Linux Networking — Lecture 6
DFS
Hi everyone and welcome to the class the LPS class today we will be again continuing with the

next networking lecture number six in the last lecture , we just introduced the DSS today we will
be going on with the DFS the distributed file system in fact. I am going to actually will start the
DFS discussion now today last time we just looked at some introduction but I am going to repeat

that material again and before.
I begin I think again we had a good lecture on the DNS system we looked at the email blast and I

am not going to recap that today if you have any doubts we can always take it up session of so let

us begin the discussion on.
(Refer Slide Time: 01:08)

DISTRIBUTED FILE
SYSTEMS

Go disputed file system again, I say I mentioned in the last class.
(Refer Slide Time: 01:11)

Topics

» |ntroduction
» File Service Architecture
» DFS: Case Studies

» Case Study: Sun NFS
» Case Study: The Andrew File System

We will talk about the distributed file system what it entails why system big deal we will go into
the architecture again ,you need to know like why it is a bit big again what are the issues with the
file system what are the issues with the file system and also we will take up like two case studies
one is on the Sun NSS system and then the other one is Andrew file system again now let us see
like I mean how far we can get to but these are the topics that.

(Refer Slide Time: 02:04)

Introduction

» File system were originally developed for
centralized computer systems and desktop
computers.

» File system was as an operating system
facility providing a convenient
programming interface to disk storage.

I want to call so last time we discussed the file system again the file system basically just it was
done it was developed for a centralized computer system and the desktop computers, and file
system is an operational operating system facility providing a convenient programming Interface
to the disk storage so we will see like what are the gradations of file system or we have to

understand the memory architecture before we go the file system.

(Refer Slide Time: 02:33)

Introduction

= Distributed file systems support the
sharing of information in the form of files
and hardware resources.

= With the advent of distributed object
systems (CORBA, Java) and the web, the
picture has become more complex.

» Figure 1 provides an overview of types of
storage system.

And a distributed file system specifically its support sharing of information in form of files and
hardware resources across the network so that is the key thing and then once we have this build
optic system like cobra or java in the web this entire thing basically like how much we are
sharing and how the sharing happens has become like extremely complex so before we go into

the storage system let us look at just the memory architecture.
(Refer Slide Time: 03:05)

Memory Architechture

I think, I mean this is something that you are familiar with so we have say like T mean this box
represents the of the CPU and then there is a cache memory which is part of the CPU it is very

localized and in fact you would not even know the existence unless you look at the on the

computer itself or basically like what it has in the control panel or any other place, basically

typically these come in various sizes.
So right now we have one gate to gate we are measuring in terms of gate exactly then we also

have the main memory this is an example will be like the DDR area 3 is very famous nowadays
you get into two gate or four gate videos sometimes like even the caches like, I mean it used to
be like in case now probably like in Meg's and gigs are also available and the memory of course

like mainly in a heavy duty server it can go all the way.
I have to light one terabyte also then you have like hard disk which is essentially the storage

there things get written and DCT it resides programs that the heart is before they get executed a
distributed storage is nothing but so if you look at this particular box the box around it is a
system or a computer and then basically like a distributed system is centralized for storage and
that is shared between multiple computers or there are multiple disks that can be accessed by a

single computer all through network.
So now I mean if you look at the hard disk the most this would be the storage finally they are all

the similar stuff so what is a big deal in like using a distributed system, so let us look at some of

the challenges form.
(Refer Slide Time: 05:19)

Distributed File system Challenges

Transparency — Are the data blocks transparent fo the host
systems?

& Concurrency — Can we concurrently access a file system?

“ Replication— When a file in sarver is changed can all the
clientz see the change?

4 Heteregenaity = Can file systems support multiple O57

+ Faull lolerance = How o recover from crashes in
client'server?

4 Consistency — Will access from different clients to the same
directaryffile be the same?

P Sacurty = UssrTlient authentication

% Efficiency — Wastage i= kept to a minimum

b
So when we talk about the distributed file systems there are many challenges that they need to
overcome in order to make sure that we get we can reliably store and retrieve it one of the issues
is the transparency, so as you know the data is written in various chunks basically so what kind
of data in a hard disk is for transparent to the host systems is it all of them is it some portions of

transparent to some of the systems and some portions are transferring to another system.

How is that divided and then when there is an overlap like what happens, so these are some of
the things that we need to worry about because there are many systems accessing the same disk
storage, so again that is one thing that we will talk about then the next issue will be the
concurrency issue what happens is two servers or two clients access the same files and currently
who gets the preference and why so these are the kind of questions that we asked about

concurrency.
Then the other one is replication which is when the server the file in a server changes can all the

can see the change immediately or do they have a how does that work so again that is another
thing that we will talk about then the fourth challenge is the heterogeneity challenge again in this
one is the weather the file system support multiple OS. I am coming, I am connecting with
Windows wires and somebody else is connecting with Linux OS somebody else may be

connecting with the I0S OS.
How does the system behave that sense and does it support all the races or supports some of the

operating system how does it work then the other challenge is the fault tolerance challenge which
is then the file system crashes, how does the client know about that or if the client crashes how
does the file system react say like I mean you are writing to a file area and then the ten crashes
now what happens, do that that is that does that area gets recovered or is it just all corrupted how

does the how what happens.
Then the other one is consistency comes from the different clients then they access basically the

if the a is that the what each client looks at from its perspective are they all in consistent view, so
that is another thing basically that we will talk about and then the security is another control how
do you authenticate a client or a user to a file system, and so that I mean he can only he can

access.
We saw like some of the high-level issues regarding security in when we studied about the Linux

basically next form OS there we talked about the read write access read/write/execute axis also
does that word so here we will be that that challenge has been multiplied pretty heavy so we will
look at that and then finally efficiently how do we keep wastage of the space to the minimum. So
are these techniques that we can employ to do this what we do so again as I mentioned the
classical example that is on manifest form or Andrew file system so we will be learning about all

these things so before we go into that let us look at the main memory architecture.
(Refer Slide Time: 09:42)

