
(Refer Slide Time: 00:00)

(Refer Slide Time: 00:06)

Okay so I planned is not it yeah and then everyone again welcome to the LPS lecture, we

actually we went through several concepts on Python last time around, the important ones are

first of all the kind of talked about the triples list as data structure and then how we can operate

on them, that was the main focus from last time I think you guys remember that, today we will

be continuing with that actually the on python programming essentially, so python programming

itself we covered a lot of things so far.
So as you know we talked about the control flow then, the data flow itself with starting with

various data structures with string or integer types, the floating point types things like that then in

the last lecture the power ball the two other new types like the triples and more the lists and the

kind of we went through how to operate on them, or the index then things like that so I think

right now we have a good understanding of how the Python programming actually works, so that

we can take the next step of going to some of the advanced concepts.
(Refer Slide Time: 01:51)

so yeah we also talked about the collections and basically like what collections mean, which is

another data structure that we talked about, when we talk and we discussed TCL essentially in

collections as a data structure work synopsis supports that we talked about, so similar collections

are available in Python we talked about them so today what we are going to go through is

basically some of the advanced functions, essentially we are going to talk about how to pass lists

and keyword dictionaries two functions.
Then we also will talk about something called the lambda function it is a clear it is a function

generator so we will talk about that, then we will talk about some of the functions like apply,

map, filter, reduce and we also will go through some more understanding of the list like my list

comprehensions, so let us begin todays lecture.
(Refer Slide Time: 02:51)

So how do we pass lists as arguments, so the list can be passed in cases where there may be a

variable number of arguments, so this is something that we saw in TCL as well or like the specify

this specific special parameter in the as a function and then can pass the arguments, so here the

list are got py here we are defining this function has some the functions name is come and, then

we say basic the arguments are we denote it like this basically and say like the result is 0 or arg

in args result + R and then the return results.
So here since the star ours is a itself is a pointer we can actually then parse a list into this, so now

like if you say like print sum of 1, 2, 3 the answer is 6 so notice in tax of how do we pass the

argument.
(Refer Slide Time: 04:08)

So then now the keyword arguments essentially ligament so the caller of a function can play the

arguments in the correct order, so that is the positional arguments, so that is this is something that

we saw even in a TCL as the positional versus the non position stuff, so some sometimes we can

actually change the order by assigning keywords ,so how do we pass that, so for example so here

like I mean in this one with example it is a function with arguments in the wrong order.
But the arguments are passed with the keyword syntax so that it does not help so how do we do

that so in TCL we saw some newer construction to handle this form of an issue we talked about

that here, let us see basically like oh um print hello basically again and then we have the first

name equals, and then the last name equals, and then we can say like okay pass the hello Prince

the first name last name, and then those are the two names that are passed into the function, now

if you want to so standard one is basically like I mean you can just write it like I mean what is.
So if you just say hello Sam or David Sherrill and channel then it will print exactly the same, but

if you want to actually interchange the arguments you can just say that last name equal to Sherrill

and personal David as a hard assignment with this function names, then it will actually print

appropriately, so even though here the order is interchanged basically the last name and first this

is first, and then this is second, but it prints correctly which is the first name and second.
So this is one way to pass the keyword arguments essentially so on when we have like specific

like when we change the order then this may be useful.
(Refer Slide Time: 06:38)

So what happens if you are missing key words and the positional arguments, so this is also like

something that we saw how do we pass, when we talked about TCL what is some arguments are

missing and we would not pass it appropriately, there we use the use of the TCL understanding of

what strict substitution strings be curly braces and the coats, and then we made use of it to pass

these kind of patterns, so here how do we do it like in Python, so these are already like the star

operator which is used as a variable length of argument.
So we can use the same concept to designate all arguments after this as the arguments, so and

this is something that is new in Python 3, so here we have an example again the area we say

basically XY and then we say like the start of paper, and then they say units equal 2 inches, so

now when we do print X times Y and then we say X square and then we say basically X square

this particular units.
So if you say basically like 2, 3 centimeters it gives 6 Square centimeters, so the star essentially

like an captures this so you omit this then the units is taken as inches, if you put it then the units

become whatever that star that we specify.
(Refer Slide Time: 08:31)

