
Welcome you to the last session of unit 5 embedded software testing and this is the last
theoretical session of embedded software testing and in this unit we will try to study the test
management aspects in terms of defect management test management and control and test
management tool
(Refer Slide Time: 00:25)

Defect management tool.
(Refer Slide Time: 00:27)

Then after this
(Refer Slide Time: 00:27)

(Refer Slide Time: 00:28)

We will go through all the units what we have to do quickly. So, that we are done with all of the
typical parts of embedded software testing. So, before this we will just go through what we have
understood in the previous session about test management. So, we had gone through
(Refer Slide Time: 00:56)

Change management. Document the change request, analyze the impact, approval is required
from CCB change control board, who will approve for the changes after the analysis plan and
final approval with the senior management plan and many minor changes will be taken for
within the – without highlighting to the higher management. So, making of changes will be gone
through check-out check-in process.
Which is nothing but the configuration control process, were we check out, we will take out from
the repository and once we update all the reviews are done? We are going to check in back so
that the new version is created. And the changes are available in the repositories. So that is how
we do the changes onto the corresponding document code, data aspects, test cases anything that
are part of the test cases.
Sorry they are the part of the configuration items CS. Then we are going to close that change
particular change saying that it is based lined or it is available for the release or delivery. That is
what the change closure.
(Refer Slide Time: 02:11)

Then we had gone through incident management. So you have understood what is an incident.
Any significant unplanned I went that is of course during the testing or any other event that
requires some investigation under solution of that particular incident. So, the incident could be
due to a fault intermediately it has happened unexpected. So, the results are incorrect. Test was
not performed correctly.
So, we can raise the issue incident against the une4xpecyted behavior or it could be self whatever
that particular tests are we may trying to test it as well because testing may be a incorrect way of
doing of that. That is also can be called as the incident. So, that there is a need for correction of
the incident or the resolution for that particular incident. So, in incident management
(Refer Slide Time: 03:07)

We first identify the defect and record what is the incident about and details of that entire
incident. Then we do an analysis and classification priority like whether this five incidents have
happened? How we can prioritize? What is the impact in that? Whether instruction stops for the
rest of the program to continue? Or to test execute of all these? So, next one is the investigation
and detailed analysis.
We will try to investigate what is the cause? Where the problem was? Before that incident cause
incident had happened. And we try to put a mechanism for recovery how we can recover that
particular incident? Whether we can fix that code? Fix that design or requirements or the test
approach itself is wrong. All this will be in the part of the resolution and recovery. Then we will
have a different stage of incident like re-open, wait, rejected, included to build, verified, closed
etc. and every revision
(Refer Slide Time: 04:11)

That we are going to release for the deliver as an – should identify the clear history of what is
going on in the particular CI cor-configuration in term. So, every configuration item is suppose
to have a something like this mandatory which will identify the particular revision number why it
is what revision number it is been numbered and on which date it is been revised, who is the
author?
Who is the reviewer or the approver? And what are the changes that particular revision number
has undergone. Similarly up on the next change we are going to highlight it as the revision
number 2, 3, 4 like this. Each one will identify clearly. So, what is the revised detail or the
updated details or the chain details that are undertaken within the particular region? That is what
we do.
That is about the revision history how we are going to revision for each of the CI.
(Refer Slide Time: 05:08)

Then for understanding the configuration incident management and all that, we went through the
need of CM tools. So, all the test were has to be having identified in a physical location or a

particular repository. So, to control and manage that we need CM tool or a configuration
management tool such as the, incase
(Refer Slide Time: 05:34)

PVCS dimensions, SVN etc. so this basically used for the CI. It could be a development it could
be a testing could be a test case design, any documents, any access anything that is the part of the
project. All is will be controlled and managed through configuration management tool. Against
of the configuration management tools we try to understand and
(Refer Slide Time: 06:02)

It has various windows which will highlight different colors and terms of - . When it was updated
within the particular project and whether it is in line, whether it is post lined and if it is base line
how many elements of that particular baseline is ready for- etc. all this will be the part of the tool
as it displays you can see it.
(Refer Slide Time: 06:27)

You can configure the tool also it does not matter. Usually the tools will allow user to configure
the way that project has to be fashioned. Then we understood about the test management in terms
of planning of the test project.
(Refer Slide Time: 06:44)

