Refer Slide Time: 21:43) 



Now how do we reload modules the model produced top-level code is only run the first time

when the model gets imported subsequent imports do nothing basically, so the reload function

force the cel-3 load and rerun of that module ,so you can use if there is a module changes while

the Python program is run so essentially like I mean if you change the variable and basically you

have to be import the module then at the point you can use very low and reload is passed an

existing model object for example reload Model X and then the Model X must be must have

been previously imported. 
So it would not you cannot do an import with a reload comment and then the reload changes

module object in place basically like whatever that was imported it changes that essentially and it

does not affect prior from import statement, so once they are copied into your own particular

module those will not change even with real only the import the regular important they did only

one that will change and they still point to the old objects. If you do another from import of

course that will change basic app.
(Refer Slide Time: 23:18) 



So now let us talk about the module packages so when using the input we can give the directory

path instead of a simple , so the directory of Python code is known as the package so for example

here input dir1,dir 2 module so are we can also say like from exactly 1 dot directed to module

input X so essentially what that means is basically look for the file / 31 / directory to and then

modify and one thing is directory one must be within one of the directories in the Python .
So the Python path is now important similar to what fine regular import models and the other

thing is also like that we won and directly to they should be simple names not the platform

specific syntax there is P: /.
(Refer Slide Time: 24:29) 

Now underscore in it underscore, underscore. PY these are some of the package files so when we

use the Python packages basically the directory that syntax for the imports each directory in the



back needs to have this underscore, underscore in it under former school not PY file this files

could be this black basically I mean if it is it is nothing basically or if it is not blank the file

contains the Python code the first time python imports through the directory it will run the code

in the underscore ,underscore in a thunderstorm of the score but Python. 
So in the directory one directly to model example the namespace dir 1 ,dir 2 now exists which

contains all the names assigned by the Directorate to underscore ,underscore in it understands the

Python the file can contain and underscore,  underscore all  underscore ,underscore list  which

specifies what it exported by default when the directory is imported bit the form statement.
(Refer Slide Time: 26:01) 

So  now  this  actually  gives  us  another  concept  of  data  encapsulation  so  by  default  names

beginning with an underscore will not be copied in an import statement they can still be changed

if access directly so that is no issues alternatively one can still want a list the names to be pipe on

import by assigning them to a list called underscore, underscore all underscore number four so

for example here we decided on the phone will call on underscore school and this list x1 y1 + V

1 and 2 mean that basically import only these this list is read-only only like we need to put this

these basic x 1 y 1 0. 
And this list is the read-only and when it is using the from star syntax that is the one becoming

both import from syntax that we saw so this is this list is read-only then you use this from stuff

so that when you use the import from and then start it only imports this even though if they have

variable.
(Refer Slide Time: 27:32)



So now the same thing basically like on the four name on the score and underscored me in on

this forum so whenever file is run as a top-load program its underscore name underscore is set to

underscore main underscore then it starts , so this is how so this is the concept which is very

similar in C language in C always the execution starts with this function called name and it only

execute that and then any other functions are underneath that similarly in Python basically the

underscore and underscore name. 
And the score is set to main when it starts so that it runs that as the starting point but if the file is

important the underscore name underscore is set to the name of the module as the importer says

it and can use this to package a module as a library but allow it to run as a standalone off by

checking if the name the underscore name on the score is the same as underscore name on the

scope and do whatever basically that will run in the standalone .
(Refer Slide Time: 29:00) 



So now the next one is this input ass we can rename a module by using import long model name

as short model that the short name is just an alias for the wording model we saw this thing in the

very first slide when we with the example for importing we said the import or actually like in the

exception handling so try and then we say basically exception as variable one so there that long

name is assigned to the shortening essentially visiting the alias so the same thing is applicable

even to the import statement so import non-model name as shortening and then the short name is

the alias forward. 
So when we start using this interacts with it mean like and we do not have to specific moment

you can also use the same as syntax or the from this is so from module import long name as the

shot that is another thing that we can do yeah basically here X module .
(Refer Slide Time: 30:28) 



And we saw this thing basically would not go below the reload may not affect from imports

Ascension so when we do from copy so basically names the and does not retain the link back

those involved so that is why we do a reload you would not get the new one for those modules

that are imported as front so when the reload is run it changes the module but not any copies that

were made on the original from the module input from modeling products statement if this is this

becomes a problem. 
Then you need to import my entire module and then just use the name qualification just module.

XXX xxxx form this that kind of name instead of this from statement.
(Refer Slide Time: 31:44) 

So now we come to the final phone section here we are going to just talk about some basic sign

operations you so quick commands how do we open a file the command is open and then we

specify the filename over more and whether the file name is just the Python string the mode is

also a string basically and then it is string are for reading the W for writing and a for a file so the

basic operation basically out file open out dad with right option in file open input dot there and

then with the read option simple stuff we saw this kind of thing both in TCL and Perl quality.
(Refer Slide Time: 32:41) 



And then some of the basic operations so once we open the file we specify input read and then

that reads the whole file into a strength this also we saw like in the previous examples and then

we can also read by number of bytes essentially like so that is again read N the N specifies the

number of bytes so it reads ,so many bytes from the file and get sit and read line is to read the

next  line and we can also specify read lines to read the files into a list  of strings and then

similarly for writing some output basically use the output dot right and then we specify the string

a and then the string a is written into the form. 
And then we can say like right lines A to write a list of strings into the E and then we use the

clothes function or close closer file.
(Refer Slide Time: 33:36) 



Now how do we redirect the standard out so the print statement normally go to the Standard out

mount the standard output is basically the screen and then we can actually redirect the STD out

into a file so here we basically the input versus module and then we specify standard out is this

particular file called output or text and they open it with the right option now when we specify

the printer message it will not show up in your screen. 
But it directly goes into this output on text alternatively we can also print something basically to

a file using the print double arrow and then we specify the file and then the movies and then for

this the only condition blockers.
(Refer Slide Time: 34:58) 

So here are some examples of file passing this by passing like. I mean we saw some Perl lot of

times so here how do we do it in Python they specify the in file base again what is the in file with

what kind of option and then we start reading the lines this is so the lines contain and list of the

strengths of all go the lines in the 10 in this file and then we can get there after we read it we can

disclose it now to print the line essentially like we use the for statement and then we print line

that prints one line at the time. 
And then there is also like a shortcut syntax to avoid the read line calls this is a line the line so

we open the file and then we can play like the maybe so here once we specify the line by line

essentially like in just read the lines or one by one. So here we can directly be with so in file and

then print the slides.
So just  to recap today we saw three major  things basically  the first one is  on the exception

handling how do we handle exceptions and we cover many different types of exception and in

general the syntax try and catch essentially the try syntax or the exception handling then we also



cover the various modules module commands, the basics of module how to import modules how

to use the from import comments then we also talked about the various types of modules like this

is module axis module and random module. 
And then we went through like how do we reload modules what are the effects basically and then

all  we  depend  packages  and  then  the  what  are  the  same  rules  that  govern  the  package

specification and then how do we actually change what getting booted and what gets run and

then we went through the file operations basically ,how do we open the file or we close the file

how do we open it as read-only with us right. 
And then how do we actually do operation system or we read from a file and how do we write

out into a file and then also like how do we redirect some of the standard outs files and then we

also went through the file parsing essentially so that is pretty much it for today we will pick up

the stuff from this point in the next class thank you very much. 
 


