
(Refer Slide Time: 00:02)

Again welcome to discussion hi everyone welcome to this session again we will be continuing

our look into the Python programming. Last time the last lecture we introduced the Python

programming today, I will continue in my the topics that I will be talking about I mentioned one

thing which I did not cover during last time. So I will plan to cover that + some more topics for

today so last time I talked about the scope of variables in Python.
The scope is very similar to what we have for tickle. So I just wanted to just give you an

example.
(Refer Slide Time: 00:57)

So first of all the scope of a variable is limited to the extent of a function so using a particular

variable. That variable does not go outside the function once you make without the function that

variable is gone pretty much. And the variable outside the function, are not also taken into the

function. So if you are changing any variable which was declared outside the function in within

the function the Python creates a brand new variable form even though it is the same name and

just overloads the name.
And then it assigns the value what you are assigning and once you leave the scope of function

that particular variable is gone. And it uses the global variable once again, so if you try to change

anything within the function and then size print outside you will not see any changes it will this

be the same of people. So here is one quick example I am going to pause it for a minute okay is

limited to the extent of function. Once you change the variables essentially ligaments or any

variables outside the function cannot be changed within the function.
So Python usually assigns a new variable or the same name it overloads that name and then uses

that within the scope and then once you go out again you do not feed or stakes. And the same

thing, so if you want to have a variable defined outside and then you want to use it within the

function you need to declare that as with global keyword. This is shown here essentially, so it is

the global diamond, so here is one example and this section is actually a left Python code.
Let us review this one so here, I am declaring a global variable is called global war and then it is

assigned to a string this is global. Now I am defining my function where I am defining a local

war called and we basically assign this is local to that local war and then global war I am

changing from that this is global to this is local. So if I print, within the function it will be still

the same the global war will be same as this is local and the local war is also the same. So that is

when I exit with this now if I print outside the global war in a tell me lag event water it will print.
It is still going to print this value as if it never got changed by my function this is again because

when you define it. Here this global war is a different global war it actually creates this variable

assigns the local this is local. And then it prints out this but once you go out it uses this so in

order for us to change the global war within the function. We need to declare here global and

then global war so this basically like this statement enables Python to actually get through this

issue and then actually change battle this is local and that is visible outside the function.
So now when you print this one instead of this is global it will print the fist local so that explains

the scopes of variables are the variable scope.
(Refer Slide Time: 05:26)

So today we will be continuing our discussion so just a recap in the first lecture we saw several

topics basically. I just want this run to several of them I hope you remember all these things we

started with like some basic stuff how to run Python programs. We talked about variables you

talked about how to print and then what are the operators in Python some of the band keywords

also like that we talked about and then. What are the rules for having it keyword then?
We talked about how can we input a variable into the into the in Python or into the program and

then how to write comments and then now today we saw the scope. Okay so I hope those things

are very clear for you now let us go to today's lecture. Basically we today we are going to talk

about the conditionals basically true or false Boolean you truer for Boolean comparison and

logical operators. And then we are also like going to look at some of you for if L is students.
Again remember Python is a shorthand programming language we want to minimize and get the

most effective things in Python.
(Refer Slide Time: 07:24)

So here, the main thing is like that type is what is called the main thing and type Boolean or

Boolean and then we say like type true that is of type Boolean it does not matter like I mean if

you specify the lowercase T here that is not defined. So essentially like that just does not in error

so the Boolean are defined as per case TRUE and is FALSE. So make sure that you remember

the case and use that. And if you specify something like this 2 + 2 = 5 this is a conditional

checking basically whether the same and then the result is a false.
So the true or false are of type Boolean and the capitalization is required Boolean. So just

remember that you.
(Refer Slide Time: 08:57)

A Boolean expression is an expression can be evaluated true or false the expression evaluates to

false if it is the it is a numerical value of 0. Essentially given there are different ones one is the

constant false the object none and empty sequence or a collection or the numerical item of value

