
(Refer Slide Time: 00:01)

LINUX PROGRAMMIMG
AND SCRIPTING-

PERL 8
Hi everyone again welcome to the LINUX programming and scripting course today we will be

continuing the lecture on Perl, programming language today lecture of eight Perl programming

language so last lecture we covered several topics actually two main topics, then we went into

the detail of those two I will recap that then topic of today, so let us look at last time.
(Refer Slide Time: 00:44)

What we covered the main the two topics that we covered last time the hash array or associative

array and the references, referring of variables the Hash or the associative array essentially this is



defined we saw the definition it is basically define as % and then the main then we also saw how

to add the objects into the array, how to modified the objects.
Typically I like mean the modification is  $ name  and then we use the {essentially denote that

which object that we want to remove one key thing that we noticed what actually the when we

actually define it has key value there and usually we see the association by using =greater than

symbol to form the association typically all these ket value etc that is how we can define the

$ name array, each of so this keys and value access the modification simply by calling the key.
And then changing that into new value so corresponding changed and then we also saw that to

initialize hash array we will just simply do the % name =just open those parenthesis that will

initialize the array itself and then we use the hash arrays we use it with either the keys or the

values  when we can  actually  like  just  get  all  the  keys  or  all  the  values  one key thing  key

difference between hash array regular charm array is that hash array as only association between

key and the value it does not have any association with the key one and key two for example. So

there is no relation or value one and value two in a regular array.
We know that actually the value implemented by 0 1 2 3 etc, so each object will have it is own

index, essentially like I mean special key and the values so and the gain we can access the keys

basically and then we can sort on the values and then we can get various resorted keys what is

the value foe resorted value what are the keys those kind of things we can easily get from this

array.
This is every useful as two dimensional array has I mentioned we can denote like points of in a

plain things like that essentially we also saw one example which is kind of dictionary creation

either a dictionary creation or even a phone book creation were we can have key indexes as the

name of the people and the values are the corresponding phone numbers so and then couple of

other thing that we saw actually like the addition is not actually, does not follow any rule.
It is just get added and element, so we cannot say this is okay course in the end of the Q or end of

the array or beginning of the array we cannot say anything like that it can go anywhere in the

middle  because  it  is  almost  random access  so  essentially  like  give  the  keys,  that  particular

element we can access directly we can have serially go through 1 2 3 4 kind of keys before

accessing the element so lot of good features.
That one thing that I mentioned last time also that lot of programming actually revolt around

nationalize in fact he will see any kind of practical applications this is a whole bunch of Hash

array that we get use in order to actually do this meaning to programming on main program you



suppose and then two popular features Perl that gets use more often one of them is a Hash array

the another one talk about yesterday.
Once you match the these two elements you can pretty much write any program inside Perl of

course there are some data structure that we covered in the next lectures, couple of lectures also

the other thing that we noticed or we learnt in the lat lecture was referencing and dereferences

the variables so what is reference of a variable is thing but the address where it is stored so you

know that actually the memory structure.
Is usually there is all  these it almost like a table you can think of this  and then one side is

addresses and then this  is  a map so a memory with lie  a 32 gate  will  have like 32 kids of

addressing space each one store a  byte or bit  32 based on you can have that  many storage

capability so bit system may be like a addressing meaningful here is byte 8 ,8 bit can be address

a on e short so the 8 bits will have unique address correspond to it .
So variable is nothing but one of this chunk of data base it an address and corresponding value

and typically we only we say like $ X=5 only have the $ as the value now what is the address

where this 5 is stored in order to get that is what we mean by referencing, the referencing we can

achieve it by an character like a \ $ X this gives scalar value and this scalar represent the address

of that particular variable.
So like Arrays things like that so we can easily get these references we also saw like a module

show you couple of things so here essentially like I mean list can be created by actually this []

this reference to Hash as if created by curly braces essentially so these are the some of the things

that we already saw and then all of them are the noticed the $ because it is a kind of a variable

which is scalar quantity, so which is in denoted by just by $. 
So once we have this how do we reference a reference already given the reference in order to do

that we use double $ with X and then that gives as basically back provide the access the scalar

quantity which is a reference itself and we can get back the actual value so then we can use this a

