
 Linux Networking – Lecture 6
DFS

Hi everyone and welcome to the class the LPS class today we will be again continuing with the

next networking lecture number six in the last lecture , we just introduced the DSS today we will

be going on with the DFS the distributed file system in fact. I am going to actually will start the

DFS discussion now today last time we just looked at some introduction but I am going to repeat

that material again and before.
I begin I think again we had a good lecture on the DNS system we looked at the email blast and I

am not going to recap that today if you have any doubts we can always take it up session of so let

us begin the discussion on.
(Refer Slide Time: 01:08)

Go disputed file system again, I say I mentioned in the last class.
(Refer Slide Time: 01:11)

We will talk about the distributed file system what it entails why system big deal we will go into

the architecture again ,you need to know like why it is a bit big again what are the issues with the

file system what are the issues with the file system and also we will take up like two case studies

one is on the Sun NSS system and then the other one is Andrew file system again now let us see

like I mean how far we can get to but these are the topics that.
(Refer Slide Time: 02:04)

I want to call so last time we discussed the file system again the file system basically just it was

done it was developed for a centralized computer system and the desktop computers, and file

system is an operational operating system facility providing a convenient programming Interface

to the disk storage so we will see like what are the gradations of file system or we have to

understand the memory architecture before we go the file system.

(Refer Slide Time: 02:33)

And a distributed file system specifically its support sharing of information in form of files and

hardware resources across the network so that is the key thing and then once we have this build

optic system like cobra or java in the web this entire thing basically like how much we are

sharing and how the sharing happens has become like extremely complex so before we go into

the storage system let us look at just the memory architecture.
(Refer Slide Time: 03:05)

I think, I mean this is something that you are familiar with so we have say like I mean this box

represents the of the CPU and then there is a cache memory which is part of the CPU it is very

localized and in fact you would not even know the existence unless you look at the on the

computer itself or basically like what it has in the control panel or any other place, basically

typically these come in various sizes.
So right now we have one gate to gate we are measuring in terms of gate exactly then we also

have the main memory this is an example will be like the DDR area 3 is very famous nowadays

you get into two gate or four gate videos sometimes like even the caches like, I mean it used to

be like in case now probably like in Meg's and gigs are also available and the memory of course

like mainly in a heavy duty server it can go all the way.
I have to light one terabyte also then you have like hard disk which is essentially the storage

there things get written and DCT it resides programs that the heart is before they get executed a

distributed storage is nothing but so if you look at this particular box the box around it is a

system or a computer and then basically like a distributed system is centralized for storage and

that is shared between multiple computers or there are multiple disks that can be accessed by a

single computer all through network.
So now I mean if you look at the hard disk the most this would be the storage finally they are all

the similar stuff so what is a big deal in like using a distributed system, so let us look at some of

the challenges form.
(Refer Slide Time: 05:19)

So when we talk about the distributed file systems there are many challenges that they need to

overcome in order to make sure that we get we can reliably store and retrieve it one of the issues

is the transparency, so as you know the data is written in various chunks basically so what kind

of data in a hard disk is for transparent to the host systems is it all of them is it some portions of

transparent to some of the systems and some portions are transferring to another system.

How is that divided and then when there is an overlap like what happens, so these are some of

the things that we need to worry about because there are many systems accessing the same disk

storage, so again that is one thing that we will talk about then the next issue will be the

concurrency issue what happens is two servers or two clients access the same files and currently

who gets the preference and why so these are the kind of questions that we asked about

concurrency.
Then the other one is replication which is when the server the file in a server changes can all the

can see the change immediately or do they have a how does that work so again that is another

thing that we will talk about then the fourth challenge is the heterogeneity challenge again in this

one is the weather the file system support multiple OS. I am coming, I am connecting with