Various aspects of test management and its effort in the test management methodological
support, technical support, domain expert, test configuration management and tested all these
efforts for each of the activity and the test management will be updated. It is start and ended
something like a planning document or a management document in this tracking will be done,
how much of effort is gone here and all that.
And in one of our session we saw about the variance like, this is the plan this is the management
plan against which how much we have consumed? How much is left over? What is our trend?
And what is the variance for how much schedule? What is the variance on effort? All this will be
the part of the test management. We are going to take care. Now we
(Refer Slide Time: 07:37)

So, we studied about how the test processors are related to the software v-model. We understood
about the multiple v development life cycles. You can see model prototype as well as product and
each as its own v model and that is why it s called as multiple v development or life cycle model.
And that life cycle model as on the right hand side edge as a test aspects or test activity. And that
is on for with the left hand edge of the particular model or prototype or any product
development. That is how it is aligned with the v model
(Refer slide Time: 08:16)

In detail the same thing is done explained with the program. It is from that book called testing
embedded software by Bart Brookman and Edwin noderboom.
(Refer Slide Time: 08:30)

Models are and we are gone through this in our one of our earlier sessions. I think it is in unit 3.
So, similarly the different v-models various v-models we have gone through. And the right hand
side you can see how the testing is aligned in the rare event testing, random testing, statistical
testing, certification all that. Ultimate aim is to read the right most, right edge of the upper side
of the v-model.
Basically so release that particular activity which is unified by other particular v-model and we
are going to define release criteria. The next type of testing
(Refer Slide Time: 09:17)

For as per of the interest in the software testing is testing design by contract. Here the approach
uses the documentation only to capture the design but it will encourage basically sort of the
instruction among different developers. So, that particular developer is allotted work like this
contract.
And they will provide the support in terms of interacting each other and providing the solution.
So that is so we do the test. This suggestion called as the interact as per contract and that contract

will be developed after the instruction is done with the different module owners and the system
owners.
(Refer Slide Time: 10:06)

Then we had done through a process called agile development process. They basically use in
short duration time to sort of a application, embedded application embedded prisms, which is
totally away from normal and allotting process so the current processor are two heavy weight to
comparison in the documentation process and all that, so all that will be by passed agile
development process.
And the current software development is to resume is difficult items of changing requirements,
and in competition, short development cycles all is very difficult to align with the current model,
so the process itself are deviated in the terms of doing agile, where it is totally align with the
business process or a value to the business basically it brings up, and different methods agila,
such as extreme programming, scrum like this.
So, the most popular one are the member XP, the simpler programming, so the basically values
are assembling like individual interaction over process in tools, the working software was
comprehensive documentation, customer collaboration we take more in the agile process,
responding to change over following plan, so as soon as the chain comes we going to start
working in the implementing all that. Instead of going to the plan process analyzing all that, there
is no time for all us so, that process mechanism.
(Refer Slide Time: 12:03)

Extreme programming adapt you a software development and dynamic system development
method all are the types that we have, you can see more details non-profit organization they
define and they promote agile development basically companies like NHP or any computer
electronics group, they follow this tool to develop the product types all that, they adaptive agile
scrum more development process, for testing also part of the scrum development.
(Refer Slide Time: 12:33)

So they will identify any mechanism to align with the agile development.
(Refer Slide Time: 12:41)

So, you can see that example what I put there, and they call it as string back lock, so every day
they will base on the frequency, that the back locks are cleared and identified and it is taken here,
so for example it is a 30 day project, within 24 hours there is a action for ridge of the
development or the stakeholder, they will act on that, there is the dead line.
(Refer Slide Time: 13:11)

As I said the real testing from the process also will be used, there is no specific dedicated tested
in the formal scrum process. Testing is carried out by the developers with the in testing
mechanism; testing coverage is carried out by the product owner or the client, client retakes care
of power and all that by seeing the report bigger as the specification.
So, the testing is taken care by each tool something like spring back lock or whatever it is as for
the definitions. And there is a acceptance criteria for big effort. And that you will be taking care.
(Refer Slide Time: 13:50)

