
Embedded Software Testing
Unit 4: Software Integration

Lecture 3
Seer AKademi-NPTEL MOU

(Refer Slide Time: 00:07)

Welcome to the next session of the embedded software testing unit 4, this will be the last lecture
session of software integration, we have a regression testing, we will study about the software
integration and configuration and other aspects. The environment and followed by that we will
discuss.
(Refer Slide Time: 00:36)

Study about integration testing okay, to recap on software integration,
(Refer Slide Time: 00:44)

we know that the integration can be done in software level, is called system integration test,
software integration test, hardware software integration test, so to recap the integration strategy,
will not just enough to have a component level testing, but to have an adherence at the system
level, how the components interact in module level when they are logically moved, we need to
work out those strategy, to integrate those component.
So there are different analogies, like in strategy as they developed we can give or, we can start
with the software modules using lowest possible units. So it will used stuffs and drivers, is called
test drivers, yes we can make sure that, were the different stages are their development,
integration can be taken up, so different strategy we had a comparison in terms of time and
maintenance of component terms.
(Refer Slide Time: 02:04)

Integration strategies comparison have a particular parts that belong to plan of sequence also we
had gone to the advantage in terms of the top down and advantages and disadvantages of top
down testing.
(Refer Slide Time: 02:24)

Whether it is bottom of, at the lowest level of possible, in terms of having issues, better do the
bottom of testing, so basically we look in feel of the system in terms of demonstrating or it could
be as a structure, embedded system can be well demonstrated and testing from the top set module
were in the bottom of testing is started with the lowest possible modules.
(Refer Slide Time: 02:37)

 As they are completed drivers, because drivers used to call them so that is where we used
bottom of test strategy, but we need to have, that is why this the disadvantage is the, because, we
do not know what the tool is used for creating the layer, you cannot use the disadvantage of the
bottom of testing, were are in top down testing, there are lot of small stubs that may be required
in disadvantage, it cannot be accurate, there could be some errors, it takes significant and effort
and time, in terms of stubs. The other type of test called hybrid test which is used both of as
bottom of so this is preferred in were the largest system has given.
(Refer Slide Time: 04:22)

(Refer Slide Time: 04:23)

Were lot of sufficient are here ,small to moderate complex, and embedded systems are , so it is
beneficially have hybrid strategy which has combination of both test stubs and both the drivers, it
is a middle of approach , and both of top and bottom of , is out of mechanism, so this approach
are basically based on the criticality, that the system has, so it is very subjective, so based of it
you can take a call, using hybrid strategy, were to applied is one of testing mechanism in terms of
integration.
(Refer Slide Time: 05:20)

So another type of integration are testing we have gone through called centralized integration,
these are more appropriate of wires, because we cannot replace those hard of the testing system
so solving that we have going to develop anything that required, we cannot substitute , it is too
difficult to substitute the part with a stub, so these type of approach is called centralized
integration, so surrounding the center line the part of the system, it developed , first and made re
fall production.
(Refer Slide Time: 06:05)

The other type of an integration is, layer, layer integration has a different layers, application layer
lower layer and hardware checking layer, this is particularly used, which want to tell us that, we
reaches the protocol.
(Refer Slide Time: 06:32)

Such as, we need a protocol ready to have layer and integration testing, so you know that, OSI
have a scope network data layer, these are the important type elements of course we have
application, presentation excess layer, there are top most of that.
So it assumes the presentation layers, application layer, then we have a transport, network, data
and physical like that we can segregate so something like layer.
(Refer Slide Time: 07:48)

So we have seven layers, approach were protocols are networking application used this OSI
models are used for network systems were protocol, network protocol, IFTP, IPU, UTP, all this
were protocol mechanism we have approach.
So in this case better to use type of integration were will be developed in integration testing, so
that type of integration testing, client server integration, we had study about this were the server
is starts, were the client is addressed, were the client is stub, when server is be tested, so it is like
collaborative, mechanism in terms of client in server is typically used were the injectors and
huge application data based oriented, object oriented system. We have, my last session is

collaboration integration, here we interact different collaboration models, those models can be
integrated together this is called as collaboration integration
So those have been different types of integration testing that we have studied then.
(Refer Slide Time: 09:10)