Windows wires and somebody else is connecting with Linux OS somebody else may be

connecting with the IOS OS.
How does the system behave that sense and does it support all the races or supports some of the

operating system how does it work then the other challenge is the fault tolerance challenge which

is then the file system crashes, how does the client know about that or if the client crashes how

does the file system react say like I mean you are writing to a file area and then the ten crashes

now what happens, do that that is that does that area gets recovered or is it just all corrupted how

does the how what happens.
Then the other one is consistency comes from the different clients then they access basically the

if the a is that the what each client looks at from its perspective are they all in consistent view, so

that is another thing basically that we will talk about and then the security is another control how

do you authenticate a client or a user to a file system, and so that I mean he can only he can

access.
We saw like some of the high-level issues regarding security in when we studied about the Linux

basically next form OS there we talked about the read write access read/write/execute axis also

does that word so here we will be that that challenge has been multiplied pretty heavy so we will

look at that and then finally efficiently how do we keep wastage of the space to the minimum. So

are these techniques that we can employ to do this what we do so again as I mentioned the

classical example that is on manifest form or Andrew file system so we will be learning about all

these things so before we go into that let us look at the main memory architecture.
(Refer Slide Time: 09:42)

Which is essentially these are this in the previous slide, so let us look at it from the main memory

onwards or we want looking at the caches and inside it whatever is inside the chip so main

memory it is not the share it is not a shared memory and mostly like it is local to that particular

machine or that particular CPU and the persistence ,it is not persistent, so persistence is another

property essentially or the data whether then the process die whether the data still stays there or

not.
So usually what happens whatever the program that is running in and process writes out the data

into the hard disk so that the main memory is completely cleared of any of the remnants of that

particular process , so what that means is basically the main memory more persistent method so

we do not keep anything after the process gets executed then by nature main memory is also

similarly is a very local localized memory.
So we do not keep any distributed cache or with us for that for more than the consistency

maintenance again it tries to maintain the consistency and the example, essentially but it says is

still one copy consistency ,so that you cannot replicate that copying across multiple memory

systems here we call it mainland resistance example is the RAM or the DDR is another one so

those kind of things now let us look at file system file system again like you do not allow the file

system to share.
But it is persistent meaning the data gets written into that file system after the process gets

executed again. I am distinguishing between program and process that this is the distinction that

we saw very early in the course, which is essentially the process is a running instance of a

program. I hope you guys remember again the file system also does not allow distributed or

cash-strapped because inherently like in with this file system we are talking about a file system

within the computer.
So it is mainly for that particular machine and consistently maintenance is a strictly like one copy

insistence a system now let us talk about the distributed file system this is this is where it gets

interesting the yellow sharing in a distributed file system the data is persistent as we know and

then it also allows the distributed cache essentially, so that you can create the because of data all

over.
The place and finally the consistency maintenance is or will have multiple copies which

essentially go through that consistency so we call it like approximate consistency so we know

that the main consistency is how each of the plan will use at particulars files and here it is the it

is almost there essentially some of the new information may not be burning both the file but

pretty much like I mean the poppies are updated on a periodic basis.
So now let us look at a web server observer also allows you to share the data it is the data is

persistent allow the distributed cache and the Pickers but there is no consistency essentially like

if something gets updated everything is not looking at the same thing so one data may be old the

other data may be new unless you take like refresh that they do not be the distributed shared

memory is under one ,so here again yellow the share sharing automobile but the memory itself is

not persistent.
The way that we allow them as being also through the distributed cache replicas and then finally

the consistency maintenance also they are remote objects essentially this is something that the

CORBA supports and again here sharing is done and then it is just a one copy consistent, so if

you look at it I mean so the highest one is probably the distributed file system and then there is

also the peer-to-peer storage system.
Which is also very similar but the others are kind of they are lower in the hierarchy as you can

see the position object store and also the remote objects from the CORBA.
(Refer Slide Time: 15:25)

So let us look at the next picture this shows like a layered Module structure of the

implementation of a non distributed file system.
(Refer Slide Time: 15:47)