Next type of thing is test driven and development. So basically we write the test for the
specification and we will try to develop the project. So basically the project is oriented towards
the test or the test driven, surrounding the test driven cases in the object at the development. So
we write a test case that fails and write just enough code for that to fix the fail mechanism, the
complete testing is taken here and the development is done.
(Refer Slide Time: 14:33)

So test management and control, what to do when things happen that effect the test plan. So if is
hit the test plan, we are going to definitely work on the test mechanism and we need to control it,
so we need to re-allocate it for every resources, we need to change the schedule, we need to
change the environment.
We need to redefine the entry exit criteria, and number of iterations changes we need to take care
and test suit related changes are there, and so we need to see the effect and the relegate we need
to postpone or update. That’s what we have studied in the earlier session3; today we read and
quickly understand the test management

(Refer Slide Time: 15:25)

And in the terms of a test management tools so we know that reallocation of the big sources for
entire test cycle defects, it will manage and control.
(Refer Slide Time: 15:40)

So, that is what we do with the test management tool. so the tool will basically take care of all
the artifact and it will highlight and it will provide the tracking mechanism in terms of where we
are testing that, so that report will be used and it will be tested and adopt for the strategy that
going to work out for the a release, so basically the test management tool provided by tool
vendor of only the functionality to store the STFF.
Scripts and scenarios and sometimes the integrate defect management, something like bugzilla,
test management example I will try to tell you, what we been used in our one of the projects. Test
management identifies the test cases, scripts, scenarios, all this will be there and taking with the
test management in to such test links. Take one of the session practical sessions, we will go
through this, how these tools work.

And we will try to create a big size sample projects, identifying the test management and test
case in scenario. Similarly we need to identify defects using defect management tool, all these
will be basically used for managing the test something like bugzilla tool is used for the test
management and the defect management. So basically it offers to store all this artifacts, scripts,
scenarios, bugs and all.
And they will not store plans, so plans test manager has to see and this tool will provide the
numbers and all values like artifacts and we need to align that ASP to the projectors, so they have
no facilities to store plans and projects, but mistake of test plan is not basically useful and
controlling their activities, but there need to be aligned manually, the test manager that’s what
they do.
But the good thing is that tools will have the ability link system we call in the test cases, such as
test links applicant link, and how many test cases have been failed, resources have been failed
and passed etc, will be taken care. So these tools afford the ability to keep track of forage of
preparator, how many test case have been passed in the coverage report again is the system
requirement specification requirement.
These tools will provide. In addition they will become very useful or if it changes like test
manager there will be surely in fact of this changes and how many prospectors we have to
execute or they execute once requirement changes, so that, those things can be highlighted with
the tool basically and report according. And the show toppers in the terms of very easier issues or
the bugs that, which have been uncovered all this will be highlighted with the test management
tool. The other part I said that it is
(Refer Slide Time: 19:47)

The defect management tool such as bugzilla can be used; the defects detected during the test
process must be collated in an orderly way basically, because all the defect need to used and
control, that is why this tool is useful. For the small project a simple files can with few control
processor efficient, one request the other or documentation is enough and we will highlight it
manually.

But as we progresses throughout the entire project, we seat cannot be sufficient to maintain
through simple system mechanism tool, we have to leave with the complexity and forget which
advice is to use the defect management tools. Tools such as bugzilla, it is really in industry they
have tools defined actually, bugzilla is the royal to free , it is not a royal to free thing, so if
commercially we want to use it we have to pay them more through the royallity license system
and the corporate.
But in general what happens is, the in build software industry where they use they own indorse
tool to maintain the defects and detects artifacts, and again is that management in to collect it and
report to the customer and all, so the complex project need that, this data base should be
possibility of stimulating the progress report showing for instance status for all groups or ratio of
all race defects.
Several tool vendors have developed the defect, all these are designed around the data processing
and having tracing of the management tools, basically all the depositary which we got defects to
be stored in the data base system and that data base system will be smartly used by the UIS and
there are useful report and can be used to track it, the tools have the ability to implement our
security and accessible so the admin can define who can secure the files, who can put in to the
depositor.
Who can updated that work flow or work instruction can defined. So that the individual having
the different levels of accessible, developers can have a access for develop the various level and
testers can have a development can have a development access, they cannot read, they cannot
write, and all this sort of a control mechanism and they will be defined by the admin for using
the defect management.
And also as long as a defect are opened closed and progress hold and we can setup in your
typical position in the terms of email facilities and some of them are web enabled, so you can
trigger that in the web itself so that once the stages have been moved automatically
communication will be happening to the respective stakeholders. The defect manager system is
used to store.
The defects traced in generate of this instruction, the addressing and reporting facilities are more
in this principal as control instruments, so, very important aspect of the defect management. So
with that we come to the conclusion of the test management tool and defect management tool,
with this session, so with this we are going to end the embedded software testing large, now we
will try to. Okay so this next few minutes I am going to discuss and highlight about what we
have seen overall in the embedded software testing, right from the unit 1 to unit 5.
(Refer Slide Time: 24:10)