We came to integration test environment, how it looks like, so basically it should have a mix of
both unit level testing as well as system testing, because it develop a driver with a help of.
(Refer Slide Time: 10:32)

Integrated environment, that environment could be used for developing the system and testing
the each system, of identification, similarly we used a lowest possible, large test driver, so those
which are also needed, so both sort of environment required from the integration testing, it just
like integration model, which is comprise of, which will be comprising of both unit level as well
as system level and environment.
So basically use some of test drivers, which have been working, which are used for induction
through logically test in different models together. Additionally we may need a tools like

monitors to log and read the data traffic protocol, there will be a log and time standard all that, to
do that we need to have an appropriate additional tools, it just monitors.
(Refer Slide Time: 11:28)

Integration test environment, so we know that the software unit test and the software integration
test, it has bed which is created, that is comparable test and environment for the simulation
model, so we know that simulation and invention and actual hardware that target were testing or
used, so accordingly we are going to have a test environment, so that is there, we develop the
integration test term.
(Refer Slide Time: 11:40)

So basically proto stage and production stage are different type of integration we have, so both
the version we can need a test object and executable version of a software unit, or a integrated
software units that we used, so that is the basically developed on the basis of the design or
generated from the simulation model, So based on that those integration test environment can be
developed.

(Refer Slide Time: 12:05)

So in continuation of this, the host environment target base environment and then host target can
be used as well in terms of integration test environment also we have concentrating from the
book, in terms of software , simulation how it can be done? And walked were it can be used, host
can be used while doing the experimental integration testing, were we use the enumerator it need
to have a real target , having the target processors used.
So actual hardware does not have any transceivers or application host, it need to have a
mechanism , such as hardware in loop , or hardware software in loop are sort of a test
environment for integration test . specifically is useful for hardware and software, now this
software’s are in integration, software integration are the host space in term were the test
environment, the target base environment we need to have a hardware software terms, target
environment are bound to be integration test.
(Refer Slide Time: 12:44)

So that is about the nil instruction today you will study more on.
(Refer Slide Time: 12:56)

For the integration test environment, the below table is a simulation level of software integration
test, it can have sort of simulation in hardware and software integration, were there is simulation
scheme; the embedded software can be experimental host. Some of the pieces of embedded
software can be experimental or run on the host, the next one could be a real hardware , which
uses some of the software units, the first one also software can be used in the hardware mode, the
last one is software techniques can complete the environment, and system environment having
the embedded software.
So the various processor that has been used for simulation in the hardware and software
integrating the first base of test is based SW/U SW/1,2 ,HW/SW/1 these are the embedded
software processor, the OS can be windows, Linux, whatever it could be, but the host execution
will be based on the processor, and inter case rest of the system are formulated, a plant is
something like where we are going to , what are the unit called simulation the second one will
have a unit of.
Because we are using the real target, and we need to simulate the unit system itself completely
with help of this simulator, and a last one we have the real target and
The processor is real target, there is no simulation of the target processor, that is how we going to
have the layers of the simulation in terms of integration testing, so which ever provides OS of the
simulation test , because refer simulation in the generic scheme of an embedded system.
(Refer Slide Time: 15:25)

