Even tentative yeah I again welcome to this lecture this is the LPS course and the we are
continuing with the looking at programming in TK Tcl TK. We covered all the Tcl functions and
all the bicycle procedures Tcl code now we are looking into the TK functionality we started last
time last lecture. We discussed some of them the key elements in TK we kind of went to like
some basic commands and then. We also like talked about the, the Packer that is available that is
how to pack the widgets busy. So today we will be looking more into TK stuff let us start.(Refer
Slide Time: 00:52)

Associate Tel seripis with user events:
bind .b <Control-h> {backspace .t}
d 4
Wumlow =] Ewvend senp

Use tags to select one or more wimlows:
Mime ol window: b
Widget class: Text

So today we are going to talk about binding suffencial.
(Refer Slide Time: 00:55)

Bindings

Associare Tel seripts with user events:
bind .b <Control-h> {backspace .t}

I

LURTRH FETEN Y Ewerd Senpd

Use tags io seledct ome or oore windows:
Mume el window: b
Widged class: Text
Al windows: all
Arbitrury stnng: foo. bar, .

So the bindings are one of the three elements in, in the TK so as you know like I mean the TK is

a going programming. So all you are seeing is what could be user interface for Italy which is for

control through the cursor movements and the click this again now for any click to be effective
those wherever you are clicking that needs to be bound to certain scripts. So today we are going
to talk about the binding as to how to bind a Tcl script with user names. So here, the command is

line you, you so the command is bind.
(Refer Slide Time: 01:44)

Bindings

Associate Tel seripts with user events:
bind .b <Controlth> {backspace t}
[] & 1
|
Wimlowy s} vt Herpd
Use tags to select ome or more wWindows:
Minme ol wimlow: B
Widget closs: Text
All windows: all
Arbitrury sinng: foo, bar, ...

And then here, we know the window dot B and then we bind what is the event essentially here
the event is control H essentially. So that is the even that we want to bind and then now we are
binding to a script which is if this whole thing this E. So when you press the ctrl H it translates
into a tab and that is true this, this particular binding that we can select. And then we can also use
tags to select one or more windows. So in this one basically like a new window is for B,E the
widget class is a text and all windows is all and then we have some arbitrary string basically in

foo, foo bar and we surround the various tags that we.
(Refer Slide Time: 02:54)

Bindings: Specifying Events

Specifving cvents:
=<Double-Control-ButtonPress-1>

i |. [
|

Slaodabeera Exvent Buirag o
Tape Foeysym
=
<KeyPress>
=]

So now how do we specify even so the specifying event is through this from the with this less
than greater than and then we can also declare some modifiers. Which is here it is a double
control meaning like you do the control key couple of times and then essentially like there is a
button press. Basically, which is so the event type actually and then you can also specify like
what kind of button or the key system. That you want to do so the other ones are basically like

the three key presses A and of things which are all like citizen daily feelings.
(Refer Slide Time: 03:48)

Bindings: Substitutions

#* %4 substimtions i binding scriprs:
Coordiates From event: %ol mxl 90y
Wonnndloww, S
Chomscter [raom event: Yo,

Mlany mowe
Exnmples:
bind .c <B1-Motion= {move %x %y}
bind .t <KeyPress=> {insert %A}
bind all <Help=> {help %W}

I ——
Now you can also like now do some substitutions essentially the substitutions are essentially

working things that you get from the event and then you're substituting into your commands so
one type of substitution is the % substitution mindset so you can get coordinates from events and

the coordinates are in % X and percent of Y and if you want to get the window that is presented it

is W and then you can also get the character from an event which is for personhood A and then
there are many more which we will talk about. So here, some of this one of the example here,
again this is the particular window. And here, it is be one motion basically and here what we do

is basically it so then this is the button press basically motion.
We move to that XY is not it so this is one of the units that we say and the % en now for another

window there is a key press basically then we insert the character that is defined by reading that
the key press itself so if you + S. This is substituted with F if you press R this is things like that
so that comes out. And then here we say like all as you can see basically like the previous one
now we noted that all windows is basically that is four on so for all of them if you type help that
goes to that opens the help window so these are some of the examples that. We can see as to how

to bind scripts. So now we will be looking at this in much more details anyway.
(Refer Slide Time: 05:52)

Binding Order

What if mmltiple bindines wmafch an event?
bind .ta ..
bind all <KeyPress= ...

e hinding trigEers per tas: wost specific,
Thefauli arder of raes: widget, class, toplevel, all.