$ $ X to modify the value the reference structure and that we also we saw here actually this is

array actually. 
I like modify one of the variables we use the – arrow to – greater than actually modified the

element the particular element and one thing that we noticed was this concept of $ R 3 is not = to

$ R arrow I think I mean we have to noticed basically for a given R the R is not changing

basically the same here the R is use as an array variable here R used as a reference that the big

difference why they are not equal, so wanted to understand the this one. 



So I think like I mean this is we can introduce today’s topics, today we will be talking about

functions which is the natural profession for the topic, and then we will also talk about some of

the, the other biggest topic of the mostly most widely used item in Perl which is the regular

expressions.
(Refer Slide Time: 11:50)

So let us look at functions essentially function is the short form notation for repeatedly used

code, so essentially you can so if you here using something basically like that you are over and

over and in order to compute certain things, you can put it under function and then call this

function whenever you need it, so this reduces the is of programming, in Perl has you know like

there is no concept of compilation.
So in a regular programming language like C or C++ when you write function the function are

actually  compiled  during  the  compiled  time  and  then  they  are  they  come  in  to  the  actual

programs, and they can get the various parameters, similar to like subroutine and the functions

here in Perl since it is not a compile language only have functions there are no subroutine as

such, so the function consist of a function header and the body.
So the body is a block of the code that executes when the function is called, the identification of

the header, is through this keyword sub and then the name of function, so when we call like sub

and then followed by the name that means that it is the it is function, and then so, so the again the

same thing basically like mean so the function declaration consists of the keyword sub and then

the function name the declaration promises the full definition somewhere else.
So you can just define it and then basically you can actually write the function somewhere else,

and the function call itself definition actually use the function in a particular code, this can be



part of an expression as well, so in this case a function must return a value and that is that we get

used in the expression, the function call can also be a standalone statement, in this case return

value is not required, if there is one, that is pretty much discarded.
So sometime why there is  a return value which is just  used for testing purpose like I mean

whether the function was executed correctly or not.
(Refer Slide Time: 14:35)

So whenever  a  function is  called  the body begins executing  at  this  at  the first  same of this

function, the return statement in a function body causes the function body to immediately stop

executing that particular function, and then return the control back to the original program, and

then the return statement is also has an expression if the return statement also has an expression

values return as a value of function itself.
So return statement is another key thing basically it determinate the function by using the return

statement  and then  if  the  return  statement  just  has  the  plainly  just  it  when  we have  return

statement without any expression that is the function that returns value, and if the execution of

the function reaches the end of the body without encountering the return statement,  then the

return value is the value of the last expression value in the function.
So Perl assumes the implicit return essentially like so you got to be careful so if you do not

specify  anything  basically  like  you  have  a  junk  of  code,  the  last  expression  evaluated  will

become the return value for the particular function, so when you are using it you go to be careful.
(Refer Slide Time: 16:14)



So the variable, so here there is a concept of a local variable, one thing is essentially a in a

function the variable hat are not declare expressively, but simply as sign to have a global scope,

so you do not have to hang actually like a define declared explicitly, and they all have the global

scope which means that  actually  it  stands across the whole program, in order to use a local

variable this is something that we saw in the previous example also.
The keyword my declaration is used to declare the variable in a function body and that is local

function, if the local variable as a same name as a global variable, the global variable is still not

visible with the function body, so only used that the local variable is what is more get used, it

also  supports  the  form  of  dynamic  scoping  using  a  local  declaration,  so  and  then  the  my

declaration is what is the eating and that has a electrical scope it works similar to the rules of the

C, C++ and java.
We were also see some of the other types of actually declaring variables in the other topics in the

future, some of the other programming concept s basically how we can pass variables that means

the subroutines are the functions parts.
(Refer Slide Time: 18:00)