So here we have a directory module, and then a file module, then the access control, module file

access module, a block module and the device module, so let us let us just look at what each the

function of each other the directory modules is essentially like. I mean that it has all the file

handles that are in that particular direction, so this is the each of the file IDs the file handles are

also known as a file by ID.
So essentially the file names are related to the file ID with using the direction body the file

module keeps all the file IDs and correspondingly like body the file where is it located and all

those details the access control module is the permission checker, we already know that there are

three types of permission the read write and execute, so the access control model is the one that

checks for these permissions and whether certain operations are allowed or not allowed.
You the file access module that essentially is used to read and write pile data all the attributes and

the block module essentially like now accesses be the file system or essentially the disk and act

that goes and allocates the blocks that are needed for this writing go file and then so basically

like. I mean the plots are usually chunks of some number, so that veins on the file ,file type it

allocates some blocks for the particular file.
In the membrane and then the device module is essentially like an email that is pretty much it is

the module that accesses the disk delta use and also like that for buffering ,so whenever you are

reading the file it takes the file ID is actually like an active form that particular disk and it gets

the files for the through the buffers it takes to the buffers again.
(Refer Slide Time: 18:34)

The file systems essentially like. I mean so that provides the organization storage, retrieval

naming, sharing, and protection of all the files so a file contains the data and the attributes so

now let us look at how the file records are retrospective or our file data structure reform.
(Refer Slide Time: 19:03)

 So the key things that we want to write or the file length and then it was created a creation time

stamp if it is read multiple times or the last and it where it is read retain time stamp then after

creation when if it is written again then the right time stamp and then there are some attribute

time stamps and then the reference count and then there are some additional ones which is the

owner the file type and then the access control list.
So this is typically the record that is kept as part of the file and we can actually access various

these various form parameters to get to where what the values, so these are done through the

operations actually.
(Refer Slide Time: 20:06)

So let us look at some of the operations so here the operation is open is the name and then the

mode, so it basically opens an existing file with a given name and then assigns the file ID to file

destination create his another operation with the name and the mode and this one creates the file

with the name and that that ID is assigned to the File ID.
So the mode can be like read/write or read/ write and then close the file destination on the file

handle closes that particular file in any of the open files, and then if it can close then it assigns

the status as 0 and if it cannot hold then the status becomes one, so based on the return value we

can decide whether the files not close or not in an account essentially like I mean this is so

actually like.
I mean the operation is the read operation read file this buffer n it essentially transfers n bytes

from the file to the buffer and essentially like we can also like measure that with the thumbs of

the right again file destination buffer n will transfer the file actually like. I mean the N number of

bytes are transferred from buffer into the file , so these operations essentially like be we deliver

the files and they also advance the read/write pointer.
So the pointer is essentially like it is in the file, so that you know like I mean where exactly and

then L C is the you give an offset and another pattern all events using this parameter it goes and

moves the point of the read/write pointer to that offset and then unlink essentially like remove

the file name from the directory structure if it has no other names it is just deleted otherwise it is

basically look at this remove that name alone.
The other names are kept and link name one name to again this adds a new name 1 name 2 the

file name one and then the other one is the stat command this actually gets all the file attributes

we saw that here essentially this one the attribute count and then the attribute time step so in all

the attributes are it is taken and then put it in the buffer.
(Refer Slide Time: 23:51)

So we already saw like, I mean to the requirement with itself like I mean we know that these are

the challenges and that is what we so let us look at the file service architecture.
(Refer Slide Time: 24:07)

This actually offers a clear separation of the main concerns in providing access to the files and it

is obtained by structuring the file service with three components, so there is a flat file service a

directory service and the clan module service, so again this the five service architecture is a way

to organize the services that are associated with the files so that things are provided properly so

now let us look at the modules.
(Refer Slide Time: 24:53)

In the file service architecture so imagine the server computer sitting somewhere far away and

then it is connected the client using this link is essentially like some kind of the network and

there may be like more clients sitting, there which are accessing the same data and essentially

