
Programming Using Tcl / Tk
Seree Chinodom
seree@buu.ac.th

http://lecture.compsci.buu.ac.th/TclRk

Hi everyone once again ,welcome to this PS course, will be continuing our lecture on T k ,we

finished talking about Tcl , I hope you have all the things they will understood now, now we will

talk about TK actually ,we are actually discussing TK for the last two lectures , today we will be

continuing that, but before we go into like today s , topics itself I am going to give you a brief

overview of what we talked about .

Some things may not be very clear in the last couple of lectures ,but I am going to see how I can

clarify those points .

(Refer Slide Time: 00:49)

So let us do a recap ,so mainly like we talked about the TK fundamentals ,so the GUI essentially,

GUI fundamentals actually basically , this is a concept of event ,the event is the any operation or

movement using mouse or keys or a keypad, nowadays even like the finger moments on touch

screen, things like that are also like you can call it, as an event but traditionally .

What we meant was one of all the mouse moves, like I do not know you can see that , there is a

rock ,moving forward or some kind of keypad press, is an event on a window and then the move,

itself ,you can say that is moving the mouse, from one point to another point, that it constitutes a

move and then the key press is basically, the press any key either the mouse keys or the

particular one like the right click, left click or middle click or a key on the keyboard .

 You can also add additional stuff, like the role , rolling of the mouse, things like that, so the

main thing that we will be talking about , in case ,how do we develop applications, that can

capture these GUI interface and work with them to achieve ,whatever that you want , actually

want or execute a particular command ,so the other concept is also regarding the windows, the

window is any specific area of the terminal .

Usually it is a rectangle and it is bounded by a frame, so we will talk about it small thing and

then widget is the other concept which is part of the window, that does a specific task basically it

has a shape and it does a specific task ,so these are the two points that you want to understand

basically regarding the disk, in most of the text books and things, like that we use window and

widget as synonyms. But in this class I want to separate it out.

And basically window is a collection of widget and how we will define ,we will see this again

and then most of the things ,that we will be bringing about ,this is regarding the widget ,how do

we enable the widgets and how do we work with widgets ,how do we assign commands to

widgets ,how do we create with these things, like that is all covered under this TKR toolkit.

(Refer Slide Time: 03:39)

 So here is a brief look at the concept ,so you can think of this entire region, being a window

okay so the window includes actually, if you look at it ,there are four widgets and there is a

frame which is probably ,the widget number 1, now actually the widget number 0 and then you

have the widget number 3 and then you have this portion of this window, which is itself is a

widget ,that we call it as widget number 1,we will see like I mean .

We have already seen like all the information, but anyway and then there is another piece ,here

which is also embedded here , this is widget number 2 and then the third piece ,which is basically

although directly means this is widget number 3, in fact you can also think of this structure

here ,as another widget, we get widget 4 ,so all together ,now you get 5 widgets, so remember

this concept ,we will come back to this essentially I mean , so and each one has a different

function as I mentioned .

So for example this one, is what is called the banner widget ,we just split the banner, the frame

will get essentially like outline popping and then this is the menu widget ,which contains like

what are the menus, is different venues is file and help and then the main display widget ,which

is this 1+ there is a menu bar widget ,which is essentially make sure that this scroll bar ,can move

up and down ,okay.

(Refer Slide Time: 05:30)

 So that is the basic concept of windows and widgets, so in the sense ,widgets are objects

instances of classes , so now we are introducing a new term of classes ,that represent buttons

,frames and so on, so if you look at here actually this could be ,we can make this as a button and

we know already that, there is the frame okay ,so the first thing you will need to identify, in the

need to do, is to identify the specific class of widgets, widgets that you would like to instantiate .

So for every class of widget ,we have an equivalent command ,which we will talk about it a little

later in fact ,we covered this in lecture 2 or lecture number 1 run rather, so classes are

important ,because they determine the precedence, if there are multiple bindings to a single

image ,so what are this binding essentially, the bindings are essentially like I mean, once you

have an event, you can track that event and then you can make the widgets perform certain

functions based on the ones even could be like a key press, moving .