Introduction

Eharing Persts Dhetnboted . Cermntency Evawple
ey

coachedepliogr walknimmne
hdninmemory 'y b b | Bk
File system L i b 1 LINIX file sysoem
Dhigtrtborted Gle svslem ¥ “ w g Sun BF:
Wel # . Wb semver
Cristrtboured eharcd memery g ~ ¥ e [y iCh L8]
Retne abjects (RMIORRE) . 3 xt 1 CORBA
Persistenl uhjot sloes J i X 1 COREA Pemascn

Citrjwct Bervice
FeeT-ioepesr somge sysiem J o il [zennStore({h. 10)

Figure 1, Storage systems and their properiies

e cumsiglesy Balwem copics: | - sl oue-s [ERES L
o

22
Which is essentially these are this in the previous slide, so let us look at it from the main memory
onwards or we want looking at the caches and inside it whatever is inside the chip so main
memory it is not the share it is not a shared memory and mostly like it is local to that particular
machine or that particular CPU and the persistence ,it is not persistent, so persistence is another
property essentially or the data whether then the process die whether the data still stays there or

not.
So usually what happens whatever the program that is running in and process writes out the data

into the hard disk so that the main memory is completely cleared of any of the remnants of that
particular process , so what that means is basically the main memory more persistent method so
we do not keep anything after the process gets executed then by nature main memory is also

similarly is a very local localized memory.
So we do not keep any distributed cache or with us for that for more than the consistency

maintenance again it tries to maintain the consistency and the example, essentially but it says is
still one copy consistency ,so that you cannot replicate that copying across multiple memory
systems here we call it mainland resistance example is the RAM or the DDR is another one so
those kind of things now let us look at file system file system again like you do not allow the file

system to share.
But it is persistent meaning the data gets written into that file system after the process gets

executed again. I am distinguishing between program and process that this is the distinction that
we saw very early in the course, which is essentially the process is a running instance of a

program. I hope you guys remember again the file system also does not allow distributed or

cash-strapped because inherently like in with this file system we are talking about a file system

within the computer.
So it is mainly for that particular machine and consistently maintenance is a strictly like one copy

insistence a system now let us talk about the distributed file system this is this is where it gets
interesting the yellow sharing in a distributed file system the data is persistent as we know and
then it also allows the distributed cache essentially, so that you can create the because of data all

over.
The place and finally the consistency maintenance is or will have multiple copies which

essentially go through that consistency so we call it like approximate consistency so we know
that the main consistency is how each of the plan will use at particulars files and here it is the it
is almost there essentially some of the new information may not be burning both the file but

pretty much like I mean the poppies are updated on a periodic basis.
So now let us look at a web server observer also allows you to share the data it is the data is

persistent allow the distributed cache and the Pickers but there is no consistency essentially like
if something gets updated everything is not looking at the same thing so one data may be old the
other data may be new unless you take like refresh that they do not be the distributed shared
memory is under one ,so here again yellow the share sharing automobile but the memory itself is

not persistent.
The way that we allow them as being also through the distributed cache replicas and then finally

the consistency maintenance also they are remote objects essentially this is something that the
CORBA supports and again here sharing is done and then it is just a one copy consistent, so if
you look at it I mean so the highest one is probably the distributed file system and then there is

also the peer-to-peer storage system.
Which is also very similar but the others are kind of they are lower in the hierarchy as you can

see the position object store and also the remote objects from the CORBA.
(Refer Slide Time: 15:25)

Introduction

= Figure 2 shows a typical layered module
structure for the implementation of a non-
distributed file system in a conventional
operating system.

2

So let us look at the next picture this shows like a layered Module structure of the

implementation of a non distributed file system.
(Refer Slide Time: 15:47)

Introduction

Drireslssry acchde: ribatees. Ble rrarnecs. 0 e D

File mochds. relaters Bl DS L parlcukr les

Accese coniral madule: checks pemis=on for aperabion rsquesied
Filw acosss moduls: meads o wiiles fie dals or atiibules

Block madue: accesses and alocates disk Socks

Oevice modul=: disk WS end buffering

Figure 2. File system modules

24

So here we have a directory module, and then a file module, then the access control, module file
access module, a block module and the device module, so let us let us just look at what each the
function of each other the directory modules is essentially like. I mean that it has all the file
handles that are in that particular direction, so this is the each of the file IDs the file handles are

also known as a file by ID.
So essentially the file names are related to the file ID with using the direction body the file

module keeps all the file IDs and correspondingly like body the file where is it located and all

those details the access control module is the permission checker, we already know that there are

three types of permission the read write and execute, so the access control model is the one that

checks for these permissions and whether certain operations are allowed or not allowed.
You the file access module that essentially is used to read and write pile data all the attributes and

the block module essentially like now accesses be the file system or essentially the disk and act
that goes and allocates the blocks that are needed for this writing go file and then so basically
like. I mean the plots are usually chunks of some number, so that veins on the file ,file type it

allocates some blocks for the particular file.
In the membrane and then the device module is essentially like an email that is pretty much it is

the module that accesses the disk delta use and also like that for buffering ,so whenever you are
reading the file it takes the file ID is actually like an active form that particular disk and it gets

the files for the through the buffers it takes to the buffers again.
(Refer Slide Time: 18:34)

Introduction

» File systems are responsible for the
organization, storage, retrieval, naming,
sharing and protection of files.

v Files contain both data and attnibutes.

» A typical attribute record structure is
illustrated in Figure 3.

25

The file systems essentially like. I mean so that provides the organization storage, retrieval
naming, sharing, and protection of all the files so a file contains the data and the attributes so

now let us look at how the file records are retrospective or our file data structure reform.
(Refer Slide Time: 19:03)

Introduction

Fils type

Access contrel list

Figure 3. File attribute record structure

So the key things that we want to write or the file length and then it was created a creation time
stamp 1if it is read multiple times or the last and it where it is read retain time stamp then after
creation when if it is written again then the right time stamp and then there are some attribute

time stamps and then the reference count and then there are some additional ones which is the

owner the file type and then the access control list.