Like I mean so when the client tries to access the flyer flats a file service essentially immunity

disassociated this and directly like a minute it collects the data and sends it to the client And it is

almost like I mean you can think of your the can computer is accessing it as a one-on-one with

interacting with the file services so there is a directory service and a fine service and basically

like the flat file service collects that file information insert to the client.
(Refer Slide Time: 25:56)

So essentially in a flat file service all the files are assigned a unique file identifier or UF ID and

so since the files themselves are uniquely named it is easy to actually obtain what the pilots and

the essentially ligament so one system that is accessing one of the files the other systems may not

be able to see every file has a unique identifier and the times need to know that unique files

identifier in order to access that form So the clan there is a client module that exports the

interfaces by the flat file and the direct restore services of the server side.
(Refer Slide Time: 27:00)

So the directory service itself it is provided it provides the mapping between the text names of

the files and their UFID’s so the client may obtain the UFID’s ideas of file by coding its text

name to the directory services and these are all like one-to-one mapping, so that that is the

uniqueness of the flat file it is not very interesting and as you can see actually the UF ID can be

in long sequence of bits because if we need to map all the files in the file system with unique

identifiers it is kind of an odd just asking.
So the client module that is another one piece of the services that we saw in this picture this runs

on each computer and provides an integrated service or a flat file service because this service is

pretty much constant or same across all the clients , so the client is in fact in the unit side actually

emulates the full service full set of UNIX five operations these are the operations that we saw

like earlier like open closed and all those things all of the services.
Are provided by the client module it also holds the information about the network locations of

the flat file and then the directory server processes so that it can actually go to those directory

servers and access those five it actually better performance through implementation of a cache of

frequently used file block at a client so we can improve the performance of client module by

having a cache and local cache within that particular client in the system that we store the

recently used by block again the issue will be how do we maintain the consistency and so we will

talk about that.
(Refer Slide Time: 29:17)

So here some of the again commands that we can use the read field. I for I, n and then that goes

into data essentially again for - and arrow data here essentially like, I mean we read a sequence

of 1/2 length of file and the variable is I which is essentially like the increment that and then

basically like I mean and then essentially ligament that particular items are stored in data the

right field.
I data essentially it writes the sequence of data into a file starting at item, I and extending the file

if miss and create is another command that creates a new file with link zero and delivers the

UFID to the field variable and delete field this remove that file from the file store get attributes

field and then store we can store it into another variable called attribute and then set attributes

essentially like them and that is essentially Which are actually that we specify set to that

particular field which is essentially file ID the unit ID that we have find out.
(Refer Slide Time: 31:24)

So again the access control , so in the distributed in implementation access right text has to be

performed at the server um so it is not a client that provides the access control because the

remote process control interface is unprotected point of access to these files essentially so until

you reach this server basically like it is all unprotected and then they see be able so the access

control itself is provided at the server side. Directly service interface eventually like that we will

look into it now.
(Refer Slide Time: 32:24)

So here there is a lookup or particular directory with the name and that file ID and if the name

itself is not there in the in that particular directory then it throws an exception, so that is the add

name essentially like add the name and call the file into the particular direction and if there is a

Already that may make this then it throws an exception , you unnamed directory name is

essentially like an aim is in the directory then it is removed from the directory if it is not there in

the directory then expose an exception and then finally.
The get names will actually with pattern get the text names in the directory with a match of the

regular expression pattern, we will learn about regular expression future modules in one of the

programming modules and then that is assigned to the consumption so now we go into the next

file service architecture.
(Refer Slide Time: 33:58)