Whatever it is basically like ,you can make it perform certain things and to determine like I mean

how these go , there are multiple widgets involved, the class actually can be one of them, so we

will see like whether ,we want do and by the way the multiple bindings are legal and will result

in multiple outputs ,which is also pretty much okay, for example here there is a cursor move,

from one place to another place and cause the windows to become active .

As well as some command ,that may start running within that window, so both of them are

simultaneously and having both of them activated and are running simultaneously ,which

perfectly , okay sometimes ,we want to be specific ,so this is again something that we covered in

the last lecture and then couple of other points to note, is the widget command itself is deleted

when the widget is destroyed .

So any command associated with the widgets ,are like completely gone, so where is this

command ,what is this command, that will also be covered ,but I will talk about it in the next

class, and then one thing to note is , the state of the element of the widget ,or the state of

particular window, it should be readable ,modifiable and this is the principle, that we operate

with within this framework.

 So again like what is escape state ,it is basically once you get an event, how do you respond to it

and that is the state and then that state is essentially, what we will be talking about.

(Refer Slide Time: 08:34)

So like the structure of the TK application, we talked about this basically, widget hierarchy

which I will cover once again and then there is one tcl interpreter, which basically interprets all

the techie coding underneath ,these widgets and this is just one process ,you can have more than

one application in that process ,but it is only one process, in per ticket and then we already talked

about the widget basically ,again widget and windows are synonyms kind of most of the cases .

We will say like I mean basically it is even though, it says particular look and feel, it is basically

defined very strictly as ,it has the widget has a physical shape and it has a single purpose okay I

mean this is the thing, that I talked about here shape and a task okay, I just add this in physical

shape and then a singular purpose ,so widget classes implemented are brief , once I will also like

cover some of the next slides .

But then think of this frame ,label , button ,check button, radio button ,menu button ,even in

button has like ,so many different classes and we have menu as another one ,message, entry,

text ,canvas, scroll bar ,scale ,list box and top level, so we will be talking about some of these

things basically in the text ,we will talk about canvas ,and also this we already talked about

frame and buttons, other things like menu button and things like that specialized items of these

buttons themselves.

So you can actually look at it, up on those things and then we will also probably cover the top

level, so let us see how do we create a Windows or create widget or basically an application.

(Refer Slide Time: 11:02)

So we need to create the main window using the wm command and then the top level actually

,like there is also a top level ,the command called top level to create pop , then we define the

widgets between that window, again for this I want you to remember the widget pattern , where

we started with the dot and then multiple .txt ,your frame things like that basically ,this is a

whole bunch of these hierarchy that we talked about.

So remember that basically and then that is how ,we have defined and the way that we define

is ,we start defining widgets one at a time ,so here saying that frame is another one basically with

the size and then we can use pack ,place these are all like command ,so we can do that and then

we can also create other classes of widgets ,whether within the hierarchy or at the top level

whichever one based on the application, needs.

We create these other widgets with a button dialog box and then we define the commands that

can be run, on these widgets using the - command option, so this is something, w talked about

and then we also bind events, to commands using the bind command ,so the events are again like

those key press and things like that, so we can call this button run , and then say run gets

activated, only if the key is pressed on top of the run .

So that is the even that we track and then run particular command and then that is denoted by this

command and then , once we do this and we create this the graphical picture ,as to how this

application looks like and then we go ahead and do the depend all the box within, whatever we

are coming up with inside this graphical picture, so all of them we have to define which are

declared in all the previous sections .

(Refer Slide Time: 13:25)

So with that actually like, we saw some more examples but let us, see like I mean ,so the top

level widget it is again the “.” and any other widget is defined as hierarchically from the“.”, so .

and then x, a under x you have y and then y you have actually under x you have V and then other

a you have y which is not the same as example x.a.y here x.a.z, so particular widget and then

how do we configure widgets, this is another thing, that we saw.