0. Think of this basically like a mean this is the primary one you have also the constant false.

That we saw earlier they evaluate the Boolean expression evaluates to false then also = to answer

calls the object is none it again written sub calls as an empty sequence.
Are a collection which opens all and then finally any numerical value of 0? Is also a possible

forms and everything else other than these four conditions it is actually it is true for the Boolean

expression.
(Refer Slide Time: 10:03)

So let us look at some of the comparison operators so this one we saw in the first example that is

= that is actually it is a comparison to find out whether two things are =. And then the not = to is

again it is a easy one it checks if the two values two value operands are = or not and these values

are not = then the condition becomes true. So in other words, so this one is evaluates to A = = B

you can say basically, and then if this basically and then this basically like whether checks

whether it is true or not in their = or not.
Here, it is basically like A not = to P and if that becomes true then the Institute and then you have

a > and you have < and > or = to is another operator and < or = to is and go on then we also have

the similar kind of operator. That we saw in more the tickle or even in Pearl which is like a board

operator this essentially checks if the value of two operands are = or not if the values are not =

then the condition becomes 2. So in other words this is similar to the not = to anything.
And then we also have something ease the two references refer to the same objects this one we

will cover in sub 6. So wait a couple more lectures and then we will go through that basically this

is like one level of indirection in probable references address is the same you know values need

before. So that is another thing that find out.
(Refer Slide Time: 13:20)

And in Python actually one thing that you can do is you can actually chain these comparisons. So

you can define like the multiple equality must be = these multiple comparisons in the same line

mean this goes to that shorthand notation that talked about. So here the simple thing basically 0 <

or = to a < or = to 99 and if a 42 this expression will return true. But if a is say minus 10 this

evaluates to false even though like this side will be true. And if it is 100 then also it returns false

because this will evaluate true but this side is going to be false. So you can you can actually

specify these shortcuts this actually saves a lot of time and of code.
(Refer Slide Time: 14:12)

Now let us look at some other operators like logical operators are and, or not essentially. So the

and, or, not is essentially like through the real typing the numbers typing the actual words

themselves out. So we can specify say like two + two = = five R one + one = = to this will return

true because this side is true and essentially like I mean this may be false but false or true is

actually true. If you say and now false and true that is actually false, then you can also specify

not of this which means basically like this is now true.
And then this and this and that become true as well so one thing you note that actually we do not

use the ampersand bar bar this bang S and C. So we do not do the C level stuff for using the

logical operators. They are explicitly specified in the list form.
(Refer Slide Time: 15:47)

So even though we said basically we would not specify the form the double ampersand and all

these things. There will be like single ones that are that are used which are mostly used for the

bitwise operators. So we will talk about that in a little later. Now we go to the conditional ones if

then else so here just one example on if else the pie so you can think of you can see this code

actually which is 1+1 , 2 then print that and then print I always thought so and else bring to my

understanding of the math is so not be faulty.
And a simple one-line ad is useless so we notice that X will go for column here or both if and

else and which is quite important then you specify the if statement. The simple one will be in

basic mail again with one and then again I can add variable one so all these cases actually like I

mean it evaluates true. So the first set gets executed and then the second set is ignored. You feel

like two things one is I mean of course this column here and then there is an indentation here in it

for spin statements in else the indentation is quite important in Python.

The indentation gives it the frameworks of what is the it is almost similar to a function call or

pick a function statement.
(Refer Slide Time: 18:39)

The ellif statement is actually it is very similar to else if in your else is in tickle or even pearl so

here is a simple one there X = to = 1 then pin 1 is = = to 2 LLL save or LS then - and then else

print me so it is 2 then this particular thing catch and then preventer. So now let us go into the

forum the next level.
(Refer Slide Time: 19:45)

So a one thing on the ellif is basically like you can have as many elifcess possible in this one that

is A first one colleen and LS second condition of the Collins. And then the maybe several eliefs

before can actually go to else. So this is one thing that you may want to this say me something.