So this is typically the record that is kept as part of the file and we can actually access various

these various form parameters to get to where what the values, so these are done through the

operations actually.
(Refer Slide Time: 20:06)

Introduction

Figure 4. UNIX file system operations

Nledes = apevrmame. mode)
Silades = oremnmme, modey

ATealvie = oo rlTnlwr.l:w: T
cour = read|(filades, beffer, oy

comurd = wriefiieces, bl apl

Inek |:.I';.i Fi |'ru.._ r.lﬂ.-: o

whencel

fale]
= e e
Starn = anlindihmme)

stars = Jinkinawe !, Hawel)

starus = rralinamwe, b

(pens an existing Kle with the given mane

Creates a new file with the given s,

Hath operaricns delver a file deseripior refereiscing the open
filiz. Ulve mrceste i roc, woite o batl

Closes the apen file Gisdas

Translers o Uytes foan the fibe refemenced by filedles to byffer.
Transfers & hynes tothe file referenesd by findes frana baffer
Bath operations delmver the smmher of bytes achzally fransfermsd
il sl vance (e nesd-wrile painler.

Mforves the read-wote painter tn offeet (relntrve or absolate,
depending oo whencel. &

Remaves the file mame from the directory stmcture. [f the file
lias o ofher e, i 02 deleted

Adlds a new name (ramed) for 2 fle (mamed)

Gets the fle attribwles for file namee s by,

2

So let us look at some of the operations so here the operation is open is the name and then the

mode, so it basically opens an existing file with a given name and then assigns the file ID to file

destination create his another operation with the name and the mode and this one creates the file

with the name and that that ID is assigned to the File ID.
So the mode can be like read/write or read/ write and then close the file destination on the file

handle closes that particular file in any of the open files, and then if it can close then it assigns
the status as 0 and if it cannot hold then the status becomes one, so based on the return value we
can decide whether the files not close or not in an account essentially like I mean this is so

actually like.
I mean the operation is the read operation read file this buffer n it essentially transfers n bytes

from the file to the buffer and essentially like we can also like measure that with the thumbs of
the right again file destination buffer n will transfer the file actually like. I mean the N number of
bytes are transferred from buffer into the file , so these operations essentially like be we deliver

the files and they also advance the read/write pointer.
So the pointer is essentially like it is in the file, so that you know like I mean where exactly and

then L C is the you give an offset and another pattern all events using this parameter it goes and
moves the point of the read/write pointer to that offset and then unlink essentially like remove
the file name from the directory structure if it has no other names it is just deleted otherwise it is

basically look at this remove that name alone.
The other names are kept and link name one name to again this adds a new name 1 name 2 the

file name one and then the other one is the stat command this actually gets all the file attributes
we saw that here essentially this one the attribute count and then the attribute time step so in all

the attributes are it is taken and then put it in the buffer.
(Refer Slide Time: 23:51)

Introduction

= Distributed File system requirements
~ Related requirements in distributed file systems
ars:
Tranzparency
4 Concurrency
< Replication
“+ Heterogensity
4+ Fault tolerance
+ Consistency
& Security
4 Efficiancy

28

So we already saw like, I mean to the requirement with itself like I mean we know that these are

the challenges and that is what we so let us look at the file service architecture.
(Refer Slide Time: 24:07)

File Service Architecture

» An architecture that offers a clear separation of
the main concerns in providing access to files is
obtained by structuring the file service as three
components:

- Aflat file service
F Adirectory service
= A client module,

» The relevant modules and their relationship is
shown in Figure 5.

This actually offers a clear separation of the main concerns in providing access to the files and it
is obtained by structuring the file service with three components, so there is a flat file service a
directory service and the clan module service, so again this the five service architecture is a way
to organize the services that are associated with the files so that things are provided properly so

now let us look at the modules.
(Refer Slide Time: 24:53)

File Service Architecture

Chemt comgpubar Server computer

Appication Application Diretony gandce
program - progiam

Flat fle service
Clienl module

B

==F=—F=—

Figure 5. File service architecture

M

In the file service architecture so imagine the server computer sitting somewhere far away and
then it is connected the client using this link is essentially like some kind of the network and

there may be like more clients sitting, there which are accessing the same data and essentially

Like I mean so when the client tries to access the flyer flats a file service essentially immunity
disassociated this and directly like a minute it collects the data and sends it to the client And it is
almost like I mean you can think of your the can computer is accessing it as a one-on-one with
interacting with the file services so there is a directory service and a fine service and basically

like the flat file service collects that file information insert to the client.
(Refer Slide Time: 25:56)

File Service Architecture

= The Client module implements exported
interfaces by flat file and directory services on
server side.

= Responsibilities of various modules can be
defined as follows:
= Flat file service:
< Concemed with the implementation of operations on
tha contants of fila. Unique File Identifiers (UFIDs)
are used to refer to files in all requests far Nat file
service operations, UFIDs are leng sequences of bits

chosen so that each file has a unigque amoeng all of
the files ina distributed system.

32

So essentially in a flat file service all the files are assigned a unique file identifier or UF ID and
so since the files themselves are uniquely named it is easy to actually obtain what the pilots and
the essentially ligament so one system that is accessing one of the files the other systems may not
be able to see every file has a unique identifier and the times need to know that unique files
identifier in order to access that form So the clan there is a client module that exports the

interfaces by the flat file and the direct restore services of the server side.
(Refer Slide Time: 27:00)

File Service Architecture

= Clignt module:

2 |f runs on each computer and provides infegrated
service (flat file and directory) as a =ingle AP to
application programs. For example, in UNEE hosts, a
cliert module emulates the full set of Lnix fils
operations.,

It hiolds information about the network locations of
flat-file and directory sarver procasses; and achieve
batter parformancs through implamentation of a
cache of recently used file blocks at the cliant.