This is using the config command or configure command ,so the beauty of this command is it is

the same command ,that also you can use to query the particular configuration ,for example here

as you know like I am in window .x and we give this config command and then say like

background make it red ,so now the command goes and actually like configures the particular

window with the background color as red.

So now if we omit this red and then just give x config - background that ,returns this string and

you can say that basically like this is the background and then that is it - background and then

actually the background color is determined by #ffe4c4 x or red in and then the actual color red,

so gives you like all these information ,one thing ,we notice you know I can query these but you

know these things, are this noise I do not want to do any of these .

I only want to know, what is the background color and I want to know this red ,so how do we do

it.

(Refer Slide Time: 15:38)

So here there are ,there is one additional function that got defined which is actually a synonym

for config get or C get and C get basically ,when you when you give that command with the .x

and what is option which is background ,you did it again, just red ,so it is a very handy command

policy get, so keep that in mind and then we can actually in fact, if the window is already

configured ,we can actually change the existing configuration of the widgets, using config

command .

(Refer Slide Time: 16:25)

So again some of the popular classes of commands ,also the objects essentially in the windows

button, radio button, menu ,canvas, frame, text, list box .

(Refer Slide Time: 16:38)

Now I also talked about tags essentially , the tags are objects ,associated with the text widget

essentially and then the each tag is referred to, via name chosen by the program ,each tag can

have a number of different configuration options ,the things like fonts, colors, etc that are that

will be used to format text can be put in as a tag , even though like I mean the tags ,themselves

are objects having a state , they do not need to be explicitly created, they will be automatically

created the first time when the tag name is used.

Okay, so here .text for example and the tag, configure highlight line -background yellow- font

and really raised basically does that to the text window , as defined in this comment .

(Refer Slide Time: 16:38)

Then we also talked about this binding order essentially, this is what if multiple bindings,

naturally as I mentioned everything goes in parallel , but we can make it most specific which is

one binding figures ,per tag and it follows the default order of the tag, this is class, top-level, all ,

then but we can change the tags ,with the bind tags command, so again you can also like bind a

particular tag to a particular window .

So one thing ,we notice here is just the general tag is opposite with text, fousing this highlights

and combo but in general any tag ,can be bound to a particular window and reclassify that

window introducing okay, so here like I mean we can say like, bind tags .b my button and then

we can also say that it is bound to this particular actually like I mean, so this is who all ,so that is

what ,we have doing the bind tags for and we can you can also like I mean.

If you want to skip a particular tag ,we can just say break and then that can go to skip some later

tags as well, so I am going to refer to the textbook ,for the exact definition of the bind tags

essentially ,so widget class name basically like a button or whatever it is and then, so that is

where it is bound to okay .

(Refer Slide Time: 20:32)

So that is what we covered in the last lecture today ,we will talk about some new topics in
T k class basically and then, we will use some examples to illustrate, how TK works for these ,so

here is an example for calendar it is called T k Cal okay, so we first initialize the global variables

before this set months, once then we can execute this command, all the date, the date actually

returns ,so whatever this particular string which is like the day, the month, the date and then the

time, the time zone and then the year .

So we take the month as the index 1 of the string ,can anyone tell me why this is 1, actually this

string starts from 0, so this is 1 and then the index for index number 5,denote the year, so again

we count here ,from here this the exact date is actually 2, this entire thing is 3 ,this is 4 and this is

5, so now we get like month and the year, now we can expand the abbreviation that date gave us

basically 4.

So now we can say that in this loop, we can set ,we can find out like which month , this so

basically like run it through this and then essentially like seeing ,whether there is a match for any

particular month that will come here, so the way that we are doing it is essentially like a string

match ,where we do like $ month ,because we can go with.

