
Welcome to the next session of embedded software testing, this is a unit four serious of lecture
series, today is lecture 2. We will study and discuss more on embedded software testing software
integration. And we will try to see that test strategy and its benefits.
(Refer Slide Time: 00:26)

And comparison of different,
 (Refer Slide Time: 00:28)

Strategies,
(Refer Slide Time: 00:31)

Then top down bottom up of advantages disadvantages.
(Refer Slide Time: 00:36)

Integration testing other types also will be discussed.
(Refer Slide Time: 00:39)

And before that I just would like to have a recap and add some more points to what we have
discussed in the last session.
(Refer Slide Time: 00:50)

That was integration we know that three levels of testing we can do.
(Refer Slide Time: 00:58)

Component integration and system, so basically we do individual components and those are
under test the unit testing. Next one is the integration testing where we combine logically
different components based on the complexity of the feature wised or functionality of those
components, then we will interact with the other similar logical or interactive groups to make
sure that those are getting integrated and the behavior is verified.
The last type will be the system testing where black box everything will be tested. So this will
basically what we do? We defined the test objective for the intension test, what qualifies the
system we want to verify, then divide the test cases, program test and executive test and analyze
the aspects we will follow for testing.
(Refer Slide Time: 02:04)

Then we had gone through integration testing that means the process of aggregating different
components to create larger components, so that larger components can be tested together with
similar larger components. Integration testing done to show that even though components were

individually satisfactory the combination is incorrect and inconsistent, the combination is very
important you know just enough to test at a component or individual level.
(Refer Slide Time: 02:34)

So we also had gone through definition of what is integration? So basically it is not enough to
have unit testing alone to get stable or functional or correct system, so many defects are related
to the integration of modules, if the requirements are not formally described everyone has to
make their own interpretation of those requirements basically. So this is not a problem as long as
these interpretations are not related to interactions with other modules.
What incorrect interactions between modules C is often calls by these interpretations, this is the
problem actually. So what is the best instrument to detect that is with the help of integration
facility. So physically integration strategy is a decision about how different modules are
integrated with a complete system. The integration covers both hardware and software as I said
in terms of hardware it is kind of hardware software integration,
And it is called as software integration it is basically the different software modules and their
interactions will be verified, and system integration, system hardware integration and system
software integration.
(Refer Slide Time: 04:02)

The other term of embedded system integration that defined the task of creating a properly
functioning system from its constituent components could be hardware, fir ware, software. where
are in system hardware integration are the components wired together correctly, that means
especially hardware components are tied properly in the system and those components are tested
against their behavior.
And the last part is system software integration, typically it assumes hardware integration is
largely complete no issues with the hardware, but before we deliver or accept the product
software modules will be verified with the hardware how it is behaving and all that that is what
we do with the system software and the integration.
(Refer Slide Time: 04:55)

So integration steps basically we need to create list of all software components, identify the
grouping and dependencies between each of them. List out the strategy to perform these
categories of integration, the list could be based on the aspects like functionality, performance
sort of system integration or interaction, databases the kind of database we use and what

interfaces specially from the signal prospective all which is derived then the control of the
various program elements, then safety and security aspects and conformity.
So basically the goals of integration is,
(Refer Slide Time: 05:58)

 To expose faults in the interface and in the interaction between integrated components, to find
collaboration and interoperability problems and isolate the causes, to reveal interface and co
operation problems as well as conflicts between integrated parts. So the faults could be in terms
of interface formats of the memory or the file which is not compatible where are it is working
individually like when you interface with a external memory or any file handling it could be a
issue similarly that data exchanges are not properly there type casting with the issue when it fix
with the subsistence always part of a interface issues and co ordination or cooperation problems
within the modules will be revealed.
(Refer Slide Time: 06:54)

And we have types of integration as big bang integration, bottom up integration, top down
integration I mean how the approach to the integration is been done, some time component
integration test is also called as integration test that is subsidiary as small integration test. System
integration test is also called as integration test in the large system. Where the external systems
are more involved so it defines on the complexity of the system.
(Refer Slide Time: 07:30)

So in big bang is a simple or type testing type all modules are integrated and the system as tested
as the home basically, so completely the system largely N system which is enough to test it that
why it is going to be banged up from the testability prospective. The main advantage of that is no
stuffs or drivers as we have seen required for this with this strategy the problems is it difficult to
find the cause or defects and the integration can only start if all the models are available and it is
not like a stepwise part of the thing so basically it is coupling with entire system.
(Refer Slide Time: 08:23)

Similarly as we have seen after all components are unit testing we will test the entire system with
all its components in action
(Refer Slide Time: 08:37)

The nest type of integration testing is the bottom up integration testing this strategy useful for
many of the systems it starts with low level modules with least number of dependencies.
Basically it use the drivers, test drivers it is called, if the integration can start with early in the
development process you don’t want to wait for the all the modules to be completed. As in when
the modules are there we can write the test which is called the integration test for the completed
one and instrumentally we can close all the modules, basically advantage is that will lead to an
early detection of interface problems and these problems can be isolated very easily disadvantage
is that may have to deal with many drivers and we have to use it for carrying out different
strategies and time consuming.
(Refer Slide Time: 09:43)