i

So the directory service itself it is provided it provides the mapping between the text names of
the files and their UFID’s so the client may obtain the UFID’s ideas of file by coding its text
name to the directory services and these are all like one-to-one mapping, so that that is the
uniqueness of the flat file it is not very interesting and as you can see actually the UF ID can be
in long sequence of bits because if we need to map all the files in the file system with unique

identifiers it is kind of an odd just asking.
So the client module that is another one piece of the services that we saw in this picture this runs

on each computer and provides an integrated service or a flat file service because this service is
pretty much constant or same across all the clients , so the client is in fact in the unit side actually
emulates the full service full set of UNIX five operations these are the operations that we saw

like earlier like open closed and all those things all of the services.
Are provided by the client module it also holds the information about the network locations of

the flat file and then the directory server processes so that it can actually go to those directory
servers and access those five it actually better performance through implementation of a cache of
frequently used file block at a client so we can improve the performance of client module by
having a cache and local cache within that particular client in the system that we store the
recently used by block again the issue will be how do we maintain the consistency and so we will

talk about that.
(Refer Slide Time: 29:17)

File Service Architecture

BeadyFileld i m) o= Data i Ti<lenpihFile): Reads a sequence ol up 10 nitems

sthrovas BadPasitinn tiairn a fil starting at irten § and remmis it in Dara,
Wity Fileld, i, Daral it Deislonpeh File)+ 1 Write a sequence ol Datata a
-theorws BadPasitian file, starting at ites , extending the file if necessany,
Creaier -2 Filel Crosales 2 wew [le of Lawgtbd aud deliviess 2 UFID Lorin,
Drelete Fileld) Femoves the Gle from the (le store.

Crerdtirihntes/ Fileldl - Atir Retumsthe file attribnates for the file.

Ferdtrribwtes Filald A Sets the file attributzs (only thase artrifustes that are nat

35

So here some of the again commands that we can use the read field. I for I, n and then that goes
into data essentially again for - and arrow data here essentially like, I mean we read a sequence
of 1/2 length of file and the variable is I which is essentially like the increment that and then
basically like I mean and then essentially ligament that particular items are stored in data the

right field.
I data essentially it writes the sequence of data into a file starting at item, I and extending the file

if miss and create is another command that creates a new file with link zero and delivers the
UFID to the field variable and delete field this remove that file from the file store get attributes
field and then store we can store it into another variable called attribute and then set attributes
essentially like them and that is essentially Which are actually that we specify set to that

particular field which is essentially file ID the unit ID that we have find out.
(Refer Slide Time: 31:24)

File Service Architecture

 Access aontral

< In distributed implementations, access right:
hawve to be performed at the server because
server RPC interface iz an otherwise unprot
point of access to files

» Directory service interface

Figure 7 contains a definition of the RPC int
a directory servics,

So again the access control , so in the distributed in implementation access ;ight text has to be
performed at the server um so it is not a client that provides the access control because the
remote process control interface is unprotected point of access to these files essentially so until
you reach this server basically like it is all unprotected and then they see be able so the access
control itself is provided at the server side. Directly service interface eventually like that we will

look into it now.
(Refer Slide Time: 32:24)
File Service Architecture

LoD Ml -5 Frlaly Lol icd Thess Bl seaped i U5 Jipeetory soxd
=zhromis MaiFoand rehems the nelevant TP IE Mame i not in
the directory, throws am exceptice
AdtaNeme Ty Name, Fifed If Wavie w5 not in the directory. addsiVeme, File)
<hroms MameDupdicete o the direetoey and updates the file's anrilnre necord
If Meawee is alevady in the directory: threws 20 exceplicn
Lty o IF M 5 in the dirsciory, the eniry costaining Kome
ig reidsoied frown The dineetody
If Nemie is not i the directory: throws an exception.

5 Pl

Thin Parpgrn) - Memebog Retineall the ses ||-.-||=|'||'.|||.'|.|r=|.'||'\-':|-'||L'. msteh e

regular sapre ssion Pariers
.]

So here there is a lookup or particular directory with the name and that file ID and if the name
itself is not there in the in that particular directory then it throws an exception, so that is the add
name essentially like add the name and call the file into the particular direction and if there is a

Already that may make this then it throws an exception , you unnamed directory name is

essentially like an aim is in the directory then it is removed from the directory if it is not there in

the directory then expose an exception and then finally.
The get names will actually with pattern get the text names in the directory with a match of the

regular expression pattern, we will learn about regular expression future modules in one of the
programming modules and then that is assigned to the consumption so now we go into the next

file service architecture.
(Refer Slide Time: 33:58)

File Service Architecture

~ Hierarchic file system

% & higrarchic file system such as the ane that LINEK
provides consists of a number of directories arrangsd
ina free sfruciure,

~ File Group
4 Afile group is a collection of files that can be located

on any server of moved between servers while
maintaining the same namesz,
A imibar constoect s used ina LN Tile system

It hedps with distributing the load of file serding
betwekn several servers

- File groups have identifiers which are unigus
throughout the system (and hence for an open
systemn, they must be globalby wnigue).

Which is hierarchical file system right now we look at this a flat file which is very easy to
implement very easy to access but at the same time you cannot do a lot of functionality go and
also you carry along unique file identifiers, which just causes issues by growing your directories
and the growing the client modules now let us go into the next one which is the hierarchical file

system this essentially like.
I mean is the file system where the directories are now arranged in a tree essentially so

essentially you need to go into like various directories in order to figure out what is going wrong
and then also the file group is another concept there it is a collection of file that can be located on

any server or move between the servers while maintaining the same names.
So we saw some of these examples in me originally like started Linux a similar construct is used

in more in a UNIX file system it helps with distributing the load of file serving between the
service so essentially like, I mean you can move the file system or the file group to be Closer to
where the clamp is are asking for so we can move to another service also the file groups have
identifiers Which are unique to out the system so that is that is the way that it can be moved from

one system to the other.
(Refer Slide Time: 36:02)

File Service Architecture

To construct a globally unigus

IC we uze some unigue
aitribute of the machine on

which it is created, e.g. IP
nurmber, even though the file
group may move subsequently,

File Group 10
ERghT i'6 hirr

TP ailifunas date

So here is one method to construct a globally unique ID so we did use some attribute of the
machine on which it is created so basically like the idea so we know that idea this is the 32-bit or
a for ruptured binary we just add a date to it like so the IP address followed by date we call it as a
unique identifier the date could be a date and time all the way to the second then the file gets

printed.
(Refer Slide Time: 36:43)

