Welcome to the next session of embedded software testing, this is a unit four serious of lecture
series, today is lecture 2. We will study and discuss more on embedded software testing software

integration. And we will try to see that test strategy and its benefits.
(Refer Slide Time: 00:26)

Integration Test Strategy

= Ad hoc stralegy is o inlegrala tha components in
arder in which they are ready

« Az a component has passed the component test,
chack il L lits with another already lesled component,
ar iF it fits inlo partiadly integraled subsyslem

* |f 5o, both parts are integrated and tesied

» Mead to wiite stubs to help in integration

= Slub s a skelslal or special-purposa implamentalion
af a software component, usad to develop ar test 8

companent that calls or is otherwise dependent an it
It replaces a called companant

-
L2

And comparison of different,
(Refer Slide Time: 00:28)

Integration Strategies Comparison

TAILAS Copgrisan ol [elgaalion Mg (ML THE i 4
. nhaiEed Hadied

Fodicrenp Topdom lpdmm Eighang Saglaih mwkih
;J.l:.ﬂ.hil Esaly Exls Exly Laic Tarty :-'T_.
Tw= i barz Lak Pas Emk (FL Ealp -
serhEg (g . 1 5 .
Capgeremidonas Tan M R L 23 =1
okl) i
Sghrpmke i Yir er ¥ :l-.:\. ';;.
Wk aual e el i Liey Hakai ek erirn
rrrg
ﬁ::i_l-\-‘:. 257 Faax Emy Eain Madam Eay
parfaly ks i N
Ahiloyioplm Ean Hand Lard Ty Bar Hard
und ooparnd

BEEEFT

Strategies,
(Refer Slide Time: 00:31)

Advantages

a i major defscts am moe
lkaly at the top kel moduks
tep-diwn b heneficial.

- |',-_I_|i|||I 1400 Funetisns in early
CE GEsa CRSE wTTing

- E.JI‘_- :l!lll;l'lgl_l._ll (H]] q,'\-l'
the main functionaloy can
b hepful & highlighting
R P T T]
boosting maralz

-

Integration Strategies Comparison

Top-down Testing

Disacvantages

- Tuu much leu'I_ [H R A

Sl complexity can intreduce eTors

Dfining stubs can ke dffcu if some coda
B Wl T ba wratan.

w It may be impossible
reprodace test conditions

home obeervabions may be imzossible o
mizka.

® Cnoourages the idea
davelcpment can meelap.

bncourages delerring dull kzsbng of modules
|unil laver lewel modules are complete].

accurately o

that test and

Then top down bottom up of advantages disadvantages.

(Refer Slide Time: 00:36)

Top-Down Adyv. & Disadvantages

Top-down Testing

Advantages

a i majer defssts ane mom
Ikaly at the top keed maduks
tep-diwn b5 henefical.

. I',-_I_|i|||I 1550 Funiticns in Early
5l Eaa DSt writing

a E.JI‘_- :l!lll;l'lﬂ_l._ll (H]] q,'\-l'
the main funccionaloy can
he hepful & highlighting
ST T TV A T I
boosting morale

AN Grwarl ANCERAN - Wi Bt

Disadhvantages

Tun much allun gn stuss

& Srubs complexity can introducs eTors

Defning stubs can ke dffcdr if some coda
& weT T b wraran,

wlt may be impossible
reprocuce test conditiors

& Spme otesvatons may be imgozsible to
mizka.

Encourages the idea
develcpment can overlap.

Enoourages deferring full tesbng of modules
|uegil kower lewel modules are complete|.

dccuRiey 1o

that test and

Integration testing other types also will be discussed.

(Refer Slide Time: 00:39)

Bottom-up Testing
Aibariages Disalvantages
& Helpful if errors ore lisely decp ® Mesd to create driver modules
dowen inthe dependency struciure fbut arguably this iz easier than
g i hardwane specific osda]. creating stub code — and tools lika
® Tesl comedfinms ars sasier le ILnit Falp)
sreake
Dhmereation of best resdis iz & The entire sestem s subjected
magonably ady. e the simalkest amount of test
Reduced effert in creating sk {beuse the bop modyles are
madulas inchafm:d in the tests xt == hnal
stage].
o
Sx' Srasn ARSERn - WD S

And before that I just would like to have a recap and add some more points to what we have

discussed in the last session.
(Refer Slide Time: 00:50)

Embedded Software Testing
Unit 4: Software Integration

Lactura 1
Seer Akademi - NPTEL MOLU

That was integration we know that three levels of testing we can do.
(Refer Slide Time: 00:58)

Depicting Levels of Testing

[L3] 2 M3 5]
T ™ M7 | Campanert S Lind!
L] Pt 151 f111 Ma112
, — W
Mi Mz v
et
\nlografice i = NI T
- |
bd ¥ 1
M0 M1 —— 2
—
. 5] W2 ME [—
— = . = e
Pru— £} W5 a7 ¥ Svatem
Fali WD k11 f112
—
Fs 2 Ieln = Macule &

Component integration and system, so basically we do individual components and those are
under test the unit testing. Next one is the integration testing where we combine logically
different components based on the complexity of the feature wised or functionality of those
components, then we will interact with the other similar logical or interactive groups to make
sure that those are getting integrated and the behavior is verified.