Now Python also supports loops which we will talk about in the next section there are while loop

and for loop are supported, so we will talk about that. Now let us look at functions.
And in function we will talk about how do we define function we already tall like some of the

basic basics of functions. And then we also see how to turn values local variables which we will

cover once again the scope and then some built-in functions some functions of functions and

then how do we pass lists dictionaries. And keywords and into the function so let us begin.
(Refer Slide Time: 22:09)

The functions basically you define them in a file about the point their value. So you need to

define it before you are using the main reason is python is interpretive language. So you need to

know what it is before you can use it. And the body of a function should be intended consistently

so for spaces is typically by console within 4b increment. So here, we declare a function called

and you can see basically like it is a definition the function name followed by column and then

we leave four spaces and then we basically define the function.
So the usage will be you can say like print square of three is and then call go square functions for

a three and then doubt will be an X square of 3 is 9. So couple of things one is that DEF

statement, which is essentially the first one for stable function how we define it the DEF

statement is executed.
(Refer Slide Time: 23:52)

Basically it is not like a parse and thrown away basically it is executed and that is why we need

to define the functions. Before we can use them and what happens is when the def gets into the

DEF creates an object and assigns a name to reference it. The function could be assigned to

another new the function names can be stored in a list and we can put a def statement inside and

if statement and it can be like a nested then the basically like solve.
(Refer Slide Time: 24:33)

And more this ability to follow you arguments to a function optional if you have multiple

arguments in basic accepted Commerce. And if there is no return statement then none in certain

the return values can be simple types are tuples or basically two element array this selector A , B

you and with a function returns the values they may be ignored by the color itself. One thing to

note is the functions themselves all type less that means that we can call it call with arguments of

any type as long as the operations in the function can be applied to those arguments.
(Refer Slide Time: 26:19)

And this is considered as a good thing because now you do not have that dependency of the type

of the argument anymore. Now this is something that we saw earlier as I mentioned variables

declared in a function do not exist outside the function. So here is one example def square n

which is M is defined as in then return M. So if you say LX square of three and then you class

blueprint for a three and then you print M Python will generate this error.
So this is the opposite of what we saw in the first slide regarding the scope because this M does

not live outside of this function which is these two statements. So it does not it cannot actually

live also we can capture the value of square three because it is returning the M we can capture

this as this is a go variable called M itself M = square 9 square 3. And then it will be there but

this way even though this can actually this will work this does not work. So file comes up an

error.
(Refer Slide Time: 27:31)

The variables are signed within a function are local to that function call that double saw and then

variables are signed to the top of the module are global to that module. There is only global

within a module, so this is the use of global to represent the global value of form the way. So

within a function Python will try to match a variable one to one assigned locally within the

function if it fails it will try within the enclosing function that defining statements that is DF if

appropriate.
If that also fails then it will try to resolve a name in the global scope if none of this match then

Python will look through the list of built-in names.
(Refer Slide Time: 28:41)

So what are the built-in names that we will see so on the scope essentially Legume in another

example here, A is 5, C is a + B and then within C then if you say funk for order hit return. And

we say print see is not blue then it does not even but it basically like pins 4 + 5 is 9 so within the

function we can still make it print but once it is outside the function it becomes a non-event. So

here is another example A is = to 5 and then we say like global C and then C is a + B general

return 5.
So outside when we say funk 4 it is actually now use the result and then if you say like the print

C then now it is also defined it is defined to the 9. So this global variable actually helps in taking

out some of the deficiencies earlier. And notice the racks in the evaluation takes place within

function mode as this I addition and then sends that to C.
(Refer Slide Time: 30:23)

So unlike other programming languages like Perl Python in a in Python everything is my

reference but please also note that there are mutable objects that are not changeable. So changes

to immutable objects within a function only change what the object name points to and it does

not affect the value. And it also does not affect who calls the program so the immutable objects

like integer’s strings tuples. Python acts like SC act like the sea stars the value. And for mutable

an object that is example it lists Python acts like a cease pass by pointer. In place changes to the

mutable object demo it compilations.
(Refer Slide Time: 31:33)