DFS: Case Studies

= NFS {Metwork File System)
~ Developed by Sun Microsystems (in 1985)
r Most popular, opan. and widsly usad.
MF3 profocol standardized through IETF (RFC 1813)
= AFS (Andrew File System)
Daeveloped by Camegis Mallon University as part of Andrew
distributed compiting envirenmants (in 1985}
~ Aresearch project to create campus wide file system,

Public domain implementation is availabla on Linus
[LinuxAF5) 5

It was adopted as a basis for the DCE/DFS file system in
thie Jpen Software Foundation (O5F, v opengroup.org)
DEC (Distributed Computing Envirenment

41

So now we go into the distributed file system again the three hierarchies that we talked about are
the three different types of file system that we talked about flat files a hierarchical files and now
we go into a distributed time system, so here we will talk about two main file systems one is the
NSS or the Sun and this is the this was developed by Sun Microsystems in 1985 it is the most

popular and it is open file system and it is used pretty much universally today.

You also the NFF protocol itself is standardized through this particular standard is known as the
RFC 1813 so the main idea is the here is basically the serve the server or the file system itself is
a stateless system so essentially like. I mean the server itself is not required to remember
anything so it does not have anything in the memory essentially the things like which clients are

connected.
Which files are open exactly so essentially let me just the file system itself is sitting in one place

the signs basically are send some requests essentially with all the information that is needed and
then basically the server just fulfills the request and then this forgets the minute its root is the
request and then perform, so the onus is on the clients to provide all the information to complete

it or accessing a file or essentially to provide it to get that service.
So the whole so the advantage of this kind of a system is that the server state does not even does

not grow it more number of things, so there is no change to the server eater which you need to
change the number of servers you and then the other key idea of NFS is when you perform an
operation and if you repeating the operation you get the same result there are no side effects so

essentially like.
I mean if you say like A=D + 1 and then essentially like every time you do the a basic A it is

always it you get only like A= B + 1 or you do not get A=B+1 norm there now the state of A is
different so that the next time you when you query it is it is different the actual the second system
that we study is for the af-s of the annual file system this is developed by the Carnegie Mellon
University as a part of the Andrew distributed computing environments in 1986 so you can see

that actually they are fairly close.
The this research project was to create a campus-wide file system and basically a public domain

implementation is available on Unix it is called Linux a so this was again also adopted as a basis
for the DSS system DSS file system in the open software foundation and the distributed

computing environment essentially.
(Refer Slide Time: 40:59)

MFS architecture

Client eampuler SEnser compl o

Applicabon Applicehon
PTgRETE | RO
LIMIE

system calls———
LIMIE sarne

UMIE kemst— Witluaal ik =pslam] Widisal e systam
Cperstions Cperaions
on lccal fies = :’ il
7 remicks flgs
LI all wrs FE LIMIE
e] SEMEr s
sysiemf| = 2 b sysiem

HFSprateal
Figure & NF3 architecture T#m 262 peraionz)

43

So let us look at the NFS architecture the NFS architecture consists of again the client computer
but, I mentioned the client has a lot of onus on providing the data so let us look at first the server
computer server computer has nothing but a virtual file system which has the rituals the unique
the UNIX file system and then it has an NFS server which is the another program that serves the
various clients and then in the client computer again like. I mean you have the same kind of

things there is a virtual file system which has the UNIX file.
System and then whatever the extra ones here basically the blank ones are various devices slash

deaths and then there is also an NFS client the NSS client talks to the NFS server place again
provide the information as what the files that it responds retrieve or to write the arm write the
content into the file they all these programs actually longer all decide on the Linux all the fun

you so the communication between the client and the server are using RPC.
What or what is known as the remote procedure calls essentially so the client itself basically it is

a it is a transparent access to the NSS file system so then you go through this NFS climb to the
end of the server since it is stateless basically link sizes like this is now connected together and
there is more NFS server and then a plan and basically exists you can transfer only access

whatever is inside.
The UNIX file system server side as well you so the clients job is essentially like going to

basically provide this file system and also the transfer and access to the NFS it also provides
some virtual nodes essentially, this is essentially like procedures for procedures on an Individual
file or it is an interface or procedures on an individual and then basically to translate that the

individual file procedures into the various NSS.

Remote procedure calls so that rail again mate can access the NFS server and retrieve that one so
here essentially like the application program provides the unit system calls through the UNIX
kernel and essentially like. I am in the operation zone, so they all the virtual file system just
keeps all the operations as a local operation so we would not feel that actually well there are

some remote eyes also.
So from the application side you are just calling a local program but the virtual file system

identifies which is the local and this is the remote files and then the remote is the channel

through them client and then it provides the this RPC into the server to retrieve that file.
So the finite in fact we already introduced this concept of a file handle the file handle is the file

identifiers about views in the NFS itself, so here in particular file handle denoted as apex could
be the file system identifier the node number and then the anode generation so all the all of them

are combined together to get to the I handle.
(Refer Slide Time: 45:44)

Case Study: Sun NFS

v roatTL e, couend) s altr okl

Ninmiasetaad il Hennmie, Al el

v pasdiatr, e, ool o eminnes
v symuiaiymenedie® et el -
== :f_'ll;g
e mmnieaie oo, ovieg - el ane
v et el nanss - SN
ol o ooy

Flgure 9. NF5 server operations (NF3 Version 3 protocol, simplified)

45
So the various commands are used here so in this one there is a read operation we again like very
similar to the flat file axis or give the file handle or the file item the offset in the count and then
that retrieves the data and put it in the data variable, the right for writing VCT we do again the
file handle the offset the count and then the data and then basically like a minute is written into

the file system and then basically like this one actually passing system.
The create command essentially where the now we specify a directory file handle the name and

then the attribute and this command returns a new file humble and also some attribute on the

pipe and then the remove actually is removed just return the status until a level blogger mode or

not again we give the just the directory file handle and then the name pending the gate attribute

file handle gets the attribute related with that particular file.
Then the set will set that then there is a lookup command essentially which should return to the

file handle and then attribute rename command it is basically the original name of the from
directory pile handle and the name to the to directory and then to name link provides a link to the
existing file then the reader essentially read the particular directory and then returns all the

values available in trees.
Stream link is a symbolic link G or a soft link which ties a file to another end you name and then

that returns a status the read link file handle essentially like that returns a string essentially so it
gives this bag is the expanded link pack make the is it creates a new directory and all that it gives
you the new file handle on the box and then our under base tables a directory and then staffed file

system file handle gives the file system status.
So these are some of the commands that are used in the thumb no.5 which is one of the very

popular systems.
(Refer Slide Time: 49:21)

Case Study: Sun NFS

= NFS access control and authentication

* The MFS server 1= stateless server, =o the user's
idlentity and access rights must be checked by the
server on each request

|n the local file system they are checked only on the
file's access permission atiribute.