And we also had gone through a bottom up integration testing example where higher level
module J and lower level module B and C are there, so basically we develop the test drivers for
B and C so we test B and C usually then we test A such that it calls B, so if any error we know
that the problem is in A or in the interface between A and B. similarly we test A and we develop
the driver since that it calls the C and it will be ever that has to the A or there are could be B and
C.
(Refer Slide Time: 10:40)

The next type of integration testing is top down integration testing in this strategy the control
structure of the system takes lead basically the control structure is developed in top down
sequence and this offers the ability to integrate the modules and stop down staring with the
higher level control module, that ever new level the connected modules at corresponding level
are integrated and connected.
As we go down the connection modules will be tested one by one we roll up there could be some
non existing modules also those can be exist with the stubs here we will call as stub. And driver
we use in bottom up and test ups we use it in top downs, so advantage is that look and feel entire
system can be achieved, that means user has an idea of what are the top level modules how it is
accepted? And how it is getting flow down into individual model?
That is the advantage of taking up to level integration, disadvantage is that impact on low level
modules may lead to changes in top level modules we don’t know what is the impact? And you
may have to wait for all the modules to be completed you can now come to a progressive kind
until otherwise the top level module is done, so that some if any may not too low level modules
are not come to be tested so we need a number of stuffs for every integration style.
(Refer Slide Time: 12:31)

So we also have to go through an example of top down integration where ABC modules are hate
higher level B is lower level, so A will touch it individually with the help of stubs or B and C,
test A such that it calls B stub for C and it is an error occurs we know that is a problem in the B
or in the interface between A and B. similarly while we are testing C stub B so that all together
we focus on C and it is error occurs that the problem has to be in C or interface between A and C.
(Refer Slide Time: 13:16)

So the advantage and disadvantages of integrating testing top down we will detail out in today’s
section, we also know that test drivers are not been made only simple ones are required as
advantage because the high level components that have been tested serve as the main part of the
test environment. So we don’t have a test driver we have only have a top level module,
disadvantage is that low level components not yet integrated must be replaced by stubs because
we have not done it or it is not integrated, so this can be expensive because we need to develop
the stub .

Bottom up advantage is that no stubs are required but disadvantage is that higher level
components must be stimulated by the test drivers. So user will not have any idea about our top
level modules look like how we can approach the integration testing? That is the disadvantage.
(Refer Slide Time: 14:30)

And also the importance of why we need to plan the integration so basically successful
integration with critical factors such as objectives, responsibilities and resource planning so that
we know at what stage what other type of integration we are going to do and how the
qualisiveness is going to be achieved. So basically the product of the life cycle or product
lifecycle outcome is purely based on the integration.
Form the customer asks track or progress of development he will similarly asked the progress of
integration, the first question I will ask you is are you able to integrate in first in the modules that
we have developed how is it going on? What is the performance of integration testing? Whether
you are able to integrate all the components because we always interact with the hardware and
the actual system how is the hardware software integration going on.
How software modules interaction behavior is going or the same? So how to start of an things
is an outcome is the integration testing, so definitely there is a need of plan for this aim because
it has lot of stake holders in today researchers, time, personal which are going to be identified for
planning that enable successful integration.
(Refer Slide Time: 15:59)

Similarly integration consideration that we need to have is that we need to have n understanding
of actual system decomposition, architectural considerations could be open or closed
architecture, integrated or modular integration depend on the type of system that we are trying to
do definitely the architecture of high level that needs to be considered for integration, and also
we need to have an understanding on the interfaces.
All the interfaces are associated compare types of one lords or discrete that have been involved
all this will be part of interfaces signals, the nest one is the hardware considerations in terms of
hardware limitations or it could be anything so we need to have a idea of the hardware how it is
built? Because without the hardware we cannot be test many of the software modules because
title coupled will be hardware.
Last is being the software considerations you know that the software modules are to be very
cursive so that they can be tested appropriately on the hardware, some examples I will try to
provide interfaces that you are clear about sort of a used the interfaces could be memory port
such as rs232 or can or spiel are also examples. Next we have our timer, next we have our power
interface this is also very important.
Where some of the power of requirements had to be pattered such as it is so and so time the
budding procedure has to be completed and system should be operated in sort of time so there we
will look in the some of the reaches or any interrupts based on the power that also need to be
considered for interfaces, of course we have analog interfaces, discrete interfaces discrete could
be switches, signals, led all this will be discrete interface.
Then what are interfaces? It could be just like not a convertor of all it is gain this depends on
occur on a drive we have it could be two port could be a parallel bars or it could be normal of
interface basically the in target is the motor so how we are going to interface with it actually, so
it very important for the us to understand the system is motor based close look control system
definitely it tend to have a Quinter mechanism and understanding by the system testing, of
course we have the AC, AC motor interfaces sub title interfaces, so hardware related interfaces
you know that the hardware input output need to be used in the system integration test.