Now let us talk about another key thing that is the parameter, so these all like I mean actually this

one, we know that bock of the code that is basically like what do we get, the header actually

contains the sub and then the name of the function and we can also declare parameters at the

point, the parameter that are used in the function call are called the actual parameters, the formal

parameters are used in the function body.
And refers to the actual parameters, so actual parameters is linked to the formal parameters, so

you can say is declare the function sub XYZ $A, $B, $C, and then when you are using XYZ, $P,

$Q, $R and like system execute within the code, so if you look at this one basically like that, so

this subroutine essentially like an as a, these are the actual parameters and this are the form, so in

the formal parameters are not named in the function header.
So we do not have to actually specify this, without this they will get passed, and the Perl actually

supports both pass by value and pass by reference as means of passing the parameters in the

function, so the special array which is like that array underscore is initialized in a function body

to the list, to the list of actual parameters, and the element of this array is a reference to the

correspondent parameter.
Changing the element of the array, changing the correspondent parameter, so again we already

talked about the references and the dereferences so think about this one basically in this array we

only store the references so as we change the elements that corresponding those parameters are

actually the correspondent actual parameters changed as well,  so the values of this particular

array are assigned to the local variable which correspondent to the pass by value okay.
So these things will  be like clear  when we go through an example,  we have time to do an

example today if not we will be doing an example in the next lecture.



(Refer Slide Time: 21:30)

Okay Here is some, some other examples here, so here we declare sub plus 10 as the function

and basically like here we do not have to specify the formal parameters, so here we just specify $

- 0 + = 10 this mean that expanded has return a value which is whatever the parameter. That you

get + 10 so that is name of the function. And then the usages considered here basically so this

become the actual parameter. So we do the + 10 of $ A, the $ A becomes whatever the P dash

value + 10. So previously like $ A you are assign to 0 then after + 10 $ A, $ A will power value

of 10. So the first line of this function for the action parameter to the local variables. So there is

this function that we can think of which takes basically like in the values essentially. And it is

basically assigns the local variables from these from the array on the scope.
(Refer Slide Time: 23:20)



Okay so let us look how you do we pass the structures as parameters.
(Refer Slide Time: 23:48)

Trouble of thinks that note here is one is array or hash will be flattened it included directly in an

actual parameter list. So it own keep in has is basically they have flattened the reference to the

hash or array will be pass properly since the reference the reference is a scalar value. So if you

passing is by reference those references will be passed correctly.
(Refer Slide Time: 24:13)

So let us look at sort function, the sort function can be called with the first parameter being a

block which contain the numerical value based on the comparison of two variable $ A and $ B.

And this parameter is not followed by comma. For example like using the sort there is a < = > b

the sort will numerical array the Num using the numerical comparison. Where has when we do

this A and B in the other way than little sort in reverse order? So this way basics okay.



(Refer Slide Time: 25:13)

So we can actually now write a function essentially missing whatever we have learn this could be

a good day to actually find out how to write the function we will discuss this example in the next

lecture. But we know try actually write this function test median especially like to find median of

an array. Passed as a reference value, okay so this could be an example that we will discuss in the

next lecture.
(Refer Slide Time: 25:56)

So I think like mean so this is mainly the functions how much we define the function hash, now

let us go to pattern matching this is another second most important topic in Perl. Once image the

pattern matching and the hash array is pretty much you got a 80% of Perl covered already. So let

us look at the pattern matching some of these things that we talked about these in the earlier



lectures. So I would like to remain some of them and essentially Perl has a very powerful pattern

matching facility built in. 
Is having imitated in a numbers others with the regular expression that is scribed in Java script

chapter. And this is also like pumple that Java scripts forward these regular expressions, so the

pattern matching itself is a indicated by this M operator. M we can think of M has a match

operator, and this is used with D limited like a Q and Q, Q but a enclosed characters form a

pattern essentially.
So the d limited is just the / then the M itself is not required the match itself is indicated by the =

till the operator. With the string of the left and then the pattern the sting variable should be from

variable on the left, and then the pattern on the right. Actually like in the variable containing the

string or even dist a nation string is obtain in the scale actually. Okay, so if you just give a pattern

the default string that is assumed $.
And the scope which is barren line the think of and then the split function can take the pattern

has the first argument rather than a character. So even for a split function we can declare the

pattern. Now the pattern itself, the pattern specifies the pattern of characters used to split the

string into multiple cases.
(Refer Slide Time: 29:04)