Whatever like this particular month will be read, with all these things and we just do a string

match and when we do this multiplication actually, move over this can result in a 0 or 1 based on

whether it is matching or not and it is matching .We capture that and then you know, we break

the loop.

(Refer Slide Time: 23:44)

So here ,we define some menus, the menu action basically, it is called a do menu , that is what

we are defining ,which is we just set the month to $ m and this is the global month and then we

basically configure these windows ,since we got apparently and then we configure with that

particular month , so now this will generate here ,this number and possibly this year, you now we

need to generate, the calendar output , so we can run this program per cal and then collect its

output .

So ,to show the calendar that is the next , that we are going to write ,which is having the global

month ,year and month which is passed from the top level into this, as you know it is already set

all , these things ,so now we do a list search of the month with the month itself and then we make

it +1 essentially, so this will give you the index +1 ,which is essentially like the actual one

representation, so as you know here, this index actually is 0 1 2 3 .

But in reality ,generally it is 1 2 3 4 , so we need to add that from the index, so that we get the

actual and then we use the Cal program there we pass the cal this month, the number of the

month and then the year and then we basically get that whatever the result is and then here we

will just define error conditions also just to make sure that it does not error.

And now for the same window essentially like , it is a text box window, we will talk about that in

the next one, we delete and then insert the output of the Cal which is right here, until cal $ err is

here only ,where its index and when is the error ,but otherwise it was set to the calendar from the

Cal function.

(Refer Slide Time: 26:49)

Now we set up the top widgets basically, we set up the frame and then we pack ,how to define

that and then we have a menu button and then that is the .m b , so here the same thing so that it is

configured as 1, but we have another menu item which is defined as a window under the m b, it

is called the m and then that has a width of 12 and packed that towards the left ,now how do we

populate this one ,that is for essentially like I mean, we say like for each month in m , basically,

then we add a command to get the label and put it in .

(Refer Slide Time: 27:46)

So now we have look at this picture, we have this solid set ,now we need to get to the date and

then we can see the calendar , so now for the year again, we essentially like I mean ,we have a

variable per year and we take width 5 and then basically like and then we can enter the year and

then we do similar kind of things basically ,we set up a button ,call see calendar, that is this

button here , and then that also has a text based and various parameter, so this is a text

command ,which is a text window .

And then the pack and then we say the initial display is show calendar okay .so this is one full

example of T k Cal calendar or T k calendar, I think like you can try this out first and in your free

time and then see how it works and then pretty much then it will become self-explanatory.

(Refer Slide Time: 29:36)

So a few more thing basically, this is something that, we already talked about the c get widget

essentially that we did they say like c get- foreground ,it just gives the black again, as I said

earlier it is a very easy and much more easier than doing a .w configure and – foreground, this

gives all kinds of junk right, you do not need this, now as similar to Perl, the env array contains

the environment variables, so env HOME in the editor segment .

(Refer Slide Time: 30:20)

So you have like multi line area ,text area widget essentially like I mean that the text widget is

essentially a multi-line text area widget with number of features ,other than one features, you can

do editing and you can use Emacs key bindings ,you can do scrolling from manual and from

code ,X and Y-axis and it has a flexible text formatting, multiple points and once the colors are

supported, text tags that we talked about earlier and then also selection manipulation.

The selection manipulation is a command ,something what we talked ,about in the last class I

will explain some more ,either in this class or later on and it also arranges text and embedded

widgets in lines ,the lines can wrap but they cannot flow.

(Refer Slide Time: 31:32)

So what are some special widget commands set, get, delete, select ,mark ,tag ,search, see window

,y view , x view, bind these are all special widget commands or text widget and then the

configuration options, we have a state ,that we can define height and weight, the -spacing 1,

-spacing2 and -spacing 3 and then what are the state -tabs and then ,we can say like insert

background and or select type .