Which is hierarchical file system right now we look at this a flat file which is very easy to

implement very easy to access but at the same time you cannot do a lot of functionality go and

also you carry along unique file identifiers, which just causes issues by growing your directories

and the growing the client modules now let us go into the next one which is the hierarchical file

system this essentially like.
I mean is the file system where the directories are now arranged in a tree essentially so

essentially you need to go into like various directories in order to figure out what is going wrong

and then also the file group is another concept there it is a collection of file that can be located on

any server or move between the servers while maintaining the same names.
So we saw some of these examples in me originally like started Linux a similar construct is used

in more in a UNIX file system it helps with distributing the load of file serving between the

service so essentially like, I mean you can move the file system or the file group to be Closer to

where the clamp is are asking for so we can move to another service also the file groups have

identifiers Which are unique to out the system so that is that is the way that it can be moved from

one system to the other.
(Refer Slide Time: 36:02)

So here is one method to construct a globally unique ID so we did use some attribute of the

machine on which it is created so basically like the idea so we know that idea this is the 32-bit or

a for ruptured binary we just add a date to it like so the IP address followed by date we call it as a

unique identifier the date could be a date and time all the way to the second then the file gets

printed.
(Refer Slide Time: 36:43)

So now we go into the distributed file system again the three hierarchies that we talked about are

the three different types of file system that we talked about flat files a hierarchical files and now

we go into a distributed time system, so here we will talk about two main file systems one is the

NSS or the Sun and this is the this was developed by Sun Microsystems in 1985 it is the most

popular and it is open file system and it is used pretty much universally today.

You also the NFF protocol itself is standardized through this particular standard is known as the

RFC 1813 so the main idea is the here is basically the serve the server or the file system itself is

a stateless system so essentially like. I mean the server itself is not required to remember

anything so it does not have anything in the memory essentially the things like which clients are

connected.
Which files are open exactly so essentially let me just the file system itself is sitting in one place

the signs basically are send some requests essentially with all the information that is needed and

then basically the server just fulfills the request and then this forgets the minute its root is the

request and then perform, so the onus is on the clients to provide all the information to complete

it or accessing a file or essentially to provide it to get that service.
So the whole so the advantage of this kind of a system is that the server state does not even does

not grow it more number of things, so there is no change to the server eater which you need to

change the number of servers you and then the other key idea of NFS is when you perform an

operation and if you repeating the operation you get the same result there are no side effects so

essentially like.
I mean if you say like A=D + 1 and then essentially like every time you do the a basic A it is

always it you get only like A= B + 1 or you do not get A=B+1 norm there now the state of A is

different so that the next time you when you query it is it is different the actual the second system

that we study is for the af-s of the annual file system this is developed by the Carnegie Mellon

University as a part of the Andrew distributed computing environments in 1986 so you can see

that actually they are fairly close.
The this research project was to create a campus-wide file system and basically a public domain

implementation is available on Unix it is called Linux a so this was again also adopted as a basis

for the DSS system DSS file system in the open software foundation and the distributed

computing environment essentially.
(Refer Slide Time: 40:59)

So let us look at the NFS architecture the NFS architecture consists of again the client computer

but, I mentioned the client has a lot of onus on providing the data so let us look at first the server

computer server computer has nothing but a virtual file system which has the rituals the unique

the UNIX file system and then it has an NFS server which is the another program that serves the

various clients and then in the client computer again like. I mean you have the same kind of

things there is a virtual file system which has the UNIX file.
System and then whatever the extra ones here basically the blank ones are various devices slash

deaths and then there is also an NFS client the NSS client talks to the NFS server place again

provide the information as what the files that it responds retrieve or to write the arm write the

content into the file they all these programs actually longer all decide on the Linux all the fun

you so the communication between the client and the server are using RPC.
What or what is known as the remote procedure calls essentially so the client itself basically it is

a it is a transparent access to the NSS file system so then you go through this NFS climb to the

end of the server since it is stateless basically link sizes like this is now connected together and

there is more NFS server and then a plan and basically exists you can transfer only access

whatever is inside.
The UNIX file system server side as well you so the clients job is essentially like going to

basically provide this file system and also the transfer and access to the NFS it also provides

some virtual nodes essentially, this is essentially like procedures for procedures on an Individual

file or it is an interface or procedures on an individual and then basically to translate that the

individual file procedures into the various NSS.