Can change tagrs with bindtags commummnd:
bindtags .b {MyButton b foo all}

Can use break o skip lzgter tags.

#* “ote: these rules apply only oo Tk 4.0 and larer. and
differ from description in texthoonl.

So now the binding order is a chain so what happens then you have multiple bindings that is
matching warning it what takes precedence over one. So these are the ones that we need to worry
about in a graphical setup you know regular programming setup everything is executed one by
one as we move Tcl is an interpreted language. So every line is executed one after the other but
in a graphical motion many events are happening at the same time so and then these the what
happens when you have like the multiple bindings that is one particular event so you can have

like for example here A and then can also have exhaling wine all key press.
So when you press the key whether this is triggered this is triggered which is to do and how it is

to do so there are very various things that. We can do one is we can say like it is one binding to

the per tag most specific binding this one they are also like I mean there is a default order of tags

basically which is essentially ligament first it goes the budget then to the class then the top level
then or so this is kind of the difference how it works. So if it matches multiple bindings it looks
for the rigid binding first then it goes into the class then it goes to the top level then the all thing
is triggered and then this can also change tags with the bind tags command. So this is another
comment so, we learnt about bind now which is bind tags and the bind tracks command actually

changes one particular tags and apply to other types.
The other tags as well so here like my button and basically like. When we say both its dot B foo

of them all and then we can use break to skip the later tags so again one thing is basically apply

only to TK 402 and later. So that is another thing that you want to implement.
(Refer Slide Time: 08:25)

More On Bindings

Textand canvaz widgers support indings mrermally:

Sossocinte s with text or graphics
At tag add foo 1.0 2.0
. create rect 1c 1e 2¢ 2¢ —L‘]gs oo

— Asggociate indigz with tags:
.t bind foo <1> {...)
.z bind foo <Enter> {...}

+ Bindings abwvavs execure af clobal level:

I bicling creoted in procedre, proceaiire s foce!

Vel aven T availalle of sveni-iing

Some more information about the binding some text and channels widgets support bindings
internally. So they associate tags with text or graphics basically so here like a tag add foo one dot
or two dot o or create rectangle 1 C,2 C, 1 C,1 C, 2 C,2 C and then the tags foo and then the
second thing is basically like the associate bindings with the tags okay. So another thing to notice
is that the, the bindings always execute at the global level if binding created the binding is

created in a procedure the positive spoken Google are Inter available at event time.
(Refer Slide Time: 09:16)

More Quoting Hell

Often want binding sevipr to nze somie inforin fon
from himding-time, soane from event-time.

Use hisr eommmands to generate scripis.

L se procedures fo separate event-time information
from bimd-time information.
bind x =1= [zel y [expr $a + 3b])

i

o 1l Do = Pl % anliie: Llag eveyt-te valng
bind .2 <1= "set y [expr $a + 5hH]"
proc sefya {
ghobal b y
Highl sty [expr fa + §h)

bind & =1> [list sety $a]

Okay, so some more examples you so we may have to we may often want the binding script to
use some information from the binding time and thumb from the even time. So we can use list
commands to generate before then use procedures to separate the event time information from
the point and information. So how do we do this so here one typical one is essentially we say
basically like buying the. X in this .X window. We want to bind the time value and we also want

to use the events time value.
So when we do like I mean they say essentially like I mean we use the breakers or codes this can

result in the wrong values that get called this in shape or that gets applied. So the correct way to
do it is basically we define a procedure and then. We bind the procedure set Y if you get a list
and then to this particular event that way we ensure that actually like an only the we pass this
from the event into the this procedure and then the, the other expressions R actually coming from

the bind time information.
So it is the point time itself so the values are set there so the issue with this is essentially they are