(Refer Slide Time: 32:25)

So the text that is there, inside the text widget has this following things, one is called index

which is essentially like line. character ,so if you have like 5 lines and then say like I mean line

starts at 1and character starts at 0, so this is not that 12345 and then this is 0 through and then

now you can actually ,go exactly to say 53 and then you can read out this , and then we can also

do mark, basically a name for an index .

So you can say like I mean t mark set my place 6.23, so it will exactly do that and then a tag is

also like I mean you can use tag ,to find the ranges of text ,for example you can say like t tag add

my words 6.23 6.30, so if you go to the specific location and then perform this function ,and then

same thing, so this the tag will be very useful .

(Refer Slide Time: 34:16)

And as I said basically the tag is the one thing, like I mean it is not a permanent command

basically the state is save, so a tagged text can also be configured and we can use configured

command to configure the tagged text and then the tag text and also have bindings ,we can bind

certain key strokes to that particular command and then we can call it to execute ,certain things.

(Refer Slide Time: 35:00)

And then usually the text widgets can serve as the geometry managers for other widgets, so here

is one quick example ,essentially just using also this new command, so you can image ,create a

photo - file called bart.gif , which is this one ,now we say basically like t .l- image image 1 and

then t window create 1.5 . t.1 and then that brings up this window .

(Refer Slide Time: 35:46)

So then now we come to this syntax coloring mini editor , so the TK Emacs does not customize

syntax coloring, using the regular expressions like Emacs hilit19 package , if still has one text

widget ,one scroll widget and can read and save files ,there were 100 lines of well commented

code available through this program.

(Refer Slide Time: 36:36)

So we come to Tk Emacs basically ,like for all machines routine ,so here also like I mean these

see basically for all matches ,we give a pattern and the script with the w option, so first of all we

determine the number of lines in the widget, which is scan in w to end and if we count the

number of lines, it has some value basically and then for every line ,we increment the line and

then basically you can do , using regular expression .

We can find what is there and then basically like we generate ,that as a mark set command and

then we pass it down.

(Refer Slide Time: 37:56)

And here is the do color routine essentially, which is for all the array names and for all the syntax

pattern arrays , all name ,we go ahead and delete the tag and then basically ,through the tag first,

last okay .

(Refer Slide Time: 38:35)

And now we load that file ,uploading the file essentially, we call the file and then we set the file

as file open and then we just want to insert, that particular variable and then the right file is

essentially like , you open the file and write it.

 (Refer Slide Time: 39:12)

So here we define all the colors and basically all the form, that we wanted okay ,so continuing

with the text widget, the tag text can be configured, so that is using this .t tag configure my

words- foreground red and then the tag text can have bindings essentially, so if you have a text

like this it can actually bound to the my word list , list.

So it need not you do not ,have to do it explicitly and then the text widgets can serve as geometry

managers and then the syntax coloring Tk Emacs does customized ,that is customizable syntax

using coloring of using regular expressions like Emacs highlight 19 package it is a one text

widget ,one scroll widget , one read and write, save files and then about 100 lines of well

commented code .

What is the procedure behind the Tk Emacs ,so here is another one for all matches routine, so

here we define, that all matches w pattern script and then we do a scan basically like to see

whether they take this ,here we just calculate the number of lines ,since you and then in this loop

essentially ,we get the end and then ,we add the quantum to it and in the do color routine

basically does the coloring, here is specified like for each of the arrays, the syntax pattern and

then we basically , we can go ahead and delete the tag itself .

And then we configure with some configuration values, so the do color routine essentially the

same it ,works the same way basically like, we keep the particular file and then we they will

accept a file, open to the $ file and then until the end of line in the file or the $ w ,insert N and

then so that will be the read of other lines and then the write file same thing basically we do the

opposite .

We may write file w file and then we do f open log $ file , with w command, so here you see this

again it is only this open file and then we basically, whatever we collect in the window we just

say puts and then the dollar w and then we just close the file .