Every client request is accompanied by the userlD
and grouplD

4 It i= not shown in the Figure 8.9 because they ars
insertad by the RPC systam.

Kerberos has been integrated with MFS to provide
a stronger and more comprehensive security
solution.

4T

So now let us look at some of the other features of Sun NFS in fact we learned about this one is
the security or how do we make sure that there is an access control and open easy so as [
mentioned earlier the NFS server itself people state level which means that the users identity
access right all them are controlled by the server only on the requests and essentially the client is

so the local file system they are checked only on the files access permission attribute.
So essentially like I mean this is oh we have to check every time whenever we access that so it

does not remember like I mean a particular user is authenticated or not so every time you need to

check again and again also the client request is accompanied by a user ID and the group ID these

are inserted by the RPC for the remote procedure call we talked about this also like earlier like

with some example.
(Refer Slide Time: 50:43)

MFS architecture

Chent compute SEAE SOt

Apploaion Applkcation
g pragrat
LIH
dmm el
RRSSSEL = URIY kerngl ———

LML Kidig——

o stions
o locel files
LK
HFE
samver fis
syEbe
HFL prodnznd
Figure & NFS architeciure [P g s R sl
43

Where the virtual file system converts or basically like it forwards the remote access to the NFS
client which converts the file handle into the continually remove resist ball it contains this

additional data.
(Refer Slide Time: 51:01)

Case Study: Sun NFS

» MFS access control and authentication

= The MFS server iz stateless sarver, so the usear's
ideritity and access rights must be checked by the
server on each reduest
< In the kecal file system they are checked only on the
file's access parmission sttrbute.
Every client request iz accompanied by the userlD
and group|D
< It ks not shown in the Figure 8.5 hecause they are
inserted by the RFC sysiem
= Farberos has baan integrated with NFS to provida
a stronger and more caomprahensive secunty
solution.

47

Which is the user ID in the group ID and then it sends it to the file system to gather the phone so
the Kerberos is also it has been introduced visually integrated with the NSS and that provides a
stronger and much more comprehensive security you but now let us look at the mount service
mount service is used to mount a particular disk into the file system so if it is a new disk we use

the amount function to do this to move on the remote files so the operation is mount remote goes

remote directory in the local between so it basically like bounce that file system into the local

directory you.
So in this example the server maintains the table of clients which ever once mounted the file

system separates all each client maintains a table of mounted file systems holding the IP address
the port number and then the 500 the remote file systems may be hard Mobile mounted or soft
mounted in a plan completed very similar to the soft link of pardon so here another example it

shows the two remote mountain piles you.
(Refer Slide Time: 53:04)

Case Study: Sun NFS

':'.ZIEHI Saner 2
'\111 nix l.:r rI
|I Ill | ||II
) Rammchs TS J

3
/’/5.3_?: — =iudent P: =iat - /}FL:[:
(AN 7N
:l:ll\:ﬂb\:t... I 307 | B resposs

Fore Thae dlesyewsm eprenmed 21 et b the ol s aomatly the s e locassd a e neesguo b Seee 1
Iz Nk e kan aeracted et s o ke chaad o echaaly de ada-bocleakal of oo @ Savea 1

Figure 10, Local and remote file systems accessible on an NF3 client
3

So in the server there is a directory called people which contains like Big John and Bob in the
time side there is a directory called user it has students which are remotely mounted on people
and then there is also another practical tab which is a remote human form starting actually in

users and in so to you.
(Refer Slide Time: 53:56)

Case Study: Sun NFS

= Aatomounter
= The automountar was added to the LIMIX
implementation of NES in order to mount 3 remote
directory dynamically whenaver an ‘amply’ mournt
pairt iz referenced by a client
= Autarmounter has a fable af maunt paints with a

rafarancs to ons or more MFS servars listed against
aach

= it sends a probe messaae b each candidate sarser
and then uses the maeun? service ta madnt tha
fileesystam at the first servar to raspond.

= Automountsr keeps the mount table small.

2

Then there is also a concept of Auto monitor the Auto monitor was added to the unit's
implementation of NFS in order to mount a remote directory dynamically whenever an empty
mount point is reference by a client so this is kind of the plant ask for a particular node which Is
empty by default then the auto mounted automatically moves for the particular remote Directory
that you so again the auto mounted has a table of mount points with the reference to one or more
NSS service listen against each so it sends first a probe message the each candidate server to see
whether the particular one point is still available then it uses the one point to mount the file
systems. And then serve that apart and usually the auto mounted keeps the bound table to be very

small but it also provides.
(Refer Slide Time: 55:12)

Case Study: Sun NFS

F Altomounter Provides a simpla farm of replication
far read-anly filesystems.

< E.g. I thene are several servers with identcal coples
of ‘ustli then each sarvsr will havs a chance of
Eaing maunted at some clients

&

The form of replication or read-only file you so let us look at that caching essentially.

(Refer Slide Time: 55:25)

Case Study: Sun NFS
» Server caching
= Similar to UNEX file caching for local files:

< pages (blocks) from disk are held in & main mamaory
Buffer cache until e space | requiresd Tar mewser
pages. Fsad-ahead and delayed-vrite optimizations.