And now the other important thing is passing the dictionaries two functions as you know like

dictionaries are the associative arrays that we saw in Perl, and then we also saw similar concept

in TCL and in Python they are all dictionaries, I hope you remember that and we are going to be

talking about dictionaries given in more detail go wrong, but here in this one essentially likely

have this particular function all print, and then we specify it now we specify two stars and then

the KWargs.
So this is the keyword argument so basically for each key in keyword args doc Keys essentially

and then we can print what is the key and what if we value, so here we say basically like okay so

we did an example of users in police dictionary name user ID and home directory, there are three

fields here, so if you really say like I mean print date test our user info, I think this one it will

print underscore ,and then the output is essentially like UID 593 name is David and then home

directory is particularly like / home / users / David.
So one thing that you want to notice we talked about this earlier also we talked about the

dictionary database or dictionary data structure, the dictionary entries are unordered unlike lists

or even tipple for the matter, so that is the reason why we even though we specified like this

basically making use ready in second the name of course when it printed out if you use ready can

be first, and then name is second.
So since it is unordered this is what you may expect and the other specific thing is basically the

when you pass the dictionaries as an argument you need to specify with another double star.
(Refer Slide Time: 11:13)

You now how do we pass the dictionary arguments essentially to function, so the dictionary can

be passed as argument even to normal function wanting the positional arguments, so how do we

do that essentially like so here again define the area XY units inches, and then here now we have

this data in a dictionary, so how do we pass that information, so here we say basically area info is

there is dictionary that they create which is X = 2 Y = 3 and then unity.
So the three different keys basically XY and units and then their values at 23 and centimeters,

now we can actually even though like this is a normal function, we can pass this dictionary into

this, this normal function by just specifying the double star area in for the dictionary name, and

then the output is just 6 square centimeters, which is essentially the same 2 times 3 and then put

centimeters square centimeters okay.
(Refer Slide Time: 12:40)

So now we come to the another major topic that we want to talk about today all the lambda

functions, so the lambda functions are essentially their shorthand version of def statement or a

different statement one function it is useful for in lining functions that means that basically you

can define function from the book, and also in other situations where it is convenient to keep the

code or function close to where it is needed so where it is getting boosted.
One thing to notice it can contain an expression in the function can only contain an expression in

the function definition, but not block of statements there is only one expression position, so we

cannot specify like if statements or orloops etcetera inside the lambda function, and then a

lambda returns a function programmer can decide whether or not to assign the function and so

this is another priority, even though the lambda function the programmer can decide whether to

assign it to function subject to any so let us see how we can use this for lambda function.
(Refer Slide Time: 14:02)

So here is one example this is a very simple example, so in normal course we define a function

called sum X Y and then we say return X + Y, and then if you use it you can say like someone 12

and then this will result in three as it shows here, if you want to use the lambda function we can

directly create sum 2 = lambda X Y, and then you need to specify this column same as here, this

X +Y, so this is like just a shorthand representation of this, this line to here.
And then when we say like some 2(1,2) that is also the same, so we can use these lambda

functions wherever the function objects are required, they are syntactically as I mentioned like

the suitable single expression, semantically they are just syntactic sugar for the normal function,

another thing is basically the lambda functions can reference variable from the containing scope,

so again like we can commit to that.
So another thing is basically we can say neft makes incremental and with N then this function,

we can define it as the term lambda X, X+, so if you define it function like this then if you say

like you can say F= make incremental A 42 F 0 will become 42 and F1 is 43 etcetera, so you can

call it this kind of the lambda function, so you can use this lambda not just as a function but I

mean in between functions or quick rather than like I mean actually using a function inside a

function you can use it like a lambda inside a function.
And get better coding no other way, so another example is like you can add this small function as

an argument so how do we do that, so let us see like I mean we define a dictionary actually a list

dictionary basic four pairs and then detail of the pairs is 1, one 2, two this is pair and then we say

assault the pairs and the assault and we defined key = and here we can specify a lambda pair and

a pair is actually pair one.

Now if you execute like pairs you can actually now sort the this thing, in this case actually it will

give you 11 and 22 but you can actually sort it with actually like never sort from this one so

basically letting their will now become going to the best it is 2, two and 1,one , so this is one, one

application essentially we have been specified by the lambda expression to return a function

central.
(Refer Slide Time: 19:47)

So now we go into some more details actually and other functions essentially, so here we talk

about applied, so in very general context you may not know ahead of time how many arguments

need to get passed to a function, this is like a typical scenario essential variable arguments and

also like I mean if the function itself is built dynamically then you would not know essentially.
So the apply function also given function with a list of arguments, packed in a triple so that is the

usefulness of applying, so here we can say basically like a function that sum X Y return XY, now

we can actually call, call this to execute this function using applied so that it is basically we call

we pass this simple function as a triple that is some 3,4 and then the result is 7, the apply cannot

handle functions defined with F or with lambda, so that those things are possible as well okay.
(Refer Slide Time: 22:18)