So, the units are divided such a way that all the aspects of embedded software testing which
takes pace and unit 1 we studied regarding which one? Fundamentals of EST embedded software
testing. Right, that is the first session we had and in the second session we understood about
testing methods third one, is on static analysis.
And the code reviews, so the fourth one is basically software integration, fifth one is nothing but
test management because each these five sessions are very five units are very important part of
the embedded software testing. So, that is how it is been because it is been divided that way. We
will try to go through as pointers what are the things that we have identifiably in this. So we
started with fundamentals, then different testing methods, dynamic white box black box and all
that. Next one is on the offline part of the static analysis for reviews, types of reviews and all
that. Then we understood about hardware software, software integration methods and regression
all that. The last one is about the test management in terms of test planning, test life cycle
alignment with the development life cycle and tools that are use for managing the tests as well as
the defects.
So, that is how the inter course is being parted and we have gone through that. Okay, so in unit 1
it was about fundamentals of testing. It was in directory session to embedded software testing
and we also gone through embe4dded system basics, embedded system environment, embedded
C glance because embedded C code is the specific code.
And it is the separate course of course by itself and we try to understand the basics of that and
compilation linking and all that basic parts of that embedded C language and the embedded
system software. We understood in that class why I took embedded C, so the most of the 90% of
projects 6that are there in the world for embedded system or on the eloper basically using the C
language.
So, that is why it is very important to understand. Embedded system is basic with the C,
embedded C language and fundamentals about that. Then we had studied about V and V
validation and verification. Cost of embedded software defects. We have seen in the graph

plotting the various stages of software. Embedded systems we find defects it will be difficult to
control as you progress for the end of the project.
So, it has to be fixed in the earlier stage. So, that is why we need to have a right sort of a testing
mechanism. So, that is what we understood about the complexity. Then test process basics, what
are the different processes that are followed like test cases, - and the scripts and the execution on
the environment all this are basics. And embedded software that system testing basics set up how
I going to have a setup.
So, we had a contra setup how the system is communicated with the target board as a white box
how it is communicated with the target board or the black box and how the recruits are been used
for the scripts that are driven. All these basics we understood with the good example of a
diagram and we also understood about the develop environment testing environment as well.
(Refer Slide Time: 29:08)

So, continuation of the embedded software testing fundamentals tests methods. We have gone
through the acceptance, system, integration and component level testing the various levels of
testing. Then principles of test case is designed and procedures how it looks like with the
example all we had gone through and how we can do that testing and debugging on the target
and on the system we had gone through.
Test planning like what is the goal purpose, what are the contents of the test planning in the
planning process. We had gone through then we studied about the example test plan
documentation and test specifications also we try to know. Example test procedure also we had
gone through testing standards in terms of guideline and rooms and all that. How the testing
document should be developed and testing should be carried out. You understood? Also we had
few questions and also exercises we have made in the first unit.
(Refer Slide Time: 30:17)

And we had drawn a block depicting various levels of testing and those levels are unit,
integration system and acceptance testing basics, definition of test harness, test bed, setup. Host
and target based systems. During development stage how it looks like during testing stage how it
looks like then target based debugging and testing. We have a three various types of them
simulation, emulation and target monitoring.
Each of them we try to understand and advantages and disadvantages of them and colaberately
we are going to use it for the embedded software testing. And tools what are all the tools?
Entirely the embedded software testing that are used or categorized and we try to put a list and a
snapshot of embedded software testing tools and it will be listed as part of the planning, test
planning.
And setup software environment configuration and tool snapshot we had gone through
definitions of entry and exit criteria for embedded software testing, the various cases that goes.
(Refer Slide Time: 31:32)