So let us look at the some of the examples, so actually like a example itself here it is a properly

not there we will come back to this so simple match essentially like a defend think of is valuation

$ on the scope = you can specify M operator then / and then the particular pattern followed by

the /.  So this  is  one matching structure essentially  like a imagine pattern and whenever this

pattern is matched it can generate like and it we can do some act which matching essentially.
(Refer Slide Time: 30:24)



So how do we remember the matches essentially like coming to we can use parenthesized and

then we can also denote variable string variables to explicitly contain matches. What this mean

this is essentially like A / $ 1= and $ X = some match X, Y, G A, B ,C so the parenthesized

elements will be remember into this particular once. And then in fact if you tone events specify

this just X, Y G A, B, C or G F so this particular matching pattern is always set $ 1 and this is the

$ 2.
So the pattern matches is string the variable $1, $2 refers to the part of the string matched by

parenthesized sub patterns. So for this sub pattern 1 it is remember has $1, for the sub pattern 2

that is remember $2. So this is basically like the way actually if do it and then essentially like

you can write a match $ on the scope = then you can say like $1, if $1 is whenever and then you

can exsiccated part.
So it can actually tap into the matched component and then two processing based on the matched

component. So if the matches successful on a string there are three string that are available to

give the contacts of the match. So the first one is the $ ampersand that give the part that actually

match the pattern. And then the $ this back take is the part of the string before the part that 
Matched and then $. 
The normal take which is the part of the string the after the part so in this example like even if

you do not specifies like $1actually still available to you basically abc PQR and then this the

match that you wanted essentially like, or this is the string and then basically see, then the this

will contain abc this is contain xyz, so these are all the like some of the shortcuts few of the

matches.
(Refer Slide Time: 34:02)



So, matching itself a to identify a perticular line then will be the process lineand we actually go

into those matches and then identify how to actually do this matches and then how to work, make

use of matches so if you are searching matches essentially like I mean you can think of it has

way to search to a document for a given matches, now once we search and find out something

this is like a I mean a word document we are doing in file and various occurrence of a particular

string.
But the next logical step for in your those kind of matching which is find something we need to

actually replace with this in new system so invert of word you can think of this as point and

replace commands but how do we do it perl that is what is known as use so we know that these

we saw actually m for matching now we introduce an new operate which is a s operator which is

used for substitution.
Again in substitution actually find the pattern and then replace it with a new string, and then the

new string replace part of the string matched by the particular pattern so we say basically like

abc replace  it  where 123 then initial  string is  actually  s is  $,  xyz abc pqr when we do this

basically $s =replace s/abc 123 the abc will be replaced by this one pattern the new string is

actually $s xyz $123 and then that is what a this stands for again the = ~ operator used.
Applied the substitution if the operator is not used then $- is operator font by the font so do not

specify anything like I maen want to say that s abc 123 then the string $s which is actually assign

to b$-, and then now there are things that we can attached the end I think like I mean this is

something that we saw like wekly we talked about this one of the earlier lecture this perl, and

there are several modifiers essentially like I mean we can add to the end actually.