The last type will be the system testing where black box everything will be tested. So this will
basically what we do? We defined the test objective for the intension test, what qualifies the
system we want to verify, then divide the test cases, program test and executive test and analyze

the aspects we will follow for testing.
(Refer Slide Time: 02:04)

Integration Testing

* Integration is the process of aggregating
components to create larger components

+ Integration testing done to show that even
though components were individually

satisfactory, the combination is incorrect or
inconsistent

Faes
Then we had gone through integration testing that means the process of aggregating different
components to create larger components, so that larger components can be tested together with
similar larger components. Integration testing done to show that even though components were

individually satisfactory the combination is incorrect and inconsistent, the combination is very

important you know just enough to test at a component or individual level.
(Refer Slide Time: 02:34)

What is Integration

= AN intsgration strategy 5 a dectsion asoul how the difersnt
moadules are integrated into & complets system.
= The objective of integratioh testing {integration testing in the
amall according to BS T925-1) ks to find bugs relsted to
interfaces between modules & they are integrated together,
= The integration cowvess both heroware and softwans
+ The inbegration straleqy depends on:
— Avalatdity of the imtegratan parts (2.9, third party software or
hardwars)
Size of he system
— Wheihar it is 3 new sysiem ar an essting sysiem wilh
addedishangsd
— Furcticnalty
- Anchitecture

L2
=T FENE] - NS RN e HAT B0 & RO e

So we also had gone through definition of what is integration? So basically it is not enough to
have unit testing alone to get stable or functional or correct system, so many defects are related
to the integration of modules, if the requirements are not formally described everyone has to
make their own interpretation of those requirements basically. So this is not a problem as long as

these interpretations are not related to interactions with other modules.
What incorrect interactions between modules C is often calls by these interpretations, this is the

problem actually. So what is the best instrument to detect that is with the help of integration
facility. So physically integration strategy is a decision about how different modules are
integrated with a complete system. The integration covers both hardware and software as I said

in terms of hardware it is kind of hardware software integration,
And it is called as software integration it is basically the different software modules and their

interactions will be verified, and system integration, system hardware integration and system

software integration.
(Refer Slide Time: 04:02)

What is Integration

Definitions:
« System Integration; The task of creating a pm::e:jl;tfs
functioning system from its constituent compone
Hardhavare
Firrmwares
— Softwara
+ Syslam Hardwara Inlagration
— #ra the components wired together commactly?
Systam Softwara Intagration
Twpically assumes handware inlegralion is largely complele
— The final step before ecceptance testing and degloyrmant

-

-

e
A LD - A0 Dl - i TR

The other term of embedded system integration that defined the task of creating a properly
functioning system from its constituent components could be hardware, fir ware, software. where
are in system hardware integration are the components wired together correctly, that means
especially hardware components are tied properly in the system and those components are tested

against their behavior.
And the last part is system software integration, typically it assumes hardware integration is

largely complete no issues with the hardware, but before we deliver or accept the product
software modules will be verified with the hardware how it is behaving and all that that is what

we do with the system software and the integration.
(Refer Slide Time: 04:55)

Integration basic steps

= LCreate a List of &l softwars components
Identify the grouping and dependencles between esch of
e
= Lish oul the strategy Lo peformm thise calegonies of inbegration
+ The bist also shoukd identify the category of integration such
B
— Funclicnaliy
Parlomiance
Sub-systemisirusiural infegradion
— Dipfa Blasa
— Intarfacas
— Control
Sacurityrealely
confrmily

g

So integration steps basically we need to create list of all software components, identify the
grouping and dependencies between each of them. List out the strategy to perform these
categories of integration, the list could be based on the aspects like functionality, performance
sort of system integration or interaction, databases the kind of database we use and what

interfaces specially from the signal prospective all which is derived then the control of the

various program elements, then safety and security aspects and conformity.
So basically the goals of integration is,
(Refer Slide Time: 05:58)

Software Integration
Goals/Objectives

= To expose faults in the interfaces and in
the interaction between integrated
components

* To find collaboration and interoperability
problems and isolate the causes

= To reveal interface and cooperation
problems, as well as conflicts between
integrated parts

LT

To expose faults in the interface and in the interaction between integrated components, to find
collaboration and interoperability problems and isolate the causes, to reveal interface and co
operation problems as well as conflicts between integrated parts. So the faults could be in terms
of interface formats of the memory or the file which is not compatible where are it is working
individually like when you interface with a external memory or any file handling it could be a
issue similarly that data exchanges are not properly there type casting with the issue when it fix
with the subsistence always part of a interface issues and co ordination or cooperation problems
within the modules will be revealed.

(Refer Slide Time: 06:54)
Embedded Software Integration
testing
= Types of Integration:
— Big Bang Integration
Bottom-Up Integration
= Top-Down Integration

EL =
=T KAL) ¢S RNV D AT HOOean & R Ralandaiin

And we have types of integration as big bang integration, bottom up integration, top down
integration I mean how the approach to the integration is been done, some time component
integration test is also called as integration test that is subsidiary as small integration test. System
integration test is also called as integration test in the large system. Where the external systems

are more involved so it defines on the complexity of the system.
(Refer Slide Time: 07:30)

Integration Testing types

* Big Bang Integration:
» This strategy can only be successful if:

—a large part of the system is stable and only a
- few new modules are added;
— the system is rather small;

- the modules are tightly coupled and it is too
difficult to integrate the different modules
stepwise.

ot
=T FENE] - TS AV De HAT O £ R R andn

So in big bang is a simple or type testing type all modules are integrated and the system as tested
as the home basically, so completely the system largely N system which is enough to test it that
why it is going to be banged up from the testability prospective. The main advantage of that is no
stuffs or drivers as we have seen required for this with this strategy the problems is it difficult to
find the cause or defects and the integration can only start if all the models are available and it is

not like a stepwise part of the thing so basically it is coupling with entire system.
(Refer Slide Time: 08:23)

Big-Bang Integration

After all components are unit testing we
may test the entire system with all its
components in action.