So continuation of the integration test, there is a system integration test which is in the higher
level on the integration test of hardware software integration test, so what are you do here? The
test environment are have to system integration test is kept; the system integration test is very
similar of a hardware software integration test of the complete embedded system also a piece of
hardware containing the software.
So it is not something different it is a whole hardware software and integrated once combine
together, something like a system test, within also can be called as system integration test, they
impressive and focus on the integration of various logically model in the embedded system or the
embedded software, one difference may be found in the fact that, the prototype printed circuit
board of the complete system is provided with it is final input and output and power supply
connectors. The offering of stimuli and monitoring of output signals possibly combined with
dynamic simulation. It takes place via these connectors.
So actual target board we are gone to use and prototype of inter circuit mode of the complete
system , will be founded and their production testing were we use the actual input and output
power supply can access , and we use the system integration on test strategy for doing this and
developed mode. Basically the pre production mode has system integration mode, what it will
have basically.
We use that, we used to draw that pre production board, we can called it as a preproduction
board, so what is the difference between both, what will happen means ? if there are going to be
any stubs or any fetches are doing there, all those final stages has to be work in preproduction
and it test that, definitely we need a, any of the test hooks or in terms of loops, all this
intermediate stubs will be odd of this preproduction board, which is slightly a larger than the
actual production board.
Both will have the same processor, basically processor is same , in the both cases what will
happen when the system circuits will required will be taken off , so basically what will happen
means ? the pre production – additional circuit will be removed, in a production mode, so it can
be used slowly for them, they providing the target, system or the feel actually, which will receive

to the customer, it will not go back to the factory, so we will found the final production mode, so
all this system does accepting the production mode, were as should be integration we are going
to use the pre production mode, so that is the difference line okay,
(Refer Slide Time: 17:24)

So the next one is the system integration test, this table basically defeats the system integration
test, we can see them last term is adding here, and the real target system integration, and rest of
the system are prototype.
And actual client is simulated, so which ever provides an overview of the level of simulation in
the system integration test, the columns refers to the simulation areas in the generic scheme of
the embedded systems, so the earlier one , we do not have the system integration in terms of
actual target and actual system will be there, so that what is in the prototype, so this will be used
for system integration test, as well as the preproduction testing it is called as okay, So let us see
the next topic on the integration test.
(Refer Slide Time: 22:20)

So this is basically the use case is derived or use case, integration test, so what we do here? You
may knowing about use cases, for basically use case is derived in terms of the UMN, that thing
we have a explanation about that we have know, perspective , because we are going to discuss on
the UMN ,why? Because of the UMN study required basically let us understand that,
MODELING LANGUAGE which uses cases CLASS, SEQUENCE etc.
So basically we are going to take it how the system looks like? so something like a model we are
going to have, so from the users perspective, here the cases are going to developed or the classes
are going to developed are called use cases, so definitely we know that cases are being
developed, we have an input , what is the expected all that are excursed, so it will have for cases
we can develop it test cases, and that use cases are constant on way on the higher level models of
the boards for the functionality of the features of the system, so that is all the we can derive the
test cases, on this use cases.
That is why is called a integration from use cases perspective, the same testing from use case,
which are further going to be broken down in to test cases. So the use case tell the story of how
someone interacts with a software system or the observed behaviors that is what these use cases
to achieve a goal , a goal could be accepting some value, and computing something some other
value.
Or achieving some of the results, that could be a functional war , for that goal , a good use case
will describe the interactions that lead to either achieving or abandoning the goal , so basically
use case describe the interactions for achieving the goal, or resulting a path it will going to take
for that functionality, so use case will describe the multiple parts, the uses can be followed within
the use case, so use cases can have different paths, we know that the follow of the program
control level and data level follows.
And it is subjective to the complexity and the flow in to the types, similarly multiple path, use
case can receive, so you will also can be used to draw the test cases.
A test case can represents one set of inputs that exercise a single use case , at least use case will
have multiple scenarios, so one test case per each scenario , they gone to have , so that is were
test case have been derived on the use cases, let us see more examples on integration on use case
perspective.
(Refer Slide Time: 25:10)

Integration from use case perspective system test cases how are going to function? Many system
test are designed to simulate, how a user interacts with the system, to make sure that the system
responds appropriately, if the system needs to be subjected to some from an interaction and the
responds, if you have defined your requirements by using goal driven, are use to achieve some
goal, on so many paths.
You can use the use cases as a frame work of a design of a test case probably the use case is
important and useful why? Because this frame work on top of which a lot of test cases and it
goes for frame work, the frame work is basically use cases, also called as boundary one use
cases, so what are they going to come up with ramp of the boundary cases, is nothing but the
system test cases, the system test should be created to test a single situation, if each test will try
to test the integer scenario or the situation.
When using the approach of use cases and use case scenarios to describe the requirements, a
system test should a single use case scenario, so what is trying to say his, each use case, every
single use case scenario to have attest case, in that test case we are going to have system test case
know where addressing to the requirements. So that is where the requirements are going to be
tested from the use case perspective.
(Refer Slide Time: 27:14)