Remote procedure calls so that rail again mate can access the NFS server and retrieve that one so

here essentially like the application program provides the unit system calls through the UNIX

kernel and essentially like. I am in the operation zone, so they all the virtual file system just

keeps all the operations as a local operation so we would not feel that actually well there are

some remote eyes also.
So from the application side you are just calling a local program but the virtual file system

identifies which is the local and this is the remote files and then the remote is the channel

through them client and then it provides the this RPC into the server to retrieve that file.
So the finite in fact we already introduced this concept of a file handle the file handle is the file

identifiers about views in the NFS itself, so here in particular file handle denoted as apex could

be the file system identifier the node number and then the anode generation so all the all of them

are combined together to get to the I handle.
(Refer Slide Time: 45:44)

So the various commands are used here so in this one there is a read operation we again like very

similar to the flat file axis or give the file handle or the file item the offset in the count and then

that retrieves the data and put it in the data variable, the right for writing VCT we do again the

file handle the offset the count and then the data and then basically like a minute is written into

the file system and then basically like this one actually passing system.
The create command essentially where the now we specify a directory file handle the name and

then the attribute and this command returns a new file humble and also some attribute on the

pipe and then the remove actually is removed just return the status until a level blogger mode or

not again we give the just the directory file handle and then the name pending the gate attribute

file handle gets the attribute related with that particular file.
Then the set will set that then there is a lookup command essentially which should return to the

file handle and then attribute rename command it is basically the original name of the from

directory pile handle and the name to the to directory and then to name link provides a link to the

existing file then the reader essentially read the particular directory and then returns all the

values available in trees.
Stream link is a symbolic link G or a soft link which ties a file to another end you name and then

that returns a status the read link file handle essentially like that returns a string essentially so it

gives this bag is the expanded link pack make the is it creates a new directory and all that it gives

you the new file handle on the box and then our under base tables a directory and then staffed file

system file handle gives the file system status.
So these are some of the commands that are used in the thumb no.5 which is one of the very

popular systems.
(Refer Slide Time: 49:21)

So now let us look at some of the other features of Sun NFS in fact we learned about this one is

the security or how do we make sure that there is an access control and open easy so as I

mentioned earlier the NFS server itself people state level which means that the users identity

access right all them are controlled by the server only on the requests and essentially the client is

so the local file system they are checked only on the files access permission attribute.
So essentially like I mean this is oh we have to check every time whenever we access that so it

does not remember like I mean a particular user is authenticated or not so every time you need to

check again and again also the client request is accompanied by a user ID and the group ID these

are inserted by the RPC for the remote procedure call we talked about this also like earlier like

with some example.
(Refer Slide Time: 50:43)

Where the virtual file system converts or basically like it forwards the remote access to the NFS

client which converts the file handle into the continually remove resist ball it contains this

additional data.
(Refer Slide Time: 51:01)

Which is the user ID in the group ID and then it sends it to the file system to gather the phone so

the Kerberos is also it has been introduced visually integrated with the NSS and that provides a

stronger and much more comprehensive security you but now let us look at the mount service

mount service is used to mount a particular disk into the file system so if it is a new disk we use

the amount function to do this to move on the remote files so the operation is mount remote goes

remote directory in the local between so it basically like bounce that file system into the local

directory you.
So in this example the server maintains the table of clients which ever once mounted the file

system separates all each client maintains a table of mounted file systems holding the IP address

the port number and then the 500 the remote file systems may be hard Mobile mounted or soft

mounted in a plan completed very similar to the soft link of pardon so here another example it

shows the two remote mountain piles you.
(Refer Slide Time: 53:04)

So in the server there is a directory called people which contains like Big John and Bob in the

time side there is a directory called user it has students which are remotely mounted on people

and then there is also another practical tab which is a remote human form starting actually in

users and in so to you.
(Refer Slide Time: 53:56)

Then there is also a concept of Auto monitor the Auto monitor was added to the unit's

implementation of NFS in order to mount a remote directory dynamically whenever an empty

mount point is reference by a client so this is kind of the plant ask for a particular node which Is

empty by default then the auto mounted automatically moves for the particular remote Directory

that you so again the auto mounted has a table of mount points with the reference to one or more

NSS service listen against each so it sends first a probe message the each candidate server to see

whether the particular one point is still available then it uses the one point to mount the file

systems. And then serve that apart and usually the auto mounted keeps the bound table to be very

small but it also provides.
(Refer Slide Time: 55:12)

The form of replication or read-only file you so let us look at that caching essentially.