(-) may be impossible to figure out
where faults occur unless faults
are accompanied by component-
specific error messages

o

Similarly as we have seen after all components are unit testing we will test the entire system with

all its components in action
(Refer Slide Time: 08:37)

Integration Testing types

* Bottom-up integration;
— This strateqy ks usaful for almast every systam

— slarls with low-level modulas with the least
number of dependencies (using drivers)

— The integration can start vary aarly in tha
development process.

— will lzad to an early detection of interface
problems and these problems can be isolated
rather aasily

— Disedvantage is that many drivers have to be
uzed in carrying out this strategy & time
CONSUMmIng.

L2
The nest type of integration tegting is the bottom up integration testing this strategy useful for
many of the systems it starts with low level modules with least number of dependencies.
Basically it use the drivers, test drivers it is called, if the integration can start with early in the
development process you don’t want to wait for the all the modules to be completed. As in when
the modules are there we can write the test which is called the integration test for the completed
one and instrumentally we can close all the modules, basically advantage is that will lead to an
early detection of interface problems and these problems can be isolated very easily disadvantage
is that may have to deal with many drivers and we have to use it for carrying out different

strategies and time consuming.
(Refer Slide Time: 09:43)

Bottom-Up Testing Example

-,
- "
B c

11Tast B, © Indivicually {using drivers)

21Test A such that it calls B
If an error occwrs we know that the problem is in A ar in the
Interface ebaean i and B

3 Tast A such that tealls ©
It am error soowes wie know that the problem s in & arin the
interface bebaean A amd ©

[<] Tap leval campanarts ara the mast impofant yal tested
last

T Cat wab s

And we also had gone through a bottom up integration testing example where higher level
module J and lower level module B and C are there, so basically we develop the test drivers for
B and C so we test B and C usually then we test A such that it calls B, so if any error we know
that the problem is in A or in the interface between A and B. similarly we test A and we develop
the driver since that it calls the C and it will be ever that has to the A or there are could be B and

C.
(Refer Slide Time: 10:40)

Integration Testing types

+ Top-Down integration:

+ Control structure is developed in a top-down
Seduence

+ At every new level, the connected modules at the
corresponding level are integrated and tested.

* non-existent modules is implemented with stubs

* Advantage is thal an early ‘look and feel’ of the
entire system can be achieved

+ Disadvaniage is that impact on low-level modules,
may lead to changes in top-lavel modules &
number of stubs neaded to test every intagration
step

L=
AT Tereg Fra P be Fen Freonan & Bisaa nanbann

The next type of integration testing is top down integration testing in this strategy the control
structure of the system takes lead basically the control structure is developed in top down
sequence and this offers the ability to integrate the modules and stop down staring with the
higher level control module, that ever new level the connected modules at corresponding level

are integrated and connected.
As we go down the connection modules will be tested one by one we roll up there could be some

non existing modules also those can be exist with the stubs here we will call as stub. And driver
we use in bottom up and test ups we use it in top downs, so advantage is that look and feel entire
system can be achieved, that means user has an idea of what are the top level modules how it is

accepted? And how it is getting flow down into individual model?
That is the advantage of taking up to level integration, disadvantage is that impact on low level

modules may lead to changes in top level modules we don’t know what is the impact? And you
may have to wait for all the modules to be completed you can now come to a progressive kind
until otherwise the top level module is done, so that some if any may not too low level modules

are not come to be tested so we need a number of stuffs for every integration style.
(Refer Slide Time: 12:31)

Top-Down Integration Testing
Example

i

=] L
ITeat A individually (use stubs for B and G}

21Tast A such that itcalls B (stub far C)
ITam arror acowrs W ko that the prablam |s in B orin tha

interface bEtaeen b and B

Taat A such that tealls © (stub far B
ITam arror socwrs wi know that the prablam s In C orintha
interface betaeen b oand C

* Gtuhs are usad e simulate tha Actlv Ity af Somipanents fhat
ara nat currently fastac; |-} may reguinre many stubs

E Ra' weah mrae
L 2

So we also have to go through an example of top down integration where ABC modules are hate
higher level B is lower level, so A will touch it individually with the help of stubs or B and C,
test A such that it calls B stub for C and it is an error occurs we know that is a problem in the B
or in the interface between A and B. similarly while we are testing C stub B so that all together

we focus on C and it is error occurs that the problem has to be in C or interface between A and C.
(Refer Slide Time: 13:16)

Integration testing + & -

Top=dawn
+ Acvantaps

— Teal drivers are nat needed or anly simgle anse are
regquired. becauss the hig ner-level camponents 1hat hayve
ben lested sarde as main gan of he st enviranment

+ Disadvaniages

— Lowear lewal companznts not yat integrated must be
replaced by SMUDE. THIE can be coslly

Balloem-up
+ Aeanlape:
— Mo slubs are needsad
« Cieadvarlags
Highes-leved campenents musl e srmulaled by Lesl
AriErs

e

So the advantage and disadvantages of integrating testing top down we will detail out in today’s
section, we also know that test drivers are not been made only simple ones are required as
advantage because the high level components that have been tested serve as the main part of the
test environment. So we don’t have a test driver we have only have a top level module,
disadvantage is that low level components not yet integrated must be replaced by stubs because
we have not done it or it is not integrated, so this can be expensive because we need to develop
the stub .