One such modifier  is  the g modifier  the g modifier  on a specific  causes all  the sub strings

matching pattern will be replace so g stance for global,and then this also another modifier I, I

modifier makes is in sensitive so we sue I think of in censitive more essentially is a case sensitive

so and upper case abc same as lower case, so we can put it as I g it is also like I mean with so

these are all like different ways to substitute.
(Refer Slide Time:38:33 )

 Now we also talk about this operator in the previous lecture in the earliest lecture this is the

transliterate operator also known as tr essentially in the transliterate operator essentially we can

replace a character liss and another character list so it is not only actually so think about here we

this is the string first one is a pattern and the second one is has to be string we are actually taking

a pattern and then replace use the string.
Here  actually  it  can  be  a  just  a  character  list  and the  char  list  and this  can  be  just  pattern

essentially so, when we apply this translator operatore is string it causes each character of this

string it appeares in the 1st list will be replace it corresponding character in the 2nd list with the 2nd

list is empty then the characters in the first list are just deleted from the string so use this operator

with causion.
So again here also like I mean be use =~ are the prefix operator at apply the translitarated and if

you do not specify any operator and , it is basically $_ this operatore on by default.
(Refer Slide Time:40:05 )



So let  us look some other  input file  and out put ,so we have this  concept  we introduce the

concept of a file handle in the previous lectures when we even we talked about perl with talk

about where the talk about file handles the context of unix,in are carry out of file input and

output file handle must be created form each of the file the open function is used to create a file

handle so there are 2 functions in perl.
One is perl open the other one is close, so the other function is used to create the file handle, the

file handle is similar to the file handle and unic essentially is a address of file but here we Have

this address generate  by the perl  slide of a program that now allows that perticular  program

access the file so it is not the same as what is specified in unix file system but it is very similar to

that context that concept so, the 1st perameter to open function is a name of the file handle the

convention basically like keep the name as all caps which is just so that distinguish between

normal  variable,  and  then  the  2nd perameter  to  open  the  string  value  nameing  the  file  and

optionally inclueding the characters which is the mode of opening the file.
So typically this will be like open, sh, so this perticualr declaration now opens my file we and the

file handle of sh, so read means is basically I mean a it is only for input, and one thing that notice

basically I do not but any characters here that because the input is the default so do not have to

specify this  or  it  is  specific  by spcify open,  sh ,so this  perticular  declaration  will  be match

specifically file has only a read file.
If you want write to the my file can we open the my file has Fh->file this one will enable the my

file it become an output or essentially we can write into the my file and here the my file will be

completely like over writtenby this statement of any previous content will get deleted the third

options  is  esentaily  we can do open FH double arrow and then followed by my file  thi  sis



essentailly like mean I mean which indicate the open for output appending to the file which is

already existed ,so then we do this &&, I mean double arrow or >> this actually causes the file to

be appended at the end by any new cahnges so the file would be open but previous content will

be perserved and then any new content. 
(Refer Slide Time: 44:54)

So now how do we actually write it in to the file essentially for that we need to use the file

handle in the statement front so by default actually like I mean she is going into the standard out

that  when  we,  we can  also  specify  even file  handle  and  then  to  write  particular  paramour,

variables into that one section so in this example basically like out handle is something that is

already defined in which we are actually adding the data and more data.
So couple of thinks notice there is no comma after the out handle and or there is no special

parenthesis or anything all the print function has these parameters essentially like ,I mean file

handle  followed  by the  string  and essentially  like  I  mean  we omit  this  file  handle  because

standard out is the default for front, now there is also another operator called the input operator

which can be used on the input file handle the read function reads the number of characters

includes the one arrow essentially the, the function returns actual number of characters. 
The function parameters can indicates that characters are to be stored in an array somewhere

than, other than at the beginning. So these are all the two difference other functions so the input

operator itself it used to read from this file, so you can think of it as basically like and so typical

here programs are open and file handle with my file and then we will save while we can save for

example this implicitly calls reading this file and then we will reading it line by line and this

delimiter is essentially like established stanza already mention it in is $ / so if you modify then



you can change the date dealing with the default is such as \ so this $/ is actually \ n and it I read

up to that value and then so that is how we write programs essentially. 
And for specific read essentially like we can actually use read function itself this reads number of

characters  into an given array the function returns actual  number of characters  red,  function

parameters can indicates that characters are to be stored in the array or somewhere other than at

the beginning, so you can actually do a man read to get more information. And then the seek

function it this is can be used position the file handle cursor at different position in the file. 
We share all some other advance functions you can typically read this line by line and then if you

are not if you do not want process any line you can have to go with next as a simple way to

access move passed or move the file handle passed the current position location instead of using