Then T-emb method we understood with LITO principles software life cycle entry exit criteria,
prototyping lifecycle and example we have gone through. A formal life cycle and example we
understood, V-model life cycle mechanism or embedded software development testing we have
gone through. And different life cycle processes with an example of entry exit criteria we have
studied life cycle process example.
We took consumer electronics example. The different stages of all life process and process
through each other and automotive embedded projects testing phrases and process also we
studied to understand.
(Refer Slide Time: 32:23)

Then multiple V model life cycles based on that famous embedded software testing book. We
referred and understood. The same way we also went through the V-model, multiple V-model test
activities. Nested multiple V-model, testing by an independent team, master test planning,
principles of embedded software testing about I think ten principles we have studied about
embedded software testing which is highlighted in one of the embedded book. That
(Refer Slide Time: 33:00)

We came to the conclusion about the embedded software testing MS of system, basics setup
planning and all that. Next we started studied on the unit 2 in detail of embedded software testing
of testing methods and testing methods have the various chapters various sessions about the
dynamic testing, static versus dynamic testing context, dynamic testing types, black box, and
white box techniques.
Testing techniques strategy in general and in specific is depending on the complexity and the
nature of the embedded software testing and the test case selection methods, black box and white
box testing coverage aspects advantages and disadvantages. Black box testing
(Refer Slide Time: 33:52)

How to carry the black box testing and how to draw various test cases in selection and in that
way we studied that the fundamentals and basics about the lack box testing in equivalence
partition, boundary value analysis, state transition or event transition. So these primary methods
of black box testing we had gone through. Black box testing examples valid a invalid
equivalence classes.

Boundary values analysis its applicability examples and I think we took the temperature sensor
example with high and low values. So, what are the values we can feed? How you can use the
techniques in terms of black box testing using boundary value analysis equivalence classes,
coverage aspects also. State transition testing
(Refer Slide Time: 34:47)

I think we had gone through the VCR example simple and the various events, actions, activities,
states and transitions all it is going to occur and how we can test with, we had gone through. We
had an exercise example with EUI embedded unit instrument, 5 operation modes with the
example we gone through try to understand.
And put various testing in the strategy. Tests or a state transition testing techniques state even
table we have gone through the example. Transition tree legal illegal and guard test cases for that
test events. VCR examples of state events, transition testing and transition tree drawn and gone
through.
(Refer Slide Time: 35:45)

The next type of testing method you can model based testing. We understood the basics of model
based testing. Model based techniques, taxonomy of model based testing, we use the various
instrument for that models such as catalog and all that. And accordingly we are going to draw a
strategy for that particular model and we are going to take care of the testing aspects of the
model based testing.
Then dynamic testing black box and white box testing, approach coverage testing in terms of
structural coverage and statement coverage. Decision and branch coverage, condition coverage
other types of testing like data flow testing branch condition combination testing, modified
condition testing which is also called as MCDC, LCSAJ its principles then unit testing and
software instrumentation. What it means and how they are used with the various tools.
(Refer Slide Time: 36:49)

Then test driver and test stubs definitions we had MCDC-DO178B prospective of importance we
had gone through few slides. Then coverage testing tools vector cast LDRA, RTRT, logic
analyzers. We understood what they do and I think one of the practical sessions we go to one of
the possible line from like on of the tool we can use it with an example project. Performance
analysis is testing.
Timing analysis profilers take the deviation all that we can develop the test strategy and do the
testing or the embedded software testing. Testing tools and life cycle, test automation techniques,
test suits, risk based testing we understood and we had definm4ed about dry run and formal runs
definitions. The next one is
(Refer Slide Time: 37:51)