Bottom up advantage is that no stubs are required but disadvantage is that higher level
components must be stimulated by the test drivers. So user will not have any idea about our top

level modules look like how we can approach the integration testing? That is the disadvantage.
(Refer Slide Time: 14:30)

Importance of planning your
integration

» Enabling successful integration with critical
factors such as objectives, responsibilities
and resource planning

* Will have an impact on the outcome of the
project/product lifecycle

* Time, resources and Personnel are
identified for planning that enable
successful integration

AT,

And also the importance of why we need to plan the integration so basically successful
integration with critical factors such as objectives, responsibilities and resource planning so that
we know at what stage what other type of integration we are going to do and how the
qualisiveness is going to be achieved. So basically the product of the life cycle or product

lifecycle outcome is purely based on the integration.
Form the customer asks track or progress of development he will similarly asked the progress of

integration, the first question I will ask you is are you able to integrate in first in the modules that
we have developed how is it going on? What is the performance of integration testing? Whether
you are able to integrate all the components because we always interact with the hardware and

the actual system how is the hardware software integration going on.
How software modules interaction behavior is going or the same? So how to start of an things

is an outcome is the integration testing, so definitely there is a need of plan for this aim because
it has lot of stake holders in today researchers, time, personal which are going to be identified for

planning that enable successful integration.
(Refer Slide Time: 15:59)

Integration Considerations

System decomposition
Architectural considerations

— QOpen vs closead
— Integrated vs madular

Interfaces
HW considerations
SW considerations

e
Similarly integration consideration that we need to have is that we need to have n understanding
of actual system decomposition, architectural considerations could be open or closed
architecture, integrated or modular integration depend on the type of system that we are trying to
do definitely the architecture of high level that needs to be considered for integration, and also

we need to have an understanding on the interfaces.
All the interfaces are associated compare types of one lords or discrete that have been involved

all this will be part of interfaces signals, the nest one is the hardware considerations in terms of
hardware limitations or it could be anything so we need to have a idea of the hardware how it is
built? Because without the hardware we cannot be test many of the software modules because

title coupled will be hardware.
Last is being the software considerations you know that the software modules are to be very

cursive so that they can be tested appropriately on the hardware, some examples 1 will try to
provide interfaces that you are clear about sort of a used the interfaces could be memory port
such as rs232 or can or spiel are also examples. Next we have our timer, next we have our power

interface this is also very important.
Where some of the power of requirements had to be pattered such as it is so and so time the

budding procedure has to be completed and system should be operated in sort of time so there we
will look in the some of the reaches or any interrupts based on the power that also need to be
considered for interfaces, of course we have analog interfaces, discrete interfaces discrete could

be switches, signals, led all this will be discrete interface.
Then what are interfaces? It could be just like not a convertor of all it is gain this depends on

occur on a drive we have it could be two port could be a parallel bars or it could be normal of
interface basically the in target is the motor so how we are going to interface with it actually, so
it very important for the us to understand the system is motor based close look control system
definitely it tend to have a Quinter mechanism and understanding by the system testing, of
course we have the AC, AC motor interfaces sub title interfaces, so hardware related interfaces
you know that the hardware input output need to be used in the system integration test.

So that is also very important, software interfaces in terms of like any algorithms check some
computations all this will be multiple all this things will have a multiple comprehensive mode so

definitely we will consider the software aspects of the integration that is very important, so
(Refer Slide Time: 20:50)

Integration Test Strategy

= Ad hoc strategy s foinlegrata the componenis in
arder in which they are ready

» Az a component has passed the component test,

chack il it lits with another already lested component,

ar iF i fits into partially integrated subsyslam

If 5o, both parts are integrated and tested

» Mesd to write stubs to help in integration

Slub s a skaletal ar spacial-purposa implamentalion

af a saftware companent, usad to develop ar test a

companent that calls or is othersise dependent an it

It replaoes a called companent

ey

The last part which we had studied in the session is that integration test strategy, ad hoc strategy
is to integrate the components in order to which they are ready so this is not he good idea nut you
can do it you can afford to the beginning of the program, as a component has passed the
component test check if it fits with another already tested component and or if fits into partially

integrated subsystem.
You need to see whether the component you need to worry where it can fit? Whether it can be

tested? First we need to identify the component associated integrated subsystem a component
where it is going to fit and then accordingly the associate 1 needs to be addressed to make sure
that both are integrated , need to write stubs to help in integration stub is a skeletal or special

purpose implementation of a software company
Used to develop or test a component that calls or is otherwise depend on it, it replaces a called

component so it is of use the other the form of stub where we have seen in the top norm is
drivers where the high level components are going to drive the low level in a bottom up strategy.
So that was about the previous session, now we will go through the integration test strategy in
detail we know that stubs and drivers are needed for integration test so it is nothing wrong in

having both actually again it is subjective.
We have to take a call depends on the complexity of the embedded software system elements we

can have bottom up as well as top down approach. So it will again dependant for larger systems
where we have means of code definitely we need to divide the entire system with a several
systems those each several systems can be addressed in different strategies in terms of

integration.
But all that have to be planned appropriately either it could be bottom up or it could be top down

or some sort of we don’t need to have integration at the top down or bottom up we can go for the

big bang integration process entire group of modules can be tested all together that strategy also
we can adopt that is in subjective. So we have gone through that various types of integration

strategies.
So we will try to compare this based on the book mayors 1779, so that table basically list out

different types of integration in strategy we will not focus on those and reach and modified and
reach type of embed integration testing so these are other type but where we have used or it is
not required to be understood in this point. So you can see the features that are listed in the left
side of the table and on the right hand side we have different type of integration strategy bottom

up, top down, modified top down, big bang.
So basically it identifies integration when it should be done so bottom up early we have talked on

the modified top down early, bug bang the latest stage because all modules have to be completed,
time to basic working program very late bottom up early, early late so here to have it a matured
working program the bottom up will be related stage whereas in top down early stage you can
identify the understanding of the working system.

