
(Refer Slide Time: 00:00)

(Refer Slide Time: 00:02)

Hi every one so we are talking about some of the control structures. I also wanted to highlight

one of the things about sort we learned about sort in the previous lecture we can use sort to order

a list and assign the result to another variable for example, here in this one the let one okay is all

these various letters and then we assign the sorted form of let one to the array led to one thing to

remember with sorting is when we just use a regular sort it is always an ASCII sort but what that

means is it results.

In the lower case disappearing after the upper case letter also the number will sort in a different

order than you expect for example, the twelve will be after one or two because each position will

be sorted basically the numbers will be sorted on the positions it is not on the numerical value so

if you want to sort different way like. I mean for example the real numeric part where you want

to have twelve before 102 you need to have different sorting orders, so for that we use we need

to use separate ones separate parameters.
(Refer Slide Time: 01:50)

We saw this briefly in the previous lecture so here I am going to move in elaborate it is a little bit

more as to how to change the sort order ,so essentially as I mentioned basically to change the sort

order you need to add an argument to the sort function the argument is a block of code which

contains instructions as what is the news or problem ,so inside the block of code we define two

variables which are $ a and $ b and these are the element this are the variables.
You indicate the elements in a list and then we define a logical operation between these two to

denote what is the real sort or the logic returns one of the three values then comparing a and b

that is one if a is less than b or one if a is greater than b or zero they are equal so assume that I

mean this is the given condition.
(Refer Slide Time: 02:48)

So we use now a specific operator called a spaceship operator which is less than equal to greater

than all three combined it looks like a spaceship , so hence it is a spaceship operator.
This performs the comparison of a and b the spaceship operator essentially returns negative one

if the left is less than the right and one if left is greater than the right and zero when they are

equal so here is how to use it basically so the new list is sought a shape operator B and then the

list so this is real numeric value sort essentially like ,so essentially this works with numbers and

it does not work with strings.
So just take care when you are using it but we saw this operator and this how to do sorting of

numerical arrays at the time we did not specify this basic of again the detail, so that is the reason

why I increase this these slides.
(Refer Slide Time: 03:58)

So in order to reverse essentially like a sort from the highest to the lowest all we got to do is this

what this is also we saw but this one basically like $ B and then you use the spaceship operator $

a if sorry go a and if this is the condition then the list or the new sorter the sorted list will be from

the biggest one to the lowest so in other words like a 102 followed by 12 which is I mean not the

number order.
But essentially the numerical value essentially just keep in mind also Perl has the great function

the gap function typically searches for patterns in an array and then the syntax is essentially like

this grep followed the pattern and then the list, so for example if you want to find all the

elements with pattern day in an array which is array is defined as Monday, Tuesday and Friday

essentially like. I mean when we say like the array list equal to grep the pattern.
The pattern is always enclosed within the slashes that we already know book and then this is the

way that decided that we have specified there this will populate the array result with the

matching elements in this case all the three will be left it in this is successful.
(Refer Slide Time: 05:48)

So why is so let us see like I mean how it works and how it works basically the grep works by

proceeding through an array one element at a time assigning the element to the default mineable

$ on the scope this we know above the $ underscore is pretty much common then the pattern to

be found is compared against the $ above, so goes through these two operations number one is to

assign one element to the default variable and then it compares the pattern against the $ on.
And the sort and then once that that is successful then it is getting the pattern is found then the

expression is true and then the element is written by the way if pattern is not found then the

element is not written by them ,so this way we can accumulate the value element or in an array.