So the next one is how we are going to generate? Generating test case from use cases, use cases
are based on the unified modeling language (UML), UML is used, can be visually represented in
use case diagrams, I will not detail out the use case, may be an example of seeing to have an
practical class, a sample UML , so the use case basically have a users, interacting with the
system, suppose I will take you there, so this is a function block, and that will be have a user,
user represent in a different way.
(Refer Slide Time: 28:08)

So basically it is a use case, so what it does? It will interact to the system and it expects from this
system, so all this scenario like we have one or two and some results like 2 and 3,4, whatever it
would be for the function block all this will be founded here, We can draw the test cases, test
cases can be covered from this, likewise, so that is how we are going to generate the test cases
for each of this path, were the use cases are being used with a user range of phases, with the
system and expected output, how the user per assumes from that scenario okay, and the use case
(Refer Slide Time: 30:01)

Will have the below items, we can see name and descriptions of the use case, flow of events that
use case can take or different work, for that events how is going to drive? And special
requirements execute to cover, because having the user per perspective, we may cover more
functionality or more requirements, and specific requirements, there also addressed when any pre
conditions that we study taking here, typically executing the use case and any pre conditions
approving of test case have been executed, so all this aspects of use case to test case will have to
be taking here.
Okay, so that is there we use the test cases generating the test case from use cases so typically
what I have try to draw that users, we also called a actuators, actuators are nothing but, users,
users can be elevators of the system or UML of actual users, so the lines what I have trying to
draw, within the actors and the use case in terms of the test case, so use case diagrams provide ,
will be a picture in terms of, how the function block is used or perceives, and ascending will be
tested, against that actually okay,
 (Refer Slide Time: 32:37)

The next one is example of generate with test case, we can see a different paths, or user case flow
basically, so this diagram tells , a basic flow of events and alternate flows, of events for a use

case, so one could happen in, the basic flow will same, user going to use the function block, is a
output, to achieve that, there could be a different flows, alternate 1, 2,3,4, different class get
function, and this alternate flows can be derived in to sub alternate flows as well, so in this essay
that way, we can have a multiple flows, as well.
So this multiple flows will have an each one address mail, and in different test cases, it called
flow of events, and each of piece flow of events, it is called test case. And we need to apply by
all these items are description all this points, and just addressing the use cases.
(Refer Slide Time: 33:52)

We can see there are different scenarios, and scenario 1 could be a basic flow, scenario 2 could
be alternate flow, and scenario 3 could be alternate flow 1, alternate flow 2, scenario 4 could be
alternate 1, alternate 2 alternate 3, you can see a multiple scenario right, see it can take this path,
if they flows alternate 1, alternate2, and alternate 3, it will goes back, and again come, likewise
we can have multiple scenario, for each scenario 1 test case we are going to have it, so once we
identify these two rows, or for in this example five flows are here, we are going to generate the
test cases.
So how we are going to test? Generating test cases is set of inputs, executions, conditions, and
expected results, uses cases or anything type use case act as a product requirements for
generating the test cases, this way is very important function that, we have understood the
requirements, and we have return the each group of scenarios based on the use cases, now this
the time for write the test cases, and for test case writing will not care about the requirement
now? Or a major aspect, we care about the use cases, so you can use cases something like a
product requirements,
Those products requirements have to be addressed, for developing the test case, and executing
them, so this is the important thing. So if you know these basically three steps process for each
case generates a full set of use case scenarios, for each scenario identify at least one test case and
the conditions that will make and execute, it can be more than one test case also, subject to the
visibility of the particular use case if it is required and derived more test cases, so nothing have
more than in one test cases, it should be invertible those test cases