Component drivers needed for top down we need sorry bottom up we need not for the top down
modified top down can also have test drivers or component drivers which are also called, big
bang processes have drivers stubs we need we know that needed only for the top down approach
not for the bottom up, so work parallel in the beginning there issues at the medium bottom up top

down below modified top down as medium.
And big bang is very high so that means parallelism need to be worked out ability to test the

particular parts what you mean by difficulty so bottom up is easier and in top down it is very
hard and modified top down it is easy and big bang it is easy. We need to path plan and control
sequences are easier in bottom up because we have the control on the smallest of the components

of the entire system and it is very difficult for the top down.
We don’t know that exact sequence and we need to go through each of them big bang it is easier

so these are some of the matrix they have compared for integration strategies, modified top down
is something like a mix of both top down and big bang so they adopt some of the medium size
complex embed systems that is where they use top down testing. So that is about the strategies of

different integration types.
(Refer Slide Time: 27:18)

Top-Down Adv. & Disadvantages

Top-down Testing

Advantages Disadvantages
all [LIEITH] |||-|'-i-:h. am moeE Tl:;_l much leu'I N sy
kkaly at the top kewed modubs & Stub comslexiny can introduce eTons
[Ep-20Wn 15 heneficial . Dr&"mn,: atubs can ke défcdr if somi code

B w10 e wrakan

- |',-IIi||;|":| funitisns in wly ® It may be impossibke aoccw atzy

Caf Gars CRSE WTRING reprodace test condtiors
« Some obesrvations may be impossible to
- F.h- bt ralien of make.
the main functionaly can ® Encourages the ies chat test and
[||||||r||| [} ||:;|'||L".I|||=: :IEI"\'""-F'III'III man :"""".I:'"'
resiilravanis beies sed Jn * Enoourages deferring full besting of modules
bocsting merale |w=til lower lessz| modules are complete).

o~
Now we will try to go thro-u;gﬁ top down advantages and disadvantages basically we have to
called up to an in terms got from the web it is basically shows the advantages and disadvantages
such as in top down the major defects are more likely at the top level module top down is
beneficial that means we have more issues in the top level then it is going to be advantages,

getting a input output functions merely can is fascinating.
That is as long as we have developed the more input output functions obvious to you it of the

approach is the beneficial, the top down approach is beneficial it will use out the integration
strategy of top down so early demonstration of made functionality it will be helpful in
highlighting requirements issues and in boosting the morale. You have more clarity and idea of

what the system is defining and your understanding will be better.
As you progress on the integration testing of the type top down approach because you start with

the main functionality of the top level modules, now let us look in to the disadvantages of top
down it is too much for the stubs you know that top down stubs if low level modules are not
ready to not enough stubs the may have to leave it with test stubs for the low level modules and

also another problem is by developing the stub.
If it is more complex it can inject some additional issues or in to these errors are disadvantages,

defining stubs can be difficult in some code in yet t be done so we are unclear about what exactly
is going to be integrated but we are in the knowledge of this functionality based on that we are
going to help this stub but sometimes it is difficult to develop a stub. Here is the code is to be
written it may be impossible accurately to read word is test conditions, if there are failures

suppose we started top down testing and we founded that there is a issue in the system.
It is very difficult to figure out or isolate where the test issue is there and how to reconstruct that

so some issues like intermittent issues are very difficult, so that is disadvantages of top down
testing. Some observations maybe impossible to so we cannot observe some issues of the top
down testing modules encourages the idea that test and development can overlap. That means,

the top down testing have a close relationship in the within development aspects,
So basically it encourages the ideas that understand development can overlap encourages

differing full testing of modules because low level modules are not computing so we are leaving

the high level modules and basically we may not be completing the integrity process it is
partially done partially passing so of them low level modules are to be explode so thing are

difficult in the top down integration testing.
(Refer Slide Time: 31:38)

Bottom-up Adv. & Disadvantages

Bottom-up Testing

Aibearilages Dhimalviannages
& Helpdul if ermoes ore likely ceep ® Meed to create driver moduoles
dawen inthe dependency struciurs {bun arguably this iz easizr than
[eg i hardware specific oada). craating stub cade — and tools Hka
w Test condfiom ars sasier Io ILInit Falp)
sreaks
Cbmervation of test msults i & The estire swstem is subjected
masciably &agy. 1 the sisalkst amaint of test
Faduced effert in crating sl lkmcause the bap medules am
madubes inchaided in the tests at t== hnal
wagcl.

g
e U ey R

The next one being the bottom up testing I will correct it quickly so what we do here is we know
that test drivers are needed for the bottom up testing and advantages are such that helpful in
errors are likely deep down in the dependencies structure, if the system implement of the thing
that it is more complexes at the deeper level especially on the device drivers of the modified top

down then it is better to take up this activities.
It is going to be advantages the bottom up integration testing, rest conditions are easier to create

basically you are lowest of the modules to understand and create facility, observation of test
results is based on the easier that the ideal effort in creating stub modules you don’t have issues

in creating the stubs, disadvantage |
that need to create driver modules but arguably easier than creating stub code and tools like some

j unit help but basically driver module we need to create so you need to understanding of that,
that is a so it is easier in creating a stub because we can see the code and we van drive he values
what we need to develop the driver. The entire system is subjected to its smallest amount of test

it means we are focusing only on the smallest part of the entire system.
Because the top modules are included in the tests at the final stage we are not addressing at the

higher level incrementally we are testing one by one on the bottom up low level modules and as

we go in to the higher level we are going to test at the high level tests
(Refer Slide Time: 34:15)