going to only getting one value but we have like all these three different values essentially and so
this is coming from the even time and this is the, the bind time that is happening here. So it this
is like I mean pass through the events assumption. So we do not have any control as to what the
$ B is going to be. So whatever we use whether we use so I think I give you realize that this is
basically the stricter form of the specification and whereas this one allows the wvariable

substitution.
So even if you do the variable substitution in the command substitution this value is still

unknown. So this is you can get it in the bind time but this even time value is still not set

properly so in order to do that. We actually need to pass it into a frog and the proc is always

constant on the even time extracts a one time and then now when you pass the, the bind 10 value
into the park here you can get the correct answer and that is what comes out as the, the value for

Y and then you can continue that even more further down.
So this is again another example of how we use the list commands, so again you hear the list so

that it does not change a thing it still treats these two as two separate items you will see more of

this kind of thing for the other one other TK introduction.
(Refer Slide Time: 13:11)

Other Tk Commands

The selection:
selection get
selection get FILE_MNAME

lz=uing commancds to other Tk applications (5 anly):
send tgdb "break tkEval.c: 200"
winfo interps
7 wish tgdb ppres

—can alzo wse 2oc ket o de cnoss-pladorm

Window informeation:
winfo width .x
winfo children . e
winfo containing 5x 5y

Now the other Tcl commands the so we saw like bind back place things like that these are the
commands that we saw for the TK now the next command is going to be selection and then the
selection essentially if it is to select click pin one of the file form in and in a group essentially. So
the selection essentially ligaments it registers a Tcl command to handle a selection request
decision you, you so in a selection essentially the, the concept is basically that there is a given

owner for selection and the applications are requesting the value of the selection from the toner.
So you can think of it that way sincerely so, so the X server itself keeps track of the ownership

the applications are informed then some other applications take away the ownership okay so
usually the selection get goes hand-in-hand basically. We will select and get essentially it returns
the value of the current selection. So here, selection get filename basically like returns that file
name as the value essentially and if the trial N does not exist with a Google burn before Reuben

for in error command itself returns an error.
The other way to use this is essentially I mean so usually like I am in the selection get results in

strength. So this is the value that it returns the other ways to do it is basically with selection clear

which clears. Whatever was selected people like or specified selection there is a selection handle

essentially which is essentially to define whatever you can you can do a selection and the norm
of command essentially that command basically like. I mean so that you can define that

command to be the handler for the selection.
Because, so the collection value has been passed into that that particular comment then there are

other ones are like the selection poon command essentially which you know gives the pathname
of the window that owns the particular selection okay so and then the other one is issuing
commands for two other PK applications so here again we can send these kind of commands
essentially within two um we send tea G D B they can then break TKE well this is the command
that we are sending it to this particular application. And then we check for the inter P H

essentially using the W info command.
And then we get this particular TJ application. What is good so we can use the socket to do the

platform applications this VD saw in the previous lecture. Itself and also we can get the
information regarding the window information window information commanded the W info and
if you say like W info width of this particular window it returns what is the width of the window
and then what are the children basically so what about associated windows which have defined
as part of the bar X or here it is the top level. So you see all the ones and then it also like you can
ask scene specific requests as to what is they have been doing for containing this particular

location before window.
(Refer Slide Time: 19:22)

Access To Other X Facilities

Koevhwand focus:
focus Ly
Commanicntion with window manager:
wim fithe . IIE[}“TH'IEI maln.c”
WIT goeormetry . S00%200
wim iconify .