That is where they going to have, as well as, practical procedures for this scenarios, for each test
case identify the data values with which it has to be tested, so step 1 is to generate the scenarios,
step 2 is to generate the test cases , step 3 is identify the data values, this is very important, so
one thing I repeat briefly use case description, and identify each combination of alterate flows
and scenarios, identify and understand the scenarios and creative scenario matrices, we can draw
a table and identify matrix, it could be a peritoneal matrix or full matrix or scenario or whatever
it could be, make sure that all the use cases scenarios have been addressed with a test cases, that
is how we are going to draw the scenarios.
(Refer Slide Time: 40:05)

This is the first step, second step, once the full set of scenarios have identify the test cases, we
can do this, by analyzing the scenarios, and use case excuse the description as well, so use case
will have the description and result in one of the earlier, session have been shown in this slide,
each use case should have description, and this description is used and a input for the analyzing
the scenarios and generating the test cases from the use cases, so there at least one test case for
each mode, probably more actual, it depends subjecting.
So the additional test cases are basically forward all the possibilities in the boundary, equivalence
whatever we have study, in a reason we must to add a test cases for analyzing anything that, it
could make it for all those scenarios, so that is used to be table block, this is where what with do
in a test cases, identification process, the third step will be identifying the data values, for each of
the step.
Because data values are very important , once all of these test cases, there should be reviewed
basically understand and valued to ensure accuracy and identify, or missing test case, if anything
is missing, then once all are understood viewed approved, the final structure are is to actually
substitute the practical values or data values for the inputs and the expected outputs , so with this
data accuracy can be implemented or executed right, so they are the description of simulation
scenarios and paths, actually the test data going to identify the practicality of the testing so
therefore it is to identify, actual values to used in the final test, so it can be done with a test case
matrix for each of his okay.
(Refer Slide Time: 43:59)

So with that the generating test case are from the use case comes to an end, so next topic
regression continuation of testing, continue integration testing are it also called as regression
testing, regression testing so what is mean by regression testing, it means returning test cases
from existing test suites to build a confidence that software changes have no unintended side
effects, so why? Need to have software changes why? Because when we have done the primary
testing or returning testing, they are suddenly issues and stubs inform that founded on the
embedded system of the software
To overcome that we have fixe an software and recoverment are not change, the test case should
not change, so what as to change the user and to achieve that, am going to have a regression
testing, so regression testing means returning the test cases, from the test suits, so basically while
doing this we can get a comparison testing software as well as some changes, but does not have
any unintended side effects, the idea process would be to create an extensive test suit and run it
after each and every change, that means a test should be such a way that any changes in a system
will not alter the execution process, so it have to re touch or re work on that test suit again and
again,
Though the system is and has changes, changes means? Within the certain limit on the scope of
the program, that is where regression testing is the important term , type of testing it is not type
of process, ever one will follow the online list is , but some people will do the add nation of a
regression, they have dedicated in for regression, they do batch, automation, so that every
version of software testing it independently, that is the regression testing is very important, the
primary testing has to be solid and accurate , so the regression testing will be success, based on
that, so definition of re testing? Re testing based on the standards of BS 79251) it says that
running it has more than once, regression testing can be repeat.
So another definition is re testing to a previous tested program, following modification and to
ensure the falls have not be introduced, for uncovered whether result of the changes made, so call
data’s are re testing and regression testing, re testing is, testing again, regression testing is
previously tested some modification have been done , of the faults are indentified and we are

going to re test the same thing, so that we are going to check and those faults have been
uncovered of changes have not been checked okay.
(Refer Slide Time: 46:21)