Integration testing other types —
Combination / hybrid

Hybrid Strategies

a & m cloar thas pdiemim comhisstion of stubs and dives ean be wsed 80
niegrate in a mibddleaoun apeace
a Milsz for some groops of modulas we mos wact o tabe 3 con-eratvs approach
ard just consider temieg them al ar once [this means we Clome 3 Biagce
grarulanty for cur integration steps|
& Lzing such spproaches there ot o range of potental criceda for decking b
in proup measdu b
Criticalicy: decde on groups of modubs that provide the roet citcal
fursctinnality and checae tn nkaprate sheae fins
Cosr: lezk lor cellections ol muoduis vatk lem dipendescii en coda lower
in the dependency graph and choose to nbegrace chem fest. The goal here
Do redhic L ossl of creabing slub ook

e
So those are the advantage and disadvantages of the bottom up and top down integration testing,
now there are other methods of integration testing of the touch basis what are those? First on
being these are all basically referred from sources how they are aware from the industry in terms
of defining term or creating plus every industry typically different than initiate than actually
being lot of based on the weird in complexity skills and compartments rules so many aspects are

there.
All these are to be considered as referred to normal as types based on that they will decide and

they will define a name for the type of a integration testing strategy, next type of integration

testing is hybrid testing and it is also called as a combination type combination integration
testing, so it is clear that judicious combination of stubs and drivers from the use to integrated

approach.
It may not be purely positive to stubs on the you can take integration or may not be possible to

use a driver alone for the inside drivers aspect sometimes we have to mix up both based on the
complexity in the kind of system that has been integrated and tested. so we need to give a
judicial approach to combination of this we need to take care of this based on the tip boxes to

that we use.

So that is called high build test strategy which is this both, as of for some groups of modules you
may want to take non iterative approach and just consider testing that all at once which means to
chose the big bang for our integration process, some of our groups of the modules may not be
able to take up to the right relative to the bottom up and we can take separately as a one shot
testing.

But when we are doing the other dependant modules those kind of the things also can be done
depending on the type of modules that we have so this concerned a hybrid test strategy, so using
this approach there are various of potential criteria for how to group those modules so basically
hybrid test strategy is useful process other set grouping is an very important aspect in integration
testing.

We are grouping based on the pictures, requirements punctualities, performance etc so there are
different criteria that we need to follow for grouping the various modules, so what are those?

One is criticality you said on group of modules that provide the most critical functionality and
chose to integrate those part first that is we identify critical groups first which are very important

to testing very important part of the entire embed system.
First you broke it then rest of them will fall that is one of the deciding factor when the cost this is

also equally important look collection so modules dependencies on code low in dependencies
have and choose to integrate first, that goal here is to review the cost of creating stub code, so
that what will happen is we cannot be doing stubs because it is going to add a cost so integration

is based on how much cost for the front office stuffs.
So if we’re going to be too much then we need to collect such modules which can have a many

less dependencies on lower part of the code so that the stub mode we don’t need to have much so
that the past is appropriately taken care these two are very important here cost means no we
speaking of dollars is basically we have fault of course at the end of the day all it matters the

money.
But we look for the efforts how much efforts it is going to take and complexity or criticality we

saw some of the important deciding factors for identifying the test strategy like bottom up and
top down they have their own advantage and disadvantage where you have a system having
complexity is my suggestion such as close look, and more interfaces and larger systems outside
moderate large this kind of systems I suggest have a testability where it bases of both test stubs

and drivers.
Test stubs and drivers means top down as well as bottom up, so both being followed coverage

and are all were second aspects once we have that integration don with a satisfactory test
coverage and test reports for each of the modules automatically coverage process takes place and
wherever the gaps are there and you can fit in to any of the test strategies that are any system

strategy all can be taken.
It is basically we need to address the entire system from this aspect so that is where the hybrid

test strategy comes in to play before winding that we need to understand bottom up and top down

so let we have an appropriate mix of test drivers and stubs so that is why I think forward
(Refer Slide Time: 40:53)

Integration testing other types -
Centralized integration

This Iype of inlegration s wmed when
w ceriral garl of e sy=tam is necessary Tur the re=t of the syslem e
furction (far rstanee, the kemal of an oparating system)
e canbral part 15 necessany 19 run tasts and b s oo G eultho subssnna
this par with a shi;
s archileclure of tha avsiam ie such el e canlral part of the gyslam =
devakaped tral and made ready for production. Afer thal e mosdules ar

furchonaliy

So there are other types of integration which we look centralized integration this type of
integration is issued when central part of the system is necessary for the rest of the systems t
function that means without this central part nothing works that is heart of the system. For
example OS or a kernel so definitely we need to first address’s the kernel or the operating system

first that is centralized.
And surrounding is cemtralized part for our sub systems which can be tested subsequently, the

central part is necessary to run the but it is too difficult to this part with a stub, so you cannot
replace the OS with another stub OS has to be there or the OS won’t be there for testing so that is
the central part of the program of the entire embedded system, the Accenture of the system is

such that if central part of the system is developed first and made ready for production.
This kind of systems what they do is first they develop the kernel of thebe schedule the lower of

the OS and surrounding that they will increment the developed subsystems, so that is how the
architecture will be headed first so after that new modules or the subsystems are released to

upgrade this system or to add completely the updated functionality of the new functionality.
So that is how centralized integration is going to be done, but here also again centralized system

we will have subsequent close up system we can adopt either top down or bottom up or hybrid
whatever it depends on large the system is ? Or how complex the system is? So it is very

important.
(Refer Slide Time: 42:58)