So why is grip important is because now we can do like hash intersection system essentially so

one common task in Perl is to find intersection of two hashes or arrays, so means like we built

one array from one file and then we grab to see like whether there is any much so to find an

intersection the grep function is very useful.
(Refer Slide Time: 07:25)

So how do we do this essentially what we do is so here the problem is to find the intersection

between these two arrays , so here we declare another hash or temp and then we for each of the

elements of already hopefully create the hash or essentially like add the elements into the factory

with the index as the arrays element and then the value of the actually the key as the array

element and the value as one now the intersection is fairly simple the array intersect is same as

group of the temp $ underscore and then of all the elements in 32.
So for each of them basically like it finds out what is the value there so essentially like the code

start by setting up an empty hash for each source each element in array one in $ underscore one

at a time and fills the templates with them and sets the value to one the last line examines the at

array one element at a time and sets it to $ underscore which is gripped in the azure a temp if

there is if there it is an intersection element and that is added to the intercept.
So each value each one from array two that is stored as $ one before and that is searched in that

array in basically in this patch array and if it is there then it returns that particular value and

which is actually stored in instant ,so this is a very easy way to do an intersection.
(Refer Slide Time: 09: 45)

What if you want to do a difference of two ,two ways so all we got to do is we get for negate the

search condition essentially, so we build the same array only thing is when we do the grep we do

a ! in front of the temp under so this will give you the intersection or essentially the difference

between two arrays, so whichever the element that is in array 1or array 2 that is not an array or

both of them that those elements will show up in the at the array in set.
(Refer Slide Time: 10:33)

Now I want to introduce you to a new variable which is $! So when an error gets reported by pull

that ever gets stored in a special variable called $! So when we when we examined in this

examine numerically $! shows a number but if you are examining is a string it shows the error

message from the operating system now we can use this as part of the dice string essentially Like

so it is a hand open and then $! Within your line so this statement will display the message and

open followed by the error string from the operating system when array to string.
(Refer Slide Time: 11:27)

So instead of even bombing out of a program using dime we can simply use a warning to the

user and then the warning messages are conveyed through this one, so this begin another

subroutine with the message and then basically one gives the warning message the want

command will display an error on the face where the program will keep running, so you can use

the want codes to warn you the error codes with the one basically that is the same $ $! Along

with one.
(Refer Slide Time: 12:06)

So we talked about the file open file well for one thing that we did not do in the last lecture was

how to test various files essentially, so what this means is essentially again we can also test

whether a file is read only write only or whether we are opening it directory things like that so

this is the similar kind of test that the same let us perform the UNIX essentially both can be done

inside of pull as well.
So the usually like I mean the this test is done as if that our file and then this file is

predetermined more file handle and then we do some operations so this particular test basically

like I mean the really essentially test for whether this particular 500 is a read-only time and this

condition has one valid option followed by the five handle to be tested alternatively we can use a

file or a full path of the filename insurance. I will handle, so here we do not we are not restricted

to this using the five handle we can also use the full name of the file.
(Refer Slide Time: 13:37)

So the test is essentially like I mean one of them you can perform and what are the tests

essentially there is a whole bunch of tests in Perl - upper case B is true if it is a binary file - the

test for better set directory - II just tests for whether the file exists in the whole thing and dot

branch F text if it is a regular file - uppercase M returns the age in days ,since last modification -

are basically it is the R double . - S will return the file size both $ upper case T is true if it is a

text file $ W is a writable file and then the I mean Z So it - W - is writable file and - Z is true if

the filings existing but it are an empty file so these are all the various tests.

(Refer Slide Time: 14:44)

That we can do so we can actually use these tests to verify files when opening or writing if you

are prompting the user for a file name you can also check to make sure that the file of this and it

is the correct type of data that you want to use it in the program you can also test to make sure

that you are not overwriting existing.
 (Refer Slide Time: 15:14)

So now the other operator that you always find in Perl programs is what is called strict.
(Refer Slide Time: 15:24)

The Perl’s keyword strict is essentially like a will tells the interpreter to use much more care

while evaluating or than evaluating statements and to display the warnings and error messages or

everything it finds questionable essentially like - one thing to notice usually Perl, will let you get

away with quite a bit of quite a bit before actually complaining about something using strict is a

good way to enhance your programming abilities to use this one basically this would use strict at

the top of the code.
(Refer Slide Time: 16:05)

So now let us talk about the Perl debugger.
(Refer Slide Time: 16:12)