C functions, C function is much more upcoming and actually gives it to really fine tune where

you want to put cursor essentially. So to just doing a recap essentially today we saw some key

topics essentially like I mean number one that we saw was the function calls essentially.
(Refer Slide Time: 49:58)

The function essentially like this consists of the function header and the body and then the it is

basically like the keyword the stop identify the function the declaration essentially like I mean,

here so the , function itself essentially like I mean the can be return anywhere we can declare the

function have the active function essentially  some errors, the function can is essentially  like

mean it can be a part of the expression if it is the part of the expression return value that we used

inside the expressions.
If the function calls makes stand alone then ther is the no return value for even the function

returns of the space discarded, and then the function is getting call the body build in the first step



statement  the return statement  is  the an encounter  the return statement  are the function stop

execute one keep thing to notice is basically we see we do not have any explicit return statements

the last expressions are eveluate the return as thereturn value of function.
 So use it with caution use always that different values, and then we also talked about the local

variable usually the variable declaration will perl actually variables will be carried basically and

everything will just have the global scope but my declaration is use d the declare the variable

within the function and which are local to the function, and then the my is also like having a so

all these variables will havae dynamic scope inside the perl.
And so it understand th local declaration and then the specify this, and a if the local variable is

same name as global name variable global variable itself is not visible in the function one in the

local variable in this pattern .
(Refer Slide Time:52:12 )

And then the parameter essentially like I mean the parameter for the function, and then , the

function cal has the parameter  that should have the parameter  and have those parameters of

called actual parameters those are needed are the formal parameteres are essentially like used

then  define  the  function  in  later  stage  and  they  have  a  1  to  1  correspondence  with  actual

parameters.
And in perl the formal parameter are not named in the function header if we do not have the

specify them we can directely start usein then itself the functions, and perl suppose both pass by

value and the pass by reference in how to initialize the array essentially like I mean so, it is

basically like I mean it is a getting assign to various values.
(Refer Slide Time: 53:14 ) 



And this is something we saw in this example here where can we specify the, the array – is split

into the like all this various values using this, other function which is an implicit function.
(Refer Slide Time:53:37 )

Then we talk about the sort a little bit essentially
(Refer Slide Time:53:39 ) 



We will come back with an example.
(Refer Slide Time:53:45 )

Then we talk about the pattern matching we talked about m operatore the m operator is the match

operator that actually like matches a perticular regualr expression to the, perticular given string

then we can actually is if you omit this = ~ operator and implicit with assume that matching on

the $_ the matching gives it is a perticular character set is present in the, strings such, one thing

we note this actually.
We have an really touch upon how to create the patterns themselves what are the rules of the

given pattern which we wll talk about in the next lecture but at this time understand that is which

came operator.
(Refer Slide Time:55:06 )



nd then forward by that actually this is the, & operator but this before we going to the s operator

the 2 memorize or to remember the matches essentially known as the matches are successful or

not perl provides lot of good syntax.
One is the parts of the pattern can be paranthesis and used this basically, if you have like $1, $2

refers to the part of the string that matched, by the paranthesis sub patterns, but how to get to the

string itself to the match string with essentially like by using with $&, $ back taken or $over

taken so the back take essentially like $& will have the actual part that matched the pattern so

pattern can be specify and basically like this is just string within the string itself the string is split

into 3 and then 1 part is basically the matched pattern the back.
Because anything before the most pattern and then the regualar normal take is part after  the

match that is happens.
(Refer Slide Time:56:32 ) 



Now the s operator is used for a substitute essentially like we can substitute one pattern with new

string, - this string here, and using the s for the substitute pattern here also like I mean the same

rules like matching pattern applies with the =~ for any string and then if we do not specify that

=~ then $_ assume the input string and then we have pattern. 
 
 