< Far local files, writes ars defarmad to neet sync svent
(20 second intervals),

<= Works well in local context, where files are always
aczassed through the keeal cache, but inthe remote
case it doesn't offer necessary synchronization
guaranbees to clients,

-r]

Begin to caching convene of two forms one is a server-side caching and then also all the other

one is client-side caching before we go into the server-side caching let us look at the client-side
caching the caching always is it provides improved performance because certain blocks if you
cache and basically goes up we continue log and the client requests that every time the cache can
provide very quick access to that video blog so that the system that is requesting that is not
starving or data so for reads essentially ligament or the always the protocol from the client side is

checks with the local cache before goes into the server.
Because whenever we go into service it can take a longer time but as the local cache will be

easier so only there is a cache miss it goes to perform but at the same time right basically you can
the most or the Sun and express itself provide the periodic right back and not an immediate right
back to the server mainly the reason is we do not want to contact server that often because that
can slow down the communication you so the client cashes two types of data the one is the data
block itself and then the other one is the attributes now let us look at the server caching basically

so the server caching is very similar to the UNIX file caching in the local form.
So the various blocks from the disk they are held in the main memory buffer cache until the

space is required for new things the read ahead and the delayed write optimizations are also
possible so what this means is basically so if you know that actually you are grading from one
particular file instead of getting the portions that are in the read operation you get more thinking
that maybe like I mean you can read ahead of time so and then delay write is essentially like I

mean so we delay the write with either the various cache consistency protocols.

And so that we can further optimize overall caching for the local files the rights are deferred to
the next thing even so this is again the delayed right principle so 30-second intervals then they
think even happens if the way I mean the Sun NFS works very well with the local context where
I shall always access to the location but in a remote catch a case the synchronization legate does

not guarantee the necessary implementation to the clients.
(Refer Slide Time: 59:08)

Case Study: Sun NFS

= NFS w3 servers offers two strategies for
updating the disk:

< Wirte-through - altered pages ara writtan to
dizsk &5 =oon as thay are recaivad at the
servar. Whan awritel] RPC raturns, the
MF3 client knows that the page is on the
disk.

4 Delayed commil - pages are hald enly in tha
cache urtil @ commit) call is received for
the relevant file. This is the default mode
usad by MFS v3 clients, A commiti) is
izsued by the client whenever a fila is
closad

53

|
So the NFS version three service offers two strategies for updating the if one is the right group

and then the other one is the delayed coming I think that you already know about this when we
had studied the cache coherency protocol or to maintain prevalence in a cache. Whereas the right
to is essentially making writing it both in the cache as well as in the main file in this case
essentially like I am in for the altered pages are returning to the disk as soon as they are received
at the server. So then the other one is the delayed commit where is the cages are held in a cache
until it emits signal arrives and then basically at that point the file system itself is written with the

new beta. You so we look at from this we designed the caching.
(Refer Slide Time: 1:00:19)

Case Study: Sun NFS
» Client caching

= Sermver caching does nothing to reduce
RFC traffic hetwsen client and server

< further cptimization is essantial to reduce
servar load in laroe netwarks,

< MFE client moadule caches the results of
read, write, getattr, lookup and readdir
aparations

< synchronization of file contents {one-copy
semantics) is not guaranteed whan two or
mare clients are sharing the samsa file.

Ed

So again the client cache of the results from read and write get attribute lookup and then the

reader operations the synchronization is not guaranteed when two or more clans are sharing this.
(Refer Slide Time: 1:00:46)

Case Study: Sun NFS

F Timestamp-hased validity chack

4 It reduces inconsistency, but doesnt
aliminate i,

+ It is used for validity condition for cache
antries at the clisnt:
{T=-Te = 8 w(Tmclant = Tmsersar)

r freshness guaantes

T dune whien cache ey was sl
waliialed

Tt wlse block veas Last
iprdetizd ol s Vi
CULTEE b

21
So that is something that we paid apparently for then the validity itself is checked to time stamp

based check essentially like it reduces the inconsistency but it does not eliminate it so it is used
for the validity condition or cash increase at the Klan. So the formula is like T which is the
current time - TC is the time when the cache entry was last valuated must be < T which is the
freshness guarantee so we do not want excessive time pass between these trees and do anything
and then essentially the PM client is the time and the block was last updated as a server and then

TM server is essentially like them.

So actually TM client is the time in the block with lots of data that we client and then the same
thing. When it was a physical server TDC is the time when the cache entry was last validated so
basically like I mean we need to make sure what see the validity condition that is form satisfied
or the tension face you so in the previous one the Tito system if the freshness guarantee that can
be customized so you can decide what that value should be and then based on that we can

construct the rules.
(Refer Slide Time: 1:02:40)

Case Study: Sun NFS

= 1ig configurable (per file) but iz typically set
to 3 seconds for files and M secs. for
directories.

4 it remains difficult to write distributed
applications that share files with NFS.

So the tea is set between like three seconds to 36 you also it remains that difficult to write

distributed applications on the share files with the NFS.
(Refer Slide Time: 1:03:11)

Case Study: Sun NFS

= Other MFS optimizations

= Sun RFC runs over UDP by default {can use TOP
if requirad)

= Usas UM BSO Fast File System with 2-klhyie
blacks.

= reads)) and writas) can be of any size
{negatiated between client and server}.

= The guarantsed freshness interval tis set
adaptivaly for individual files to reduce gatatir()
calls needed to update Tm.