Let us see in detail regression testing, why it is important? The different definition of techniques
that are used for in testing, maintenance testing would have heard it is same as regression
testing , whatever thing we are going to have for maintenance testing, basically this is the one,
this is also called as one of the strategy for one more testing, there are other aspects also in this
testing, the main aspect that regression testing, for re testing is done, intended changes of system
behavior must be tested.
But it is also possible that the system which used to work correctly in the previous release, it
does not work in the new release, as a side effect of the implemented change it is called
regression, so we know that incremediately it is some issues, that because of it is not working, so
why? Because the following issues in the next place, and that issue is fixed, so it is working fast ,
but we doing the testing of x, but we also testing Y, it will find and no changes on that, so all this
will be brought up, that is called the regression, regression testing, much of the test effort is
dedicated to testing that previously functionality works correctly.
So let see what it is, we make sure that the testing will be again, probably no issues, because
another tricks that have been done for the identify the faults and errors in a test to, if you but the
emphases, the regression is that, which against the work will be ended.
The changes can in turn be, itself mapping to a limited test focused only on the change alone, or
a complete test of the function or component that has been changed , it takes a test of the
coherence and interaction of the changed component with adjacent components form, so in
regression testing, changes in testing takes place on the direct point, an implemented test focus
on the change form, this use changes going to adjust , we will see the interrupt, so it is not be
working, but that cannot be done, it was the changes can be impacting the sever in models
So the second type of changes can be complete test of the function, the entire function has some
small stubs, it does not mean the impact of path or the interact body with function, or the
component.

Or it is better to test the entire contd. That is what it means, the third one is pointing the testing of
particular component, we need to check the OS and interaction of other components, the other
modules, which having the interaction, will be crime one, which is the test, so that is where the
regression testing the very much important, so with every implementation of change we know
that, the risk of regression will be introduced, the regression testing is the standard elements in
the entire response, usually the set of test cases is maintained for this purpose, generally they
doing sample of the maintained, depending on the risks and test budget will available
The choice has to be either or execute full regression test it, for make a selection of the most
relevant test cases, test issues are used effectively, to support the execution of the regression test,
the regression test will be larger, selecting the regression test, here has to be skip, because the
regression test can be executed with the limited effort, that is why? We need to skip okay,
(Refer Slide Time: 49:02)

Regression testing test strategy, so what are the test have, it is basically depending on the number
of changes, so definitely regression testing can be kind of subjective, how much is there, and
what is that, kind of change that is also important, not a number of changes 10 numbers ,20
numbers does not match of that the one change can also replay huge a risk or the regression, so
that is very important changes can get it for risk valuation, planning and progress tracking, so the
changes that have been there,, on the embedded software using suffixes has to be a risk value,
planning and progress tracking also, to be taking here, on the regression testing,
So it can be treated in a same way as they work with, means some of the personality is to be
adjust for the regression testing such a way that the functionality doing developed, and it test it
approach, so test strategy would be determining the changes, first portion, implemented change
request and corrected defects, so what is mean by implemented, what is mean by change? That
we need to determine.
The first, second is determining the relative importance of the changes and regression, that
means it is to identify important of changes and regression importance, heard on this correcting
quality have a characteristics, what are the quality aspects that need to be take care, all this have
to be take care, both of determine the relative importance of the quality characteristics, we know

that enough to identify the, or select the characteristics in a particular scenario it is also important
to understand the rating of the quality aspects
The next one is the determine the relative importance for change, and regression or quality, so
each changes, what is the relative important of the entire system, so that particular change, of the
particulars on the characteristics, all this above steps need to be combine together to complete the
conclusion, that is called characteristics combination, the risks are been establishing on the test
techniques to be used, okay, so then we going to establish the test techniques for that identify
changes that is what the steps are involved for regression testing.
(Refer Slide Time: 52:20)

So what are the areas in regression testing, it need to be taken or take care, regression is due to
fixing the fault side effects, we need top check, we know that, we found the problem, in terms of
fault, the error and that is fix and we are going to release the regression test on this fifth part, so
we need to check the side effects of the sixth part, regression due to have the functionality, new
types of software has come, so that does not it mean that we need to have entire testing in these
paths.
So what we doing to this regression, the regression testing in terms of a particular added
functionality, or the new functionality, regression due to the new platform, that is used reserves
of the same testing, will be carried out on a new plat form this is basically important where the
voting activities, so especially OS is representing, operating system supports to work same on
different platforms.
To be internal could be , it could be or any other plat form Linux you take for an example the
Linux OS suppose to work on different hardware platforms, so all are going to be is do with a
regression test strategy, regression can be due to give new configuration, or also the
customization, some changes some configuration there is no software changes but the
environment of configuration the program, of this software and the test as change and regression
will be required for the same, the regression and deliver and , so those are one of the area, that
interview taken here, configuration testing, so how we are going to deliver , so they are what
incremental or non incremental for the regression testing areas okay,
(Refer Slide Time: 54:42)