(Refer Slide Time: 55:25)

Begin to caching convene of two forms one is a server-side caching and then also all the other

one is client-side caching before we go into the server-side caching let us look at the client-side

caching the caching always is it provides improved performance because certain blocks if you

cache and basically goes up we continue log and the client requests that every time the cache can

provide very quick access to that video blog so that the system that is requesting that is not

starving or data so for reads essentially ligament or the always the protocol from the client side is

checks with the local cache before goes into the server.
Because whenever we go into service it can take a longer time but as the local cache will be

easier so only there is a cache miss it goes to perform but at the same time right basically you can

the most or the Sun and express itself provide the periodic right back and not an immediate right

back to the server mainly the reason is we do not want to contact server that often because that

can slow down the communication you so the client cashes two types of data the one is the data

block itself and then the other one is the attributes now let us look at the server caching basically

so the server caching is very similar to the UNIX file caching in the local form.
So the various blocks from the disk they are held in the main memory buffer cache until the

space is required for new things the read ahead and the delayed write optimizations are also

possible so what this means is basically so if you know that actually you are grading from one

particular file instead of getting the portions that are in the read operation you get more thinking

that maybe like I mean you can read ahead of time so and then delay write is essentially like I

mean so we delay the write with either the various cache consistency protocols.

And so that we can further optimize overall caching for the local files the rights are deferred to

the next thing even so this is again the delayed right principle so 30-second intervals then they

think even happens if the way I mean the Sun NFS works very well with the local context where

I shall always access to the location but in a remote catch a case the synchronization legate does

not guarantee the necessary implementation to the clients.
(Refer Slide Time: 59:08)

So the NFS version three service offers two strategies for updating the if one is the right group

and then the other one is the delayed coming I think that you already know about this when we

had studied the cache coherency protocol or to maintain prevalence in a cache. Whereas the right

to is essentially making writing it both in the cache as well as in the main file in this case

essentially like I am in for the altered pages are returning to the disk as soon as they are received

at the server. So then the other one is the delayed commit where is the cages are held in a cache

until it emits signal arrives and then basically at that point the file system itself is written with the

new beta. You so we look at from this we designed the caching.
(Refer Slide Time: 1:00:19)

So again the client cache of the results from read and write get attribute lookup and then the

reader operations the synchronization is not guaranteed when two or more clans are sharing this.
(Refer Slide Time: 1:00:46)

So that is something that we paid apparently for then the validity itself is checked to time stamp

based check essentially like it reduces the inconsistency but it does not eliminate it so it is used

for the validity condition or cash increase at the Klan. So the formula is like T which is the

current time - TC is the time when the cache entry was last valuated must be ≤ T which is the

freshness guarantee so we do not want excessive time pass between these trees and do anything

and then essentially the PM client is the time and the block was last updated as a server and then

TM server is essentially like them.