Third unit which is about the static analysis and code reviews where we do static testing and
analysis reviews inspection and all that and we had gone differences between static testing and
dynamic testing both is complimenting each other, both are needed static analysis as control
coupling, data coupling, static metrics analysis cyclomatic complexity examples and few
examples.
We had gone through with the call tree example generated from the tool and lines of code of the
exhibition fan-in fan-out, nesting levels in terms of generating the matrices. Static analysis tools
like understand for c++, polyspace, coverity, QAC, Cantata, LDRA tested etc they are used.
MISR rule checker, PC-lint. Logic scope rule checker are use for seeing the report of the
particular embedded software testing the aspects in terms of code how they are used. Call tree
analysis.
WCET analysis, stack analysis, stack overflow and coding standard and rules which are applied
in the embedded software development will be checked in the tools and the report added.
(Refer Slide Time: 39:24)

And test metrics quantification test metrics life cycle, metrics types, software testing metrics of
various metrics that are been generated for embedded software testing and defect acceptance,
defect rejection, execution productivity, test efficiency, defect severity index, automation
coverage, effort variance, schedule variance scope change all these definitions we had metrics
representation.
How they are maybe reported on daily bases, weekly bases and trend chart how they are shown
in to the higher management customers. Burn-down charts suppose we if sort of activities going
to take one month and how are you going to reset one month using the burn-down chart we are
going to try it and report. And as we progress we are going to operate it and report it. And
metrics capture tool there are waste tools that are used for managing the test aspects, defects
aspects and all. Defect management- bugzilla as been used.
(Refer Slide Time: 40:31)

The next unit is about software integration, integration testing. This is also an important part of
the embedded software testing. We had defined about integration testing. What is integration?
Definitions of system integration, system hardware integration, system software integration were
we use software logic. In system hardware integration we use hardware and software. Together
we are going to build integrate and testing. And types of embedded software integration testing
big-bang, bottom-up, top-down and considerations for integration testing and its importance we
studied.
(Refer Slide Time: 41:10)

Integration test strategy, comparison of various strategies like top-down, bottom-up, big-bang
and all that we had gone through. We had a comparison about it then hybrid integration test
strategy which commence both top-down as well as bottom-up integration test approach. Then
we have a centralized integration, layer integration, client/server integration, collaboration
integration etc.
Based on the type of nature of the project we are going to decide and do the software integration
testing. Then integration testing environment I will fetch like system integration test, integration
from use case prospective they are specifically used in EML type of projects and we use that use
case to generate the test cases. Then we had gone
(Refer Slide Time: 42:05)

Through regression testing which is re-testing and regression testing, definition of regression
testing, test strategy, test areas, testing automation in terms of batch execution and processing.
Change analysis and relative importance. Use case example we have seen. Prioritizing regression

test cases and what is the basis for doing that priority and all that test case maintenance because
very important.
Because once I made software testing basic testing is done. It is gone to update or modify for a
period and how are you going to maintain it, the project. What are the steps that are involved for
maintain what are the test cases we are going to exercise for the future versions of different
embedded software releases. And build process we had gone through
(Refer Slide Time: 43:05)

And last unit is about test management which we are concluded in today’s session. It talks about
configuration management, test management, configuration management elements, CM process,
SCM it is software configuration management. Software configuration management activities
such as planning, software configuration index, control, status accounting and software
configuration audit.
These are different activities that are used for resume the CM. SCM process example and tasks,
configuration control and SCB software configuration board, controller board. Configuration
items guidelines/lifecycle also we have gone through and
(Refer Slide Time: 43:58)

SCM phases like initiation, planning, execution, closure. So, we had through one of the session
and important thing is about the version control or the revision control and how are you going to
do the base line of the auto cuts? Workspace management comes of the repository How that is
been used by developmenting testing tool of the configuration control people that mean basically
manages that and change management, incident management as per the session we had gone
through. Last part was about CM tools.
(Refer slide Time: 44:32)

PVCS, SVN, MKS and test management aspects we had studied in terms of testing process
which is in relation with software V-model designed by contract, part of the testing, agile
development process, agile development scrum process, agile testing scrum process, test driven
development test management and control, test management tool, defect management tool. So,
these are the part of the test management.
So, that is about test management in unit 5. So, you know 5 units of embedded software testing
which we had gone through. With that we will come to the conclusion of all the units of the

embedded software testing. So, in the next four or five session we will go to the practical aspects
of embedded software testing we will divide accordingly the various element that are used for
embedded software testing in terms of practicality. Okay.