Deletimg wimdows:
destroy .x

Cirnbs:
qrab X
grab release X

And for accessing the other X abilities that is also like focus dot X, Y, Z to generate the keyboard
focus this also like you can communicate with the window manager. This is WM command

essentially. So title is or this window is editing main C or when you have a window the title bar

has editing may not see. And then we can also set the window manager or the geometry so this is
a ball at the top load it is 300 by 200 and then we can also like I qualify that means basically then
they expect those small - bus and then the exact command. So if you have - it would not go and I

quantify that particular window.
So that those features are available for this one and then for deleting the window basically if we

then use the dislike amount. Basically destroyed door X will destroy system so you can park the
excess is you find that thing to destroy it or something missing. So this way you can destroy the
dot X window and then there is also like grab and grab least amongst basically but this you can

grab a particular window to do some operations and then also destroy that you that mean.
(Refer Slide Time: 21:16)

Example #1: showVars

Thisplays values of ome o more valoes, apdates
artomwatically:

showVars .vars name age ssn phone

R BT, TN

So now here essentially a show Wars command basically this is displays values of one or more
values are essentially like variables and it updates automatically. So here, we specify like show
our dot wars and then name age HSN and for so it displays like the variable values and then in
that window it shows like what even mean this Bob age 34 social security number and then also

has a phone number. So these are some of the other comments.
(Refer Slide Time: 21:55)

showVars, cont'd

proc show'ars {wargs}{

toplevel $w

wim title 5w "“Variable values"

frame $w.menu -relief raised -bd 2

pack Sw.menu =side top -fill x

menubutton $w.menu_ file taxt File \
-menu $w.menu. file.m -underline @

pack Sw.menu.file -side left

menu e _omenu filem

fermenu_file.m add command dabel Suit b
-command "destroy $w" -underline 0

-

So there is the show wars procedure basically again it takes the window and then the arguments

this is the top level. Again we name the window title as variable values as you can see here, the
state and then we specify like I mean what kind of frame that we want which defines all these
aspects. Of it on the frame element oh that frame is defined, and then we also specify the button
and poking me like I mean famous essentially well for the menu button. And then we pack that

on the side the top fill and then.
We specify the mini button mini file so you can see like basically like the color W is the main

window the top level the dot and then it has a one-child menu and then another child five and
then this file is basically like the politic this text at file and then we specify each of its own
attributes essentially and then that has this M . So we will put here that is this, this particular
window here. And then we also like now back the thing and then we also defined here and we

knew it is another sub modular another child for this particular menu window.
So and then in that one we define basically like the packet to the left so from the left seed packet

and then we specify basically. What is the thing so as you can see here the file has all in all quit.
So we specify the command as label squid and the command is actually this like that and then so
want to underline the first ones that inform underlines is also they can 0 to F is underlined so also

it is also gives like a shortcut because you can pick on F to open it and post things like that.
So here, the label quit and then we say like the destroy whole window using the destroy

command mainly. So that if you say quit it completely erases the window, so again a quick look
into this now we can actually add this portion of it on top of it so we see. So now the next one

which is the second piece of it. So here again so all these things are these. Represent the previous

thing so we define these things. So in this one array some of it so we covered this portion and

this portion in this next when we define this entire procedure.
So now we will go into how do we get this piece of it so for that first we need to define the

variable values so which is just this much so how do we do it basically we again define the frame
and then so here now we have like this one as the $ W dot menu now this portion will be called
this window is called on W . and then that we are packing from the bottom so we are and then
title is anchored at the center is variable values and then we use like which kind of font that we
want to use so and then the title is essentially like. I mean we packed it the top of this particular

box so now let us look at the next one.
(Refer Slide Time: 26:42)

showVars, cont'd

pro< show'ars [wargs}{

foreach i Sargs {
framie Sw.bot.Si
pack »w bol.sl -side top -anchor w
abel Sw.botSi.name -text "§i: '
abel 5w baol.Sivalue lextvariable $i
pack Sw.bot Siname -side |eft
pack Sw.bot S value -side left

H
F

showVars vars name age ssn phone

7E
O

‘Warehie vElupx
]
o 3
RL]
e $54 1

So now the main thing is the throwers need to display the names age social security number
telephone for that. We again describe few more the when we read the art essentially that are the
onions and then we are going to expand that. So for each of those arguments we define the frame
which is the same as the argument. So name so it has a name on it and then that is fed to the top
then that has the text of whatever the argument that is Paso for the name it is just the name. And

now we also assign a value which is the text variable $.
I which is it is getting it from the flow itself there is no binding ball and then finally. We have a

name basically like that is side left side and then the value is. So the way that we are at an is
basically or more this name and value. So we put the name first and then the value okay so here
the name refers to balers I dot name and then the § value is $ I. Value which is basically in this

case it is ball and then this we do it for all the arguments.