So we take a look at some of the Emacs , how it behaves in terms of other things ,so one is the

set syntax pattern or types ,which gets all the alphanumeric characters and then say syntax colors

,type is yellow check for that ,syntax pattern directives again, syntax colors or directives and

purple come that is another thing , then the syntax patterns, for new line types essentially and

then there for that .

We cut here ,essentially like ,we can see once we have the syntax patterns, new line, so syntax

for new line types essentially has all these various types, whether it is character is short or

integer, long ,unsigned ,signed float and bubble, then we declare the color essentially as hello

and then the syntax pattern is the regular alphanumeric and then if all these are commands also

and then following the commands again ,and then we also specifically look for certain syntax

pattern , *.* here, so this is one thing.

(Refer Slide Time: 45:59)

So now ,we actually comes to setting up , so in this one actually we are reversing the process,

little bit, so in the previous example I mentioned that actually we do all the frame and build all

the GUI and then go back and fill up the procs, in this one, we actually like get all the processing

and then now we are going to do the window system ,so here we set up the widgets basically ,we

call it text widget .t .

And then basically we give several other things ,y scroll command, insert background and width

and height, so specify all these things and then we pack it and then we adjust from the left side

and then we just expand it to fill essentially and then we also give some configuration items, we

configure as tabs {32 64 96} and then configure -background is black and then foreground is

white, we will come to see like I mean by being sorting and then we also generate a scroll bar .

And then that is on the y side and then, we essentially start doing the key bindings , so we do the

control l for color, of this particular window and then control s is to, write the file and save the

file essentially and then control x, we bind it to exit ,so if you want to exit this particular window

,we just type control x and it , so the exit corresponds to this .t and now if you run this the demo

based essentially and load file to top level wm title .T k Emacs file name and do Color .t and then

now we can bring up the Emacs.

(Refer Slide Time: 48:09)

So I will talk about the canvas widget , but we will probably like see, the actual example in the

next lecture okay ,so canvas widget is another type of widget which use, it is used for drawing

primitives and essentially ,what this text is doing for words, so it is basically it is just an open-

ended rectangle ,where whatever you can draw and then that drawing is getting captured, so here

again for this particular widget , there are specific commands, basically add tag, bind create,

delete ,d tag ,find , focus then talk about this also like in greater detail.

The get tags, item configure and move and postscript ,we also have like the other widget

,configuration option which is close enough scroll region ,x scroll increment and y scrolling.

(Refer Slide Time: 49:41)

So essentially the canvas move, can be drawn on, so here we can draw smiley face with various

things and basically coloring inside, so in order to create this ,we create an oval between 3 3 200

200 fill yellow that is, this one, essentially and then outline is black, which is the color of the

outline, and then we also have another one 50 50 60 70 eyes ,each one we create exactly the

location.

 And then we create an arc ,which is for the smiley faces for mouth ,that is also done and then we

create this arcs, the tiny arcs, which is the next step ,so this way we create this smiley face.

(Refer Slide Time: 50:48)

Now each of these the drawing primitive, is an item in the numerical box ,so when we create that

oval ,it returns the number for it and so the items can be tagged as, in the text widget so you can

just say ,I can configure 2 and then tag eyes and then same thing eyes .

(Refer Slide Time: 51:17)

So we tagged these two ovals as eyes and then we can also search items, within this canvas

widget and using this fine closest ,so if you give a fine closest and gives it give a coordinate and

then basically it returns, to which is left eye and right eye and then items and tags can also have

some bindings ,you can say like I mean .c bind eyes enter ,and then you can say wink and then

outliving or if you feel like if you press leave then it will unlink.

(Refer Slide Time: 52:15)

So I want to end at this point essentially, I think and then next lecture, we will take upon the

furniture arranger program and how we can design it and how we can execute it using TK, so I

think that is pretty much, it we will summarize as we go along and then thank you once again for

listening, thanks.