So now also the apply can make the third argument which is the big which is a dictionaries

keyword arguments essential, so here an example name arguments, start arguments we know that

this list and then dictionary we want to print this whole thing, and again here we have defined

these two variables, and if you want to print this essentially we can now they say apply name

arguments args and kwargs and then it prints the whole thing.
Again you can see that basically you can park the function name the its arguments all in one

shop, and then you can get it executed, so here it is a variable name variable length of the

arguments you can still get executed with this function, so essentially like I mean the key thing to

note with apply is basically It is the format is essentially like a function and then args basically

here all in have keywords.
This is the general format of apply, and one thing to note is actually like this apply itself is

deprecated since version 2.3, and an equivalent function is just use function same function with

star args basically and ** keywords like directly this will actually work better in this context.
(Refer Slide Time: 24:33)

So now let us look at some other function this is what is called a map function, so the map calls a

given function on every element of the sequence essential, so once you specify the sequence

essentially like communicate basically it is a kind of iterate through that sequence, so essentially

like in another words basically applying the function every item of the iterable and return a list of

results, so you can have a single function which will take a single argument but you can apply

that to a sequence and then get the result.
You can think of this as like a vector function if additional iterable arguments are passed the

function must take the take that many arguments take that many arguments and is applied to the

items from all iterable in parallel, if one iterable is shorter than the another it is assumed to be

extended with none items so we bother none actually previously and so the remaining will be

treated as a none particular in trouble.
And if function is none the identity function is assume so if there are multiple arguments map

again returns the list containing an a consisting of triples, containing the corresponding items

from all the intervals it is just a transpose at that point the iterable arguments maybe sequence are

any iterable arguments and the result is always a list, so there is another involvement look at here

is an example it is called double X return X 2.
So if you want to apply to this sequence like 1, 2, 3 all we got to do is the map and then the

function name followed by the triple which is here in this case it is little sequence A and then we

did like 2,4,6 at the list so this is the list this is the iterable that is the function, so the maps a

general thing is basically the map you have a function, and then set a fixable you okay so what

this means is like I mean if we have another set for B = say 1, 2, 3, 4, and then if you say map

double A, B.

So now the answer is going to be able 2, 2 4, 4 6, 6 then 0 or none 8, so that is the list that you

can get you and then we can also like add the lambda inside this map function, so here directly

we write lambda X, X times 2 and then A then the thing goes, so here we do not have to specify

this X equal to X + X times 2 this is a another function for double, so omit this double and then

directly with map list and get the same answer.
(Refer Slide Time: 29:03)

So some more on map so here this is something that we saw earlier we can also like add these

two essentially like, so here we specify two variables with X and Y, X + Y is the info here this

sequence is assumed to be X, and this sequences are going to be Y, so you get like every pair

added and that will be the result, so 1+ 4 is 5 2 + 5 is 7 and then 3 + 6 is 9, again here if you omit

one of them say like 1, 2 and then this 4 5 6 then our answer will be like 4 I am sorry 5,7 and

then 6.
Because third argument is as soon as, so it would not error out saying that there are two different

sized arguments, it will just generate that this is result.
(Refer Slide Time: 30:16)

So now the next one is filtered, so these are all like built in functions there are many, many, many

built in functions in more in Python we will go through like some of them, let us see like I mean

we may be able to go to some more later on, so the next one is the filter, the filter command

essentially for it works on lists unlike map it returns only the selected list of items, so we saw the

filter commands in TCL, to specify like I mean some way to restrict the data, so similarly like we

can also use simple Python.
And then the filter command essentially like I mean it is, it is basically like so you can suppose

the filters filter function and then they trouble, so this is a typical specification or the bar max or

filter command, basically what it says is to construct a list from those elements of the iterable for

which the function returns a true, iterable will must be either a sequence at container which

supports an iteration or just an iterator.
The iterable is a string or a triple the result also has the same type, otherwise it always returns a

list the function if the function is none basically here there is nothing none, then the identity

function is not resume, and basically just copied that so the same thing is system return so all

elements actually like I mean the all elements that are fall, they are just removed and then you

get only the on the true, so that is something that you may want to know, so the other thing about

filter is also basically when you specify like function and Google.
Is equivalent to item for item in iterable if function item ,so this is the same as item or item in

iterable, if function item so you can think of filter that the shortcut for this command basically

item for item in iterable if function item, so the function item returned to the true or false so if

this is true then that becomes the item from four, and you iterate inside this iterable all, all the

items look at the online.