That is specified through the show estimate so essentially like I mean it does it for me then it is
eight. And then if then and then finally on mobile so I hope like I mean this example was clear
enough how we can get to this point once again. So simple start with the show wars essentially
we are going with is form going to the dot wars window. And then we want to you know display

name eight social security number and phone number.
So we start by specifying the top level into the table window is nothing but essentially it has

variable values as banner and then in the frame we specify how the poem will be good and then
where do we put the text essentially. And then we also create a one another child window which
is the venue essentially. So that menu again it becomes a button essentially and then it has the
text as file and then we create another child window underneath it which is called quit which

essentially gets this window out now?
(Refer Slide Time: 30:05)

showVars, cont'd

proc showVars {wargs} {

Foreach | $ar
,lr | frame ﬁ;};%

g top -anchor w

et S
paite xt'u'arlahleé:—

| pack Fw. ot sl & =side [Tt
pack FwBotSLvalue -side left
}
} cl” ";I}]_jl_l, I Yaishis vakies EIE

show\ars .vars age ssn phone

Once we define the top level stuff then now we have to define the all the remaining stuff for that
we build the window into two separate things basically, so we build first the variable values and
then we can populate this from the flow itself you so this is something that we saw here this one
so basically that even time versus buy them ,so in order to do that what we need to do is first we
define this particular move also not very challenging we define another child window called the

new bot.
And the W... and then we define it is attributes what kind of button it has basically and then what

is the text that goes into that once we do that then we probably the remaining stuff which is the

what is the name what is the e to the number one phone number and for that we just use a for

each command to generate for each one of them like for name or the for the scent and poem and

the types that we want to build or be essentially again.
We need to do another style though the child window will be like just the name alone in the age

then if a sin then form, in the name one we define two variables one is this means of which is just
prints whatever is a sign here and then this one gets to the event modification , so I think like this
is one example, I also want you to actually practice this more, so that you can understand the

concepts much better.
So once you start writing the TK code then you will be fine you should be able to figure out all

of these even driven things one of the key aspects of any windows more graphical user interface
kind of things is this event driven mode ,since you so everything is an event when you move a

mouse it is an event and how do you capture and how do you reacted that is one.
(Refer Slide Time: 32:50)

Example #2: mkDialog

Creates dialog box, waits until button pressed, returns index.
W o Mams Fitle Mgsape Bilmap
]

File rﬂ{:\dm‘ed" msg Erl1‘|ll'lg 1
iscard Change eturn to Editer”

Rustom |abels

Wi Bav e ooodklied die file Teotd ' Die
v wish fo sovd v ahongdsT

'
D] Thamrr Rrann ko lskn j
Tm—— i

So now the second example that we will look into is for the making a dialog box essential so a

dialog box is the mainly take the window like this there it pops up during some program
execution it asks you for a separate cell one question will ask you one question and it has
separate several choices and then you can click one of them and then that particular thing is

existed.
So in the TK terms we can say that basically for make dialogue is the command name and dialog

D is the window man window sorry dot d is the window name and now we have a title which is
called File modified and then what kind of message is this, so we tap it as like $ message so
warning you and then we are also have the button labels so each one will generate one button

here. Changes and return of editor.
(Refer Slide Time: 34:25)

mkDialog, cont'd

procmkDialog {w title text bitmap args} {
lopTeTelFw
wim title Sw Eitle
wm protocal SwWM_DELETE_WINDOW | }
frame Sw.top -relief raised -bd 1
pack $w.top -side top -fill both
frame Sw.bot -relief raised -bd 1
pack $w.bot -side bottom -fill both
label Sw.msg ~araplength 3 -text Stext’
SJustify left -font

-Adabe-Times-Madium-R-Marmal--*-180 440000
pack 3w.msg -in $w.top -side right?
=gxpand 1 =M both -padx Im -pady 3m