Integration testing other types

+ Layer Imbegration
s Gliesntezrver Imtegration
+ Collabaraticn Integratian

i

Tarirg Cribedded SclenwaTiang Cribedded Sofsmsen iy Mar Nirs<nan ang Tdwir Mowaboa)
So there are other types of integration testing just we will discuss one or two line for this here
integration the strategies used for systems with structure where you have libraries mid layer
lower level layers where the systems are there so this type of integration testing they use it so
interfacing only occurs between the layer directly below and the above so don’t talk about

bottom up or top down sort of things.
But each layer is tested in isolation using the top down or bottom up or big bang strategy so next

step is the integration of the layer according to a top down or a bottom up order the advantages
and disadvantages are same of top down and bottom up strategy the integration and isolation of

the interpretation is easier and therefore discover the causes of defects is also easier because we

have addressed the layers.
So based on the layer s different other layers are going to be integrated in testing. Next type is

the client server integration this strategy is used for client server architecture where you know
that database and the server and client will have all sort of things embedded architecture is going
to have this strategy will have more appropriation, the client is integrated either top down,

bottom up or big bang the server is substituted by your stub and driver.
We can use stub and drivers to repair the server for the server the same approach is used for

testing server itself like top down bottom up and stubs and drivers are developed for the client,
finally server and clients are integrated collaboration integration so basically collaboration is a
collection of objects which work together to achieve a common purpose or in sense realization of
useful means studying of useful and test cases carried out of test cases they are test results, the
system supports many awkward because it has to reveal many schedules many objects belong to
more than one collaboration because we have lot of collaborations there can used in many

scenarios.
So basically the collaboration is the focus here so choice of the collaboration will become the

necessity in terms of covering the computer system that is also collaboration integration I done,
so basically they use for object oriented systems or object based systems and which fully covers
the component and interfaces where the collaboration is made, this also have advantage and

disadvantage similar to top down and bottom up.
Where are interfaces are not clear dependencies are low something like a big bang sort of a thing

because most f the components are collaborated together and only when the collaboration is
complete so integration testing start big bang we can call it this collaboration kind of testing, but
it does not require full sort of integration facility and the new tests are enough actually for the

end to end functionality.
And the overlap of the collaboration pictures so you just say I am very subjective again to chose

what sort of a integration testing types. so we have studies bottom up, top down, big bang these
sort of type of integration testing’s top down , bottom up, big bang, hybrid, centralized, these
above fiver are very important most of them are used additionally we can use layer, client server,

collaboration, integration.
So likewise many types these are the main type of the integration types that can be looked into,

next once we have identified the integration all these types of strategies integration next step is to

identify the environment form the integration models.
(Refer Slide Time: 48:50)

Integration Test environment,
integration models

— Mix of ocomipanant (unit) kel testing & System 1esting
— Mead af tast dmvers

Can reuse beel drivers thal wene uged earker for compoenent I
lesling

= Additional fpals, calked monitars, are reguired o oread and leg
data framc tebwesan companents

Fey

Ho we are going to have so basically for integration test environment it is mix of components
unit level and system testing it is both it takes care write so definitely we need to have an
environment which supports both unit level sort of environment and system level, so we will
have an need of a test driver perhaps we can reuse the test drivers that was loosed earlier for
component testing.

That is why we told that these are component testing because for doing the unit level testing we
probably developed some test drivers those test drivers can be reused for integration testing, so
additional tools like monitors where we require to read and log data traffic between components
and all that basically why we are interested is so interface between these components and while

doing the interface definitely we need to monitor or the data is getting interacted.
So to understand the flow of data we need to have test environment identity different tools such

as monitors.
(Refer Slide Time: 50:06)

Integration tests environment

a For the software unit (SW/L) tests and the
software integration (SW/I) tests, a test
bed is created that is comparable to the
test environment for the simulation model.

» In the prototype stage the test objectis an
executable version of a software unit, or a
set of integrated software units, that is
developed on basis of the design or
generated from the simulation model.

E Fu' meah modaTy
L =

So integration tests environment before the software unit and the system integration a test but it
is created and is comparable to the test environment for the simulation model that means a word
testament to specify or testament which will have an environment which is going to be used for
unit as well as the integration process identify all the interfaces and higher modules and

necessary imports which can be compared with the simulation of the test environment.
In a prototype stage the best object is an executable version of a software unit set of integrated

software hat is developed on basis of the design or generated from the simulation model, so the
development could be based on the model or could be based don the code so we can develop a
prototype we can develop the integrated software based on the prototypes that have been

developed so far.
For the test environment and that prospect execution or executable version is will be used by the

integrated software so that integrated spoftware are basically developed this in the basis of the
design of the architecture of the embedded system, that is how the test environment test bed isd

h=]going to be formed for the integration.
(Refer Slide Time: 51:48)

Integration tests environment

m The frsl slen = o cormgile the salbaare for sxeculion an e hosl
campuler. This ersironmend (host) has no restrictions on resouces
ar pefarmance, and powerf |I| tanls are comrmenzially mvailable This
makas dovelopmant and testng a ot easier than in the targat
anvirgnment. This kKind of l2ebng & &s0 knoéwn 3s hostTangar !'BEI'.'ﬂE‘.
The goal of the fesle on theee “hoet-comglled” eoflwere units and
inbeprated seftware wiibs is to verily heir behaviar acconding ta the
techinical design and the vaidatian af the simulation moedel used n
e revious SngH

§ The secared step in SWUL and SWH lesks is 1o compie the softvane
far execulizn on e target pracessor af e embadded syskam
Selzre aciual exesulicn of this sathwana on Tha ".EJ'QE'. hardwiare, 1he
I:hﬂl'l"|‘."-'||'Elj warsien can e exacubted within en emulator of 1he 1EJ'QE"|
arocagsarn Thig emulator TEY ndn on the devalapment @ysierm or an
ancthar host COmpdier The goal of these et s 10 '.'I':|1r:|' lhat the
safraare wil penule comestly an te targat pracessor

- s weh ol
ot

so the first step is to compile the software for the execution basically build the process of the
integration test environment, so step is to compile the software for execution in the host
computer, the environment has no restrictions on resources of performance and powerful tools
are commercially available basically we need to compile and post first because we have
developed the code in host we need to compile based on the standards this makes development

and tracking a lot easier than in target.
We have to show that we cannot afford to have on the scratch from the target only first host level

will get complements by compile and collecting all this thing formation and install this and all so
this kind of testing is also known as host kind of testing first we have to develop the host
environment and try to test as much as the host done will be target larger system, the goal of this
test tests of this hosts compiled software used integrated software used and verified according to
the technical design and validation and simulation module used in the previous stages.