So the pearl debugger of the parts of the debugger is Perl interpreter is a debugger that you can

use to examine the implication of Perl scripts the debugger allows step-by-step execution of

scripts examination of variable Perl scripts and the use of a breakpoint ,so these are all like

typical use of a debugger which is also like available in Perl the debugger is built into every Perl

interpreter and it is activated using the dash D option in launching the interpreter or example Perl

-D my program dot text activates the debugger.
(Refer Slide Time: 17:00)

When you launch a program with the debugger option you will see the version information or the

Berlin with Perl interpreter and then help prompt enter H or code 8h for help then the first line of

the script you will see a message showing which filename the statement is in and what the line

number was finally the debugger prompt DB , so at this point it is waiting for you of debugger

command.
(Refer Slide Time: 17:45)

So when the debugger shows you a statement between the cache already to be executed but it has

not been executed that is the key thing basically ,so it is not executing the statement it wait for

you to tell that the exhibit each statement read by the debugger and be examined and

manipulated prior to it being run this allows for some changes or abominable moment before

each statement is executed this is ideal for debugging the script so any work one valid person and

can be used at the debugger formed.
(Refer Slide Time: 18:22)

You can get help from within in the debugger at any time using the H or help command I am

usually followed by the command that you want using about for example, the help on break point

map is simply type H be the command H, H shows the summary of available commands and

their syntax, so that is like help on how you think of it that way to page the output from the help

system put the line operator essentially in front of the command ‘HH’ this lets you to place down

the system commands.
 (Refer Slide Time: 19:17)

To list the next ten lines in the Perl script use the bar command every time you issue the bottom

and the next ten lines will be there will be shown listing the lines does not affect the line That is

being exhibited it simply shows you the next, in line box court the next line to be executed is

shown like three equal to greater than sign you can also specify which lines to show by using a

range that is L 10 through 15 is essentially LX shows line on 10 through 15.
(Refer Slide Time: 20:16)

To run each line one at a time in the debugger. We can use the next command or the end the man

each line shown is showing on the screen before it gets executed to see the value of a variable

use the print command at the front which is print $ bar one. I am going to give you the particular

value of variable and the current values can be shown without affecting the program and similar

to other debuggers.
We can use the N command to step through each line of the program on the combination then a

subroutine call is encountered by the debugger in the script it executes the subroutine as a single

column does not show the lines in that subroutine to jump into the subroutine and walk through

line by line we use the S or the step command, when you issue the issue the step command the

debugger shows each line one at a time executed inside the subroutine and all rallied a vocal

commands can be used inside sub you.
(Refer Slide Time: 21:34)

 (Refer Slide Time: 21:40)

(Refer Slide Time: 21:42)

(Refer Slide Time: 21:43)

 So using the break points essentially actually break points let us look at the break points we can

use the N command to step through the program let the debugger run all the lines until the some

condition is not this is a break point and it is set with the command we can set a breakpoint at

any line number by specifying that particular line number so for example, b10 we will set the

breakpoint at 9:10 and see on the continue command lets you continue executing after a big one

has been today.
So how do we use or why do we use big points, so we can set a breakpoint on any line of the

script except those that have just the curly braces or closing balances a blank line or a comment

usually breakpoints are used after a loop subroutine written or any complex command, so that

You can verify the actions taken you can set the breakpoint anywhere except those listed above

to show all the breakpoints that are set In the script use the uppercase L commands to remove the

breakpoint we can use the command followed by the line number all the subroutine number if the

breakpoint is set to the sub for example b37, will delete the breakpoint that is set in some

position and then the reset command you can reset the debugger to clear all the breakpoints, in

the variables and restart the infusion of the script from the top.
Just one command this is the opposite armament and reset is executed any defined variables lose

their value and then the first line of the script is to be executed is the to be the student line, so the

built-in debugger is acceptable for simple tracing on debugging it is all it is not suitable for very

complex task also it is not graphical.
But there are many ,GUI-based debuggers available in the market some bundle with pearl the

distributions and some are standalone debuggers the active state pearl distribution as a windows

burger in the package for example and there are several available or UNIX and Linux.

(Refer Slide Time: 24:32)

So I think like I mean that pretty much concludes this half an hour of this lecture you will

continue from this one in the next one okay, thank you.