1
i hive modidled the e oo da Do
wvau wisth 2 o vowr daangest

So how does this work so at a high level this is the commander make a lot but underneath that

what you have to write this basically is the sub procedure being dialogue and it has these
different things essentially with window itself it is title the text the bitmap and then the various
arguments, so we define the top level as the view $ W and then we assign the title to this
particular window, then we also create some window manager protocol basically which is it just

says basically like how do we delete.
This particular and then we define a child window this is the $ W dot top and then the child

window and then we also the child window is actually or this top is packed at the top level the
topmost point and then we also have a similar one for the bottom side which is again another

child window in W . Bot and that go into the bottom and now we can also specify some label.
The label is essentially the text that we graph here the text is like that you have modified the File

TCL and do you wish to save yourself so simple command but it takes a while before we can.
(Refer Slide Time: 36:21)

mkDialog, cont'd

proc mkdialog {w title text bitmap args} {

if E.Sbllma I= """

Iahell‘g';: bitmaptbitmap $bitmap
|m|:kl$w i b =in Fw.top -side left)
-padx 3m -pady Im

1 el L iiva ki e Ble Teotel. Do
wirs wish bo save yaur «hasgesT

So now once we finish basically this packing this again is the first one now what we do you so if
you do not provide any bitmap actually like mine even employed the bitmap and bitmap is not
null then it adds that bitmap essentially, so we have a new window called bitmap and then we
pack it through the left side and then it is pack on the left is the three millimeter by Y is 2

millimeter. So that is how this text is being displayed.
(Refer Slide Time: 37:24)

mkDialog, cont'd

proc mkDialog {w title text bitmap args} {

setil
foreach but $args {
button $w.button$i -text $but |
scommand "sat bulton$w $i"
pack $w.button$i -in $w.bof -side leftl
==xpand 1 -padx 3m pady 2m
incri

i

¥ ¥ou baree modified die il oo sl Do
: s i b e ware chompes?

e Famap e |

Once we finish this then now we need to put the last bit which is the bottom window so for that
the command is set I =0 or each button in the set of arguments we create the button essentially as
a child process to the main one and then we call the button as the $ but essentially as the same

text format that we go and then we also assign the command set button $ W $ I so once we do

that then we need to pack basically this one and the way that we pack is essentially one two three

. This way and then we going into the next and grab the next button.
(Refer Slide Time: 38:31)

mkDialog, cont'd

prac mkDialog {w title text hitmap args} {
global button$w
i 4

-

grab fw
set oldFocus [focus]

=y
thwaitwaTiable buttonfw

destroy Sw
focus SoldFocus
eval return $i{buttonSwi)

And then finally we use the button so here we notice basically the buttons are safe file different
return to editor so we do the we grab the global, I mean actually like defined this global button $
W and then we grab that window manager set old focus to focus and then we do this focus for
window and then we just variable it we do it TK weight or variable button and $ W we destroy

that window and then focus.
It then is another common focus command is for the old focus and then we just return the

evaluation with the button.
(Refer Slide Time: 39:35)

Summary

& Creating interfaces with Tk is easy:
— Create widgets.
Arrange with geometry managers
Conmnect to application. each other,

Power from single scripting language:
— For specifying user nterface,
— For widgets to mvoke application "
— For widgets w commumcate with each other,
— For communicating with outside world, -
— For changing anvthing dvnamically. -

Okay , so in summary creating interfaces in TK is an easy way basically we can create widgets
you can arrange with the geometry managers connect to applications and each other so these are
all some of the key benefits of articulating and then always enamels better basically , we have a
single scripting language that you can use for variety of things, so whether in to specify user

interface.
When you want to or some widgets to invoke an application the widgets basically to

communicate with each other for communicating with outside world is another one and then for

changing anything and then so in summary.
(Refer Slide Time: 40:47)

For Next Week...

& Write 2 GUT that provides an interface to a program
om vounr system by collecting command-line arguments
and then running the program. Example: a graphical
imterface fo the UM cal program that collects a date
via menms, then shows vou a calendar forr that month
or year by open’ing a pipe and reading cal's sulput.
Provide a screen shor if von possibly can.

Think very seriously aboul a term project; an
expanded version of this assignment would be
appropriate.