The next part is regression testing automation, is very important to have automation as we
progress the different steps, so any system automotive, recall or auto space , does not stop at one
level testing, the product will be going to the involving again and again, requirements is going to
update the module change, the faults are going to be receive fixed again and again, with a
different scenarios of software , software’s difference whatever platform units, definitely is a
high time for identifying the automation.
Why planning the testing, especially it is useful for testing where manual internal is very
minimum and not effort to have actually, so that is where the automation is very important and
the test suits which are going to develop, for automation of should be control the configuration,
so will study more about the configuration elements test management in the next class.
Incident tracking of test cases where the different incident is happening? while developing the
test cases in terms of a test case of course strategy, all this can be derived, automation is based on
this integration, basically automation is very much best in regression test, because again and
again people cannot effort to the test cases, modifying all those that, and execution especially, so
you can just use this script what we used earlier, modified according to the needs, whatever test
case we needs will be execution is possible okay.
Regression driven test automation, regression can drive, test automation as restricted, you can
use the batch file execution, multiple scripts , I have seen some batch execution , where
thousands of test cases has been taken, this is the time for expression and all that, we used to
keep the batches for overnight or next day , again keep forward base like that, so this kind of
automation are very important in regression testing, the human interval is very less, and
automation also used for implemented , where the development is goes to the each world again,
okay.
(Refer Slide Time: 57:37)

The next one regression testing strategy, that is very important of changes in regression is
basically, table analyze the based on, how the different servers are important for testing test
strategy, regression testing here they say as 10 percent recorded to be each 25 percent, but the
previous example is given , based on a particular aspects, we can see what all the changes of
implementation and the importance is represented, so all together the percent is what test strategy
they were to operate it.
The importance changes could be there , in percent change the request 17, each 10 percent,
defects are there , are very important , and very importance 5 percent, defects to 1242 is 15
percent of important, defect the 1243, 5 percent is important, these important for subjecting
based on the type of defects or changes that are intended, the defects also can replace the request,
defects are also called as problem reports, so likewise there are different types of categories
changes and regression aspects, so rest of them they are keeping as 40 percent, during the
regression result.
(Refer Slide Time: 59:39)

Basic problems are regression test maintaining test suite, we need to have a test suit of which has
to be maintained so that regression test can goes smooth, if I change feature x how many test
cases must be revised, because they use feature x, so some features are common, they common
template or a they can play certain part of aware, the module that has been used for multiple test
cases, and all that need to revised.
Because change in the feature x, so that is what it mean the maintenance of issue for the
regression test, which test case should be removed or replaced, which test cases should be added,
so this is also very important criteria for maintenance the test suits, test suits are used to a huge
for regression testing, then.
Cost of re testing, how much is going to cost, often proportional to product size, not the change
in size, basically product says 1000, if the changes is one or two is not going to much cost mean
perhaps the product size is 10, or 20 and change size 1 or two definitely the ratio is more and the
cost is very high, so this is also manages, the problem is testing requires manual effort, suppose
we do not have an automation.
For the some variable testing or manual analysis etc. those kind of regression is very tough,
going in terms of manual effort, the idea behind is the original testing , the same idea has to be
added out and people or the resources are used, as to be re produced and the philosophy is going
to be manual, because that type of testing where totally manual and it has to be repeated, possible
problem even for automation testing, when the test suits and test execution time grows behind
the a few hours, so those are the problems for regression testing okay.
(Refer Slide Time: 1:02:02)

So let us study more on selecting and prioritizing regression test cases, test case maintains.
(Refer Slide Time: 1:02;07)

 How are going to build process for regression test cases, you have to see a example of , how the
regression test.
(Refer Slide Time: 1:02:11)

 Is being process in the next class.
(Refer Slide Time: 1:02:13)

 So we will conclude on the regression testing in next class, we conclude the unit 4, the
intersession test and regression test thank you.