= File attnbute information [including Tm)is
piggvbackad in replies to al file reguests,

&7

So one other question that may come up is how do we maintain the how do we updates or how

does client update the flavor so for files essentially legman we can do the right back on the clan

cache to the server and then we can decide that interval of 30 seconds also like there are
commands called flush on clothes which is essentially it takes the memory deep then writes and
then push it into the file system automatically or the directory is essentially like media simply

white to a server so as an example.
We can sail the tent X and Y they have a file name called A that is cached and then the file name

A occupies the blocks one two and three. So now the clients X and Y both can open A and then X
rights to the blocks one and two and then kind Y actually like now it breaks to the block and one
block one and 30 seconds later what happens the kind Y reads octave and forty seconds either go
pay my weeks block one so again like I mean this is one scenario making very that kind of whole

system will behave you.
(Refer Slide Time: 1:05:05)

Case Study: Sun NFS

» NFS performance
- Earlj.' measuremants (19587) established that:

> Writa() operations are responsibla for only 5% of
servier calls in typical LML environments.
hence wite-lhnough &t server is acceptabie
< Lookup) aczounts for 30% of oparations -dus to
step-hy-stap pathrname reschution nacessitatad by
the naming and mounting scmantics,

Mora recent measurements {1993) show high
parformance,

L see e spet ong for mone recent measurements

£4
So the performance itself is angle on the parameter or another concern that we talked about so
the right operations only like I mean responsible 5% of the server cause the typical unison
moment the lookup accounts for 50% operations because step-by-step our name resolution
necessitated by the gaming and the mountain semantics. So the recent measurements show a

higher performance of an NFS and then a specimen was taken in.
(Refer Slide Time: 1:05:46)

Case Study: Sun NFS

* NFS summary

#MNFS is an excellent example of a simple,
robust, high-performance distributed
senice,

F Achievement of fransparencies are other
goals of NF5;

Access transparency;
= The APl is tha LMK system call intarface for

bath lecal and remoto iles

53

e
So in summary NFS is an excellent example of a very simple but a robust high-performance

distributed service or dispute file system so the access transparency a scintillate woman for the
same eunuchs all is other units colleges is same for both mobile and more ads so that is one of

the we talked about transparency so let us look at those transparency in detail.
(Refer Slide Time: 1:06:23)

Case Study: Sun NFS
4 Lacation transparancy’

— Maming of filesystarns s controlled by eliem
rmunt oparstions, but transparancy can be
ansured by an appropriate system configuration.

% Mobility ransparsncy:
— Hardly achisved; relocation of filas is not

passibla, refacation of filesysiems is pessible,
bul reguires updates o aienl conligurations

4 Scalability ransparancy.
= File systerms (file groups) may be subdividad
and allocated to separate servers.

Ultimataly. the performancs liritis datsmminead
by tha kead on the sarver halding the maost
haayily-used filesysbem (File graup].

Ed

So the location transparency the name you know the file systems is controlled by the client
mounting operations but the transparency can be ensured by the appropriate system configuration
so even though like I am in the client actually controls the mount operations and how to name the
files the transparency can be control if you actually configure the system if you have proprietary
information or you need to nursing the bond points the mobility grants transparent Athens means

that when the system is changed from one tool until the other how do.

We ensure that thanks grace transparency this is not achieved at all and relocating the files is not
possible and only the file systems are possible but that requires an update to the time
configurations because clients are the ones deciding everything about the this particular file
system the person we love and then the scalability transparency essentially will again improve
again this one we can subdivide the file systems and allocate and we can allocate separate servers
for each of the file system so that rail again we can scale the but it is also depends the
Performance itself is determined by the load on the for all holding the most heavily used by

replication is another one.
(Refer Slide Time: 1:08:04)

Case Study: Sun NFS
4 Replication transparancy
— Limited b read-anty file systems; for wrilable
files. the SUM Matwork Infarmation Service (MES)
runs aver MFS and is used fo replicate essantial
system files,

% Haroware and sotbware oparating system
heteroganaity:
= MFS has been implemented far almost evary
knoen operating systam and hardwars platform
and is supported by a varisty of filling 5ystems.
“ Fault tolerance:

— Limitad but effactive: sarvice is suspsendad if a
server fails. Racovery fram failuras is aided by
the simple stateless dasign

e

So for replication since we do a limited only we limit this file system to read-only assistance
basically the replication transmittances so for writable files the Sun Network Information Service
or the NIS one power method and that's used to replicate essential system the hardware software
operating system heterogeneity again the NFS has been implemented or almost every known
operating system and hardware platform and that is supported by a variety of home buying or
billing systems fault-tolerance it is limited but effective so service is suspended the server fails

victory from failures is aided by a simple state.
(Refer Slide Time: 1:09:06)

Case Study: Sun NFS
o Eficiency
—FS pratecols can be implemented for use in
5i‘h|aﬁ~:ln5 that generate vary heavy loads

B
]
And efficiency basically can be implemented for use in situations that generate a very heavy so

the next case study will be the Andrews file system.
(Refer Slide Time: 1:09:17)

Case Study: The Andrew File System [AFS)

» Like NFS, AFS provides transparent
access to remote shared files for UNIX
programs running on workstations.

» AFS is implemented as two software

components that exist at UNIX processes
called Vice and Venus.

{Figurs 11)

B4

Before we go into that I also want to talk about a little bit on the Sun NFS file system so the key
takeaways that you want to take away our number one is it is a stateless server and then the
operations themselves are what is known as the idempotent operations what I mean is here you

Oh you so you.
(Refer Slide Time: 1:11:06)

Case Study: The Andrew File System [AFS)

» The files available to user processes running on
warkstations are either local or shared,

= Local files are handled as normal LIMNEX files.

= They are stored on the workstation's disk and
are available only to local user processas,

= Shared files are stored on servers, and copies of
them are cached on the local disks of
workstations,

= The name space seen by user processes is
illustrated in Figure 12.

E5

I EEEEEEEEEEE——
Yeah and then the other takeaway is also the client. so you so yeah so the idempotent server

operation is essentially like I mean when you repeat an operation it does not have any side effects
so it also helps with the ways other things basically like the fault-tolerant the scalable
performance the consistency. They are all addressed in the NFS system and then one thing to
notice then particulars system crashes it tends to slow the other the server to the other clanks the

tenses are oh there.
So this is kind of one of the drawbacks of the system people Inc whip it and then the client also

like needs to cache the data or scalable performance not just the server alone needs to pass in fact
in server caches sometimes it is not and since we put a cache in the landside the data consistency
is extremely home because now we do not know like in which copy the latest form because there
is some other copy that is still sitting in the hospital so that's all I have for today we will continue

from this point next week then we are doing the next pass ion next class thank you very much.