Read Ousterhout Chaprers 16-19.

& Mext Weel: Text and Canvas Widges; Tl Extensions:
Move Advanced Examples o

We saw like a couple of programs before that we started with the key bindings essentially
bindings and so one of the key aspects of TK and then the bindings essentially we actually bind
commands and to various events by using the bind command, so why is this useful essentially
this is the way that we can execute commands then you go process the any kind of keys or any
interaction that the user has we can immediately do a bind that even to a particular command and

then we went into like.
I mean specifying what kind of specific events are there and we also understood how to do

subsistence within the binding and then what is the order of the bindings.
(Refer Slide Time: 42:22)

More Quoting Hell

* Often want binding scvipt fo use someinformation
from i mg—mrﬁ. some from event-fime.

& Uselist ¢ wands to renerate s

piformation

[lse event-tinme value

Because multiple events can happen or even can actually trigger much the bindings now which
binding gets a priority of forget the presence that is the key thing and then one way to do that is if
until you want to so it goes in the default order of both packs essentially that is digit followed by
class followed by top level and then followed by all so there is a hierarchy there and that we need
to keep in mind and then essentially like ,I mean we have like text and also like the canvas

widgets.
The data support that support bindings internally, so here is a text one basically which is like the

tag is all these specific internal bindings and then for creating a rectangle we need basically the
length, width ,height ,actually length and width of the rectangle so that is again through this
command in specify ,now we have like two concepts basically this is the binding time and even

time and how do we do this essentially because any script would want some information from

the bind.
I mean you are interactively selecting and then some things from the events and driven all the

time so how do we do that how do we select those things we cannot use a single modifier like the
chart we learned in TCL programming which is like the curly braces or coats the court reads the
soft matching essentially it tries to replace all the variables hand or the command names whereas

the other one does not do it.
But we cannot use both of them so we go into intermediate form there use list to actually

separate these items and not having to collide with each other, so once we have that list you can
send in a specified here what we need to specify inside is based on how deep you want to go
essentially and then essentially here the set Y a proc ,which now keeps track of the binding time

information only like.

I mean we pass this $ a into that particular procedure and that is an even to even given mode and

then now you get the results and compare essentially.

(Refer Slide Time: 45:33)
uvrher 1K Commandas

b The selection:
selection ge

b Issuing comumands to n:_j_rher Tk applications (X dndy):
send tgdb "break tkEval.c:200"
winf::u"‘i-!;ﬂterpﬂ z_____
4 wish

can also use socket to do cross-platform

b Window infors

winfo width
winfo children
winfo containing*§x $3.f

And then we also saw some other mother TK command select selection get this one over and

then which is essentially to give the level event basing it in memory and then when you want to
issue commands to other TK applications basically, we set these to parents from run document
and then it should be fun and then we can also like get the windows information that is W info

width the W info for children the will contain one also things like that.
(Refer Slide Time: 46:10)

Access To Other X Facilities

+ hoevboard focus: %
“focus

cation with window manager:
'. . 'Editing main.c"
geumetry‘ﬁﬂﬂﬂm—

wm iconify .

* gl ovvs:
destroy .X__

Carahbes:

ab.x

rab release .x

And then we can also access the keyboard focus using the focus command so you so the focus
command essentially ,so they are part of the dialogue box of them for school and then so the top

level window essentially have the input focus essentially and then you can require the focus to

change from one together so or can specify the keyboard $ x $ y which using the box or the
syntax and then we can also communicate with the other window ,communicate with the your

own window manager using WM command stands for Windows management.