So that is kind of you can you can think of this basically has oh it is actually written you and you

can also add additional condition basically that is even say like if function is not none and the

item for item in the iterable if item basically like so it also test for whether item is true or not if

function is none okay, so that is the second condition that I talked about, so here we have an

example it is basically filter lambda X, X you know this one basically if the, the remainder

essentially link from that division is form equal to 0.
And then we give this range that is minus 4, 2, 4 that is your iterable the range is a literal and

then the function is yet, so now we will see like I mean how this thing is, this thing works

essentially like so it iterates from - this 424 and each one and then basically it towards by 2 and

then compares the reminder, so whether that is equal to zero so for 4-4 the remainder is 0, so this

becomes true and that is filtered out, next one is - 3 and the - 3 actually like now the remainder is

not 0.
It is actually minus 1 so that is omitted and then when you go -2 again it is 0 for it pins 2 and

then same like 0 and then 2, so we print out all the even numbers within this range, and if you

look at this one this one thing is basically it is not the last one is not listed here, basically only up

to it is not the poor is not there, that is because if you recall the range function does not include

the last value given in the range, so it is like N – 1, so you may want to pay some attention to this

essentially like when you are actually writing the program, because if you want to include that

for then you need to extend the range past though before.
Refer Slide Time: 37:31)

So now we go to another function called the reduce, reduce is just like map but it reduces the list

to a single value, and then this is using some operation, so again it is a function and the iterable,

but here the function is essentially like I mean this go ahead and add the or basically like a

minute it is essentially like gives the last, so, so the so it reduces this list intellect distance single

value, so each operation acts on the result of the last operation and then the next item in the in

the list.
So here we say like lambda X Y X + Y so basically just first one is like I mean it is a give 0, so it

is basically if 0 and then it adds + 1 + 2 + 3 + 4 and then the final result is 10.
(Refer Slide Time: 38:39)

So now let us see some the list comprehensions, and these are really not functions but they can

replace function basically maps filters exit form etcetera, so essentially we can specify the list s

essentially leveling X power 2 or X in range 9, so it gives you all the square numbers from 0 to 8

as you know like a 9 is excluded from the range, so that is what you will get, and then we can

also like to get the idea of actually like a square number and then which is also divisible by 2,

and or even square numbers.
That for that we just specify this, this is like all the way to up to nine so it brings a 0 for 16, 36

and 64 to mix 1, 9, 25 and 49, so essentially I can, so it is like functions that you are putting it

inside a list but it is expanded and difficult expand it as a function and then the bigger the real

operation that goes on, now the other one is X plus y 4x in 1 2 3 and 4 y in 100 200 300 the

result is basically with adds of X + Y for each of the X, so 101, 201, 301 then 102, 202, 302 and

then finally 103, 203, 303 so this is the result.
(Refer Slide Time: 41:12)

So we, we talk about the iterables, so there is a concept of generators and Iterators sometimes it

may be useful to return a single value, at a time instead of the entire sequence, so for that we use

the generator essential generator is the function which is written to return values one at a time,

the generator can compute the next value and save its state and then pick up again there is left of

main called again, so syntactically the generator look just like a function, but it yields a value

instead of returning one.
So and a return statement will actually terminate that sequence at all, the sequence all together,

one until we see a written statement basically keeps that single value around.
(Refer Slide Time: 42:13)

so here is a generator example so we define squares essentially then for I in range X yield that is

the new one with the generator, and then I pod and then we basically use this and so for IM

squares X squares for print I, so now it is going to print just one value at a time essentially that is

0, 1, 4, 9 and it keeps the last value at this point and then we can get the next element in the

sequence from the next function, Z squares 4 and the first one and first time next when we use it,

it becomes 0 which is the first one and then that we next will become one, and then so and so.
(Refer Slide Time: 43:17)

So now the position of the mutable default arguments, so the default arguments which are

mutable persist between the function calls so essentially, so these are like static variables so if

they are like mutable default arguments they continue between the functions, and this may not be

the behavior that we want, so if we do not want this behavior, we need to copy the defaults at the

start of a function body to another variable, or move the default value expression into a body and

the body of the function.
So this is basically like something that you may want to pay attention again this is another code

of python, because of this you want to do this okay so now that finishes this, this lecture so in

this lecture we actually went to a couple of things one is mainly the lambda function, then we

also looked at some of the default functions, that are available inside or Python, the few ones are

like the apply which is kind of deprecated right now in just the function call just like what is

specified here.
As directly and then the map function then we also look at the filter and then reduce, we also

kind of learned how to write functions in form of lists basically if they are not less than we

actually write functions and be this comprehended as a function, and it is applied as a function,

so we can actually like write these kind of commands into a list syntax, and then call it as a

function, and then finally we actually learnt about the generator as a concept we still need to look

at the Isolators which we will do the majesty.
But so and then we saw this example of how to use the generator, and then finally one of the

rules of python is essentially like any kind of form default arguments, they persist between the

function calls if they are mutable, so if you do not want this behavior then we need to copy the

default and the start of the function body to another variable, all we have to move the default

value expression into a body of a function, so inside or outside change to another video, so that is

pretty much the lesson for today basically the lecture and again we will pick it up in the next

class thank you.