So here are some examples one is the pathway records here we define the function f1 X and

purpose of X and Y and then we just print out 1 + 1 is + 2 + 1 and whether one is posting and

then we just print out all the values. Now we take the next function x f2 and we declare x = to x

times 1 + y 0 is y 0 x 2. So this is presumably like a move or an array function. So now when we

ask you to print out the figure eight pins are zero and then A 2/2 now we continue basically we

make it = to 0 B is 1 and 2 again it needs to be in array for it.
We use inside then F 1 a B that will be a Paul so that returns this value and then actually this and

strangle # so 2. And then we say basically like print a B and then difference this and then we use

apply the second function it is been 0 and 2 inch. So here, we are just passing the repine to the

point to the function and then getting back many things.
(Refer Slide Time: 33:36)

And multiple values can be returned by a Python program but usually they happen with

packaging int into a tuple or array. So there is a small packet basically 1 ,2 , 3 X times 1 x times

2x times, 3 and then if you print the 1, 2 ,3 program with the value of 3 then now there is a gulf

between 6 more. Because now you can return 3 values instead of 1 or 2.
(Refer Slide Time: 34:22)

Now Python has a rich set of built-in functions for example math dot PI installation we should be

able to see there are several functions available there are all pretty much free why the point is for

POW. So when we say like POW 2, 3 that is basically like the stands for power and basically it

computes the so if you say like I mean this is A and B this computes A ^ B and a B S stands for

absolute. So this is - 14 and then these are some of the nifty commands find the maximum or

amongst these numbers and then here without says 3 it is the highest integer then. So these are

some of the fun things to do with Python for your entities.
(Refer Slide Time: 35:35)

Now a function of a function essentially you so here is even is a function basically this is just X

M F and then we do a test basically for X is the same as f - X then we have been through else

given false. And how do we determine this is because we now go square missing so we are

depending on under function call square N and then which returns basically this the

multiplication. And then we also define another one for cube and then that returns and n times n

times N.
So now we said okay print even two square and then print is even 2 cube you so the output of

these two are the first one is it true and then the second one is a false because it simply basically.

So first thing to notice this is one function and basically the top log function and here essentially

always say X is so same as F - X then we will go through and Fox now when we talk about in

square this will give you only return and n or n times n and the same thing here. So now if you

look at this one actually this is a function of a function.
Because you are calling the easy one with an argument to and then basically also we are calling

this one. So in four squares you need only one model so basically what happens is it knows that

okay it is a square and it passes this number into that square abused answer and two becomes X

square becomes F and then it is again the is even is evaluated with these numbers and then

possibly this answer.
(Refer Slide Time: 38:18)

So now some default arguments like in C and Java we can define a function to supply the default

value for an argument if one is not specified. So these are useful for printing out the error

messages and things like that. So here, we have defined a function or print error and it gets line

number and some message the message is error. Already negative speed sign here so and then we

just print basically the error message error at line number so and so and then that line number. So

when we say like print error 42 it just stands physical error at magnitude.
So these are like predefined a value that you can supply it into a function and essentially they can

that is what we do.
(Refer Slide Time: 39:26)

So now let us talk about the function code in return value in general all the functions in Python

return something if the return value is not given then by default Python returns none. So this is a

principle difference between Python and tickle as you know tickle actually returns last evaluated

expression. So when you are writing like Python code the way of assigning a variable to the

result of a function which returns number for example here.
The list append function changes the list but it does not return a value so when we say basically

likes okay. A 0, 1, 2 and then we say this way about append 3 and that is a sign to be and it says

that be it since done even though this is executed incorrectly and basically like the move this will

be the 0, 0 , 1, 2, 3 but it only prints none so you may assume that no now that this is correct it

should get a value of true but the actual value that you get this one is now. So this is basically

like what I wanted to cover this lecture.
So we talked about several things I hope you remember we talked about the scope of the

variables. We talked about the conditional system see that is what we started with basically fluent

or true and false Boolean’s then. We went into like how to compare all vaudeville operatives

comparison and the logical operators and then. We also talked about if L it is an else statement

then we continued our looking functions or we define function how do we actually execute the

function.
(Refer Slide Time: 42:18)

And then what are the other things associated with it one of which is the scope and the went into

more depth rather than this one mentioned in passing last thing and then we went into like these

values the various scope examples. And then we talked about how the works in Python and then

we saw some examples how do we use values so functions it is the top okay. So thank you once

again and we will see you in the next class thanks.