And then we can destroy any window using destroy .X and then there are some add essentially.
(Refer Slide Time: 48:05)

Example #1: showVars

Displays values of one ormgr s, updares
automatically: - v:uﬁgf“_“f

show\ars v ame age ssn phone
— m—

[

— e e

Then we looked at a couple of examples the first example, being the show art example as to how
to write this so show vars is essentially there is the procedure and so as with any other procedure
the show vars the variables essentially and then args, I am sorry the dot vars is the window and
then the arguments so this is the window, so in this window how do we specify things basically

an X will be a building whole program here.
(Refer Slide Time: 48:50)

showVars, cont'd

.-F"'J ; = _ 'y-\} A '|II

prodshow\ags {wargs}{ _——" ‘:f L

fopleva T

wm title fw v

frarm . g =bd 2

pack ﬂillli Ferfside i r wd

menubtrting 'F-TFJ-:) '

emyundeTEo) M
pack Sw.mEMTTIE -side |left

menu 5w, menu.file, m

S meni. file srodrrmsaand -; Cruit
-command "destroy $w-underling
— —_—

So we call this as the show args procedure which has a window and then whole bunch of
arguments again here and see that X boxes left as infinite list and then now we set the top level to
be the name of the window then he put then the title as variable values then we generate new
windows from the original one and here like I mean it is a menu and using the frame command
so this is a child one we can see what ,] mean we can show what is the textbook for this one and
then what are the menus essentially and now the menu itself can have additional child for

example .
If you want to define with which destroy the whole window you can put it there and then we also

continue it with that and then looked at the remain drug program essentially so here we donate
another child window or the dot bot and then in the dot bot we can actually specify the variable
values if it is not done there is one more part which is more we have to show all the base pieces
of it so basically what is the user specified once essentially and then for each one of them you

need to know go and find out from the event mode.
What is the value of the various variables and then substitute those values main output and then

you are done so here we specify like two items , so for each one in the menu basically define the
new windows and then we say like how to pack it and what to anchor on and then basically these
are all in terms of like name value pairs ,so the bottom ones around like name value there so that

once you fetch the name we know the body so that was one quick example .
(Refer Slide Time: 51:38)

Example #2: mkDialog

Creates dialog box, waits until button pressed, refurns index.

Window Mame =\|'\. sapge Bitimap

|h- Fﬁ’rﬁrd' L '-rmnq |

|.1|:E|r|:| Ghange; EEUFH tD EdItDI

And then the other example was make dialog box is so against which where does make dialog

dot d then file modified $ message warning and then we say file discussing this on the computer

so the when this dialog box opens basically we will see both there is some method here and then

it has these P button say file starting this and return to editor.
(Refer Slide Time: 52:10)

mknlalng, cont'd

prucmlea tma ;Jr'l:;'s‘.-;i
tl:.:-p Ui

wim title
wmj:_lratc:c S.w WM_DELETE_WINDOW { }

1‘_|1H.l

packgw. ide bottom -fill bot

label S'.-.' msg ~wraplength 3 texm
Justify left -font |
-fdabe-Times-Madium-R-Mormal--*-180-*

pack 3w.msg -in $w.top -side right
=zxpand 1 =M both -padx Im -pady Im

1
Toods s meadidled the it Foes 2. Do
van wirh da_orve vaor changes?

And then essentially like so how to build it is again we have the input is already specified and

then we define the top level a top level window. And then we define a tail for it then we can do
like delete any kind of window basically which is embedded thing already there and then that is
pretty much it so once we have this form system you this window cover then essentially like now

what we need to is we need to bring up the various buttons as bitmaps.
(Refer Slide Time: 53:03)

mkDialog, cont'd

proc mkDialog {w title text bitmap args} {
global button$w
o

grab Sw

set oldEocus [focus]
focug Sy
tkwaitwatiable buttondw

destroy $w
focus SoldFocus
eval return \i{bumtoniwi}

So here again ligament we are passing the bitmap basically which is and then it is back those
things. In then we want to also generate on each of the arguments we need to generate the bottom

so we know that the arguments are safe. [am discard changes and return to editor , so for that we

need to put some file for that you and now the last one essentially which is so what kind of things
it will say so we basically we grab the window and then we set the old focus to the new focus
and then focus be changed to the top level window and then we wait a bit available and for the
button press then in that case we can the display the value and then save the old focus and then

we go back to where we come from.
So in summary essentially like all creating interfaces with the TK easy its widgets and then we

can arrange with the jagged geometry manager and then we can connect to application form of
each other, so I think I am going to stop at this point will you continue from this in the next

lecture okay.