So actually TM client is the time in the block with lots of data that we client and then the same

thing. When it was a physical server TDC is the time when the cache entry was last validated so

basically like I mean we need to make sure what see the validity condition that is form satisfied

or the tension face you so in the previous one the Tito system if the freshness guarantee that can

be customized so you can decide what that value should be and then based on that we can

construct the rules.
(Refer Slide Time: 1:02:40)

So the tea is set between like three seconds to 36 you also it remains that difficult to write

distributed applications on the share files with the NFS.
(Refer Slide Time: 1:03:11)

So one other question that may come up is how do we maintain the how do we updates or how

does client update the flavor so for files essentially legman we can do the right back on the clan

cache to the server and then we can decide that interval of 30 seconds also like there are

commands called flush on clothes which is essentially it takes the memory deep then writes and

then push it into the file system automatically or the directory is essentially like media simply

white to a server so as an example.
We can sail the tent X and Y they have a file name called A that is cached and then the file name

A occupies the blocks one two and three. So now the clients X and Y both can open A and then X

rights to the blocks one and two and then kind Y actually like now it breaks to the block and one

block one and 30 seconds later what happens the kind Y reads octave and forty seconds either go

pay my weeks block one so again like I mean this is one scenario making very that kind of whole

system will behave you.
(Refer Slide Time: 1:05:05)

So the performance itself is angle on the parameter or another concern that we talked about so

the right operations only like I mean responsible 5% of the server cause the typical unison

moment the lookup accounts for 50% operations because step-by-step our name resolution

necessitated by the gaming and the mountain semantics. So the recent measurements show a

higher performance of an NFS and then a specimen was taken in.
(Refer Slide Time: 1:05:46)

So in summary NFS is an excellent example of a very simple but a robust high-performance

distributed service or dispute file system so the access transparency a scintillate woman for the

same eunuchs all is other units colleges is same for both mobile and more ads so that is one of

the we talked about transparency so let us look at those transparency in detail.
(Refer Slide Time: 1:06:23)

So the location transparency the name you know the file systems is controlled by the client

mounting operations but the transparency can be ensured by the appropriate system configuration

so even though like I am in the client actually controls the mount operations and how to name the

files the transparency can be control if you actually configure the system if you have proprietary

information or you need to nursing the bond points the mobility grants transparent Athens means

that when the system is changed from one tool until the other how do.

We ensure that thanks grace transparency this is not achieved at all and relocating the files is not

possible and only the file systems are possible but that requires an update to the time

configurations because clients are the ones deciding everything about the this particular file

system the person we love and then the scalability transparency essentially will again improve

again this one we can subdivide the file systems and allocate and we can allocate separate servers

for each of the file system so that rail again we can scale the but it is also depends the

Performance itself is determined by the load on the for all holding the most heavily used by

replication is another one.
(Refer Slide Time: 1:08:04)

So for replication since we do a limited only we limit this file system to read-only assistance

basically the replication transmittances so for writable files the Sun Network Information Service

or the NIS one power method and that's used to replicate essential system the hardware software

operating system heterogeneity again the NFS has been implemented or almost every known

operating system and hardware platform and that is supported by a variety of home buying or

billing systems fault-tolerance it is limited but effective so service is suspended the server fails

victory from failures is aided by a simple state.
(Refer Slide Time: 1:09:06)

And efficiency basically can be implemented for use in situations that generate a very heavy so

the next case study will be the Andrews file system.
(Refer Slide Time: 1:09:17)

Before we go into that I also want to talk about a little bit on the Sun NFS file system so the key

takeaways that you want to take away our number one is it is a stateless server and then the

operations themselves are what is known as the idempotent operations what I mean is here you

Oh you so you.
(Refer Slide Time: 1:11:06)

Yeah and then the other takeaway is also the client. so you so yeah so the idempotent server

operation is essentially like I mean when you repeat an operation it does not have any side effects

so it also helps with the ways other things basically like the fault-tolerant the scalable

performance the consistency. They are all addressed in the NFS system and then one thing to

notice then particulars system crashes it tends to slow the other the server to the other clanks the

tenses are oh there.
So this is kind of one of the drawbacks of the system people Inc whip it and then the client also

like needs to cache the data or scalable performance not just the server alone needs to pass in fact

in server caches sometimes it is not and since we put a cache in the landside the data consistency

is extremely home because now we do not know like in which copy the latest form because there

is some other copy that is still sitting in the hospital so that's all I have for today we will continue

from this point next week then we are doing the next pass ion next class thank you very much.