Incrementally starting point is validated there is all the simulated environment that is done first
and the second stub is software use or software integration is to compile the software for
execution on the target processor of the embedded system, so far we have done on the post target
based environment I think we have studied in detail simulator emulator and all that similar to that

same strategy but here the focus is all the interfaces integration of different modules.
So second is basically we are going to develop for the target and before actual execution of this

software the complied version can be executed and emulated of the target processor, you know
that there are emulators and with the emulators we know we can assume the code behavior and
the function of the code and all this at the system before actually we execute the simulator may
run on the development system or on host computer, so the chances of the emulator can also used
by the portable systems. So goal of these tests is to verify the software we need to execute
correctly and target the processor which can be software if compiled on the host should work
same way and has been tested on the target systems this is where it s very important n this

environment identified and used.
(Refer Slide Time: 54:46)

Integration tests environment

Take 111

Eirpsation kel for Eriseddod softwire Frooman Fesl of embedded Planl
B and S e xhaT
SVOL BT Dowrisetid by Hos Sorei el Smulatel
SO ST Imm!:m Orekly Sofed el Sl Al

So there is a cable here based on the hook simulation level for the software unit and software
integration basically this basically identifying based on the test but actual basically half of this
doing the tests so we have embedded software and what sort of a processor and what can be
tested on their simulation and this one based on the simulation process, the software we need the

software integration.
So first it will be tested on the host as an experimental basis and the processor we have not going

to use the target processor we are going to use the host processor such as six because most of the
personal computers will have Exide this six structure but the tools will support what are the
comparability on the target system? So rest of the embedded systems is simulated apart from the

experimental course.
The second type of testing unit or integration is target than actual environment that will be target

environment there we use the emulators and rest of them can simulate so this is how the test
environment can be brought so but both the situations the test must or should give a simulates for

the input of the objects and provide a features to modify the test object and to record signals
basically we validate signals inbounded we should support this environment and basically this
can be done with the help of break point storing, reading memory and calculating variables all
debug steps and all this can be time machines performance analyzes all this can be used there

should be supported in the test environment.
(Refer Slide Time: 57:17)

Integration tests environment

m | the hardware/software integration (HW!SW) test the
test ohject is a hardware part on which the integrated
softwara is loaded. The software is incorporated in the
hardware in memary, usually (E)EPROM

w The pace of hardware can ba an asperimantal
configurabaon, for inslance a hard-wired circuit board
containing several components including the memary,

s The goal of the HW/!SW/ test is to verify the correct
execution of the embadded software on the target
processar in co-operation with surrounding hardware
Because the behavior of the hardware iz an essential
part of this test, it is often referred to a5 “hardware-in-
the-lnop”,

so continuation of integration test environment in the hardware software integration test the test
object is a hardware part on which the integrated software is loaded the software the software is
incorporated in the hardware in memory basically a flash, the piece of hardware can be an
experimental configuration percents hard wired circuit board containing several components

including the memory.
So hardware is a focus here hardware software integration to goal of the hardware software

integration is test to verify the correct execution of the embedded software on the target
processor in cooperation with surrounding hardware so that is what will be elaboration of
working of the hardware software integration because the behavior if an hardware is an essential

part of this test it is often referred as hardware in the loop.
So those are different types of in loop situations software in loop simulation in loops hardware in

loops basically these are integration strategies that are to be introduced used so that is there to
identify the test environment for those hardware where we need to have an integration
continuation of integration test environment the test environment for the hardware software
integration is interface with the hardware depending on the test object and this degree of

completeness and the following possibilities in this
(Refer Slide Time: 58:53)

Integration tests environment

m The test envirenment for the HWISW test will have to
interface with the hardware, Desending on the test
object and its degree of completeness, the following
possibilities exist:
® alfering mpul slimoli with signal penersion

® oulpud monitaring with ascillosstpes or a logic analyzer,
combmed with

= fata storage dewicas;

m in-cincuit beel equipment b manitor eyatem behiavior on paints
oiher han

u the mutputs;

s sirmaladion of the ereronment of the iest chject the “plant™ o a
raa-brrsa

= simulakar

- St meh B
e

Basically it offers inputs stabiles it signal generators output monitoring with oscilloscopes or
logic analyzer combined with data storage devisers in circuit equipment to monitor system
behavior on points other than the outputs so these are some of the environment dependant tools
that can be used then simulation of the environment test object in a real time simulator so what
we do is basically we have a test hooks or interfaces from the target systems with the help of host
book’s this tools will be plugged and logic analyzers oscilloscopes or signal generators that can

act as an input or output to conduct the test that is what the meaning of test environment here
(Refer Slide Time: 59:50)

Integration tests environment

m Table 13.2 provides an overview of the
level of simulation in the HW/SW/| test.
The columns refer to the simulation areas
in the generic scheme of an embedded

system.
ik 13,2
Erabeooed s rants Picceasal Aenl of emiasdded FHam Sirndrdan el T
npiiT T e
WL S |1 Dozedmend chowl] Foal Sirsles S wisd
EWLL BT | Pl i | Evadadr Siraded LT]
Hi His (TR i (gl Bt BT]

Integration test environment so in integration test environment basically we identify all the
stimulated inputs and in focus on the captured output and tools that are used that are going to
used for capturing output so that we end to end the part is being verified so that is the focus of
integration test environment so we b will continue the test integration and integration
environment in the next session and we will try to elaborate more on the integration environment

and generating test cases, example of test cases and how we can generate and we will also try to
understand the integration test etc in the next class.