So that is also very important, software interfaces in terms of like any algorithms check some
computations all this will be multiple all this things will have a multiple comprehensive mode so
definitely we will consider the software aspects of the integration that is very important, so
(Refer Slide Time: 20:50)

 The last part which we had studied in the session is that integration test strategy, ad hoc strategy
is to integrate the components in order to which they are ready so this is not he good idea nut you
can do it you can afford to the beginning of the program, as a component has passed the
component test check if it fits with another already tested component and or if fits into partially
integrated subsystem.
You need to see whether the component you need to worry where it can fit? Whether it can be
tested? First we need to identify the component associated integrated subsystem a component
where it is going to fit and then accordingly the associate 1 needs to be addressed to make sure
that both are integrated , need to write stubs to help in integration stub is a skeletal or special
purpose implementation of a software company
Used to develop or test a component that calls or is otherwise depend on it, it replaces a called
component so it is of use the other the form of stub where we have seen in the top norm is
drivers where the high level components are going to drive the low level in a bottom up strategy.
So that was about the previous session, now we will go through the integration test strategy in
detail we know that stubs and drivers are needed for integration test so it is nothing wrong in
having both actually again it is subjective.
We have to take a call depends on the complexity of the embedded software system elements we
can have bottom up as well as top down approach. So it will again dependant for larger systems
where we have means of code definitely we need to divide the entire system with a several
systems those each several systems can be addressed in different strategies in terms of
integration.
But all that have to be planned appropriately either it could be bottom up or it could be top down
or some sort of we don’t need to have integration at the top down or bottom up we can go for the

big bang integration process entire group of modules can be tested all together that strategy also
we can adopt that is in subjective. So we have gone through that various types of integration
strategies.
So we will try to compare this based on the book mayors 1779, so that table basically list out
different types of integration in strategy we will not focus on those and reach and modified and
reach type of embed integration testing so these are other type but where we have used or it is
not required to be understood in this point. So you can see the features that are listed in the left
side of the table and on the right hand side we have different type of integration strategy bottom
up, top down, modified top down, big bang.
So basically it identifies integration when it should be done so bottom up early we have talked on
the modified top down early, bug bang the latest stage because all modules have to be completed,
time to basic working program very late bottom up early, early late so here to have it a matured
working program the bottom up will be related stage whereas in top down early stage you can
identify the understanding of the working system.
Component drivers needed for top down we need sorry bottom up we need not for the top down
modified top down can also have test drivers or component drivers which are also called, big
bang processes have drivers stubs we need we know that needed only for the top down approach
not for the bottom up, so work parallel in the beginning there issues at the medium bottom up top
down below modified top down as medium.
And big bang is very high so that means parallelism need to be worked out ability to test the
particular parts what you mean by difficulty so bottom up is easier and in top down it is very
hard and modified top down it is easy and big bang it is easy. We need to path plan and control
sequences are easier in bottom up because we have the control on the smallest of the components
of the entire system and it is very difficult for the top down.
We don’t know that exact sequence and we need to go through each of them big bang it is easier
so these are some of the matrix they have compared for integration strategies, modified top down
is something like a mix of both top down and big bang so they adopt some of the medium size
complex embed systems that is where they use top down testing. So that is about the strategies of
different integration types.
(Refer Slide Time: 27:18)

Now we will try to go through top down advantages and disadvantages basically we have to
called up to an in terms got from the web it is basically shows the advantages and disadvantages
such as in top down the major defects are more likely at the top level module top down is
beneficial that means we have more issues in the top level then it is going to be advantages,
getting a input output functions merely can is fascinating.
That is as long as we have developed the more input output functions obvious to you it of the
approach is the beneficial, the top down approach is beneficial it will use out the integration
strategy of top down so early demonstration of made functionality it will be helpful in
highlighting requirements issues and in boosting the morale. You have more clarity and idea of
what the system is defining and your understanding will be better.
As you progress on the integration testing of the type top down approach because you start with
the main functionality of the top level modules, now let us look in to the disadvantages of top
down it is too much for the stubs you know that top down stubs if low level modules are not
ready to not enough stubs the may have to leave it with test stubs for the low level modules and
also another problem is by developing the stub.
If it is more complex it can inject some additional issues or in to these errors are disadvantages,
defining stubs can be difficult in some code in yet t be done so we are unclear about what exactly
is going to be integrated but we are in the knowledge of this functionality based on that we are
going to help this stub but sometimes it is difficult to develop a stub. Here is the code is to be
written it may be impossible accurately to read word is test conditions, if there are failures
suppose we started top down testing and we founded that there is a issue in the system.
It is very difficult to figure out or isolate where the test issue is there and how to reconstruct that
so some issues like intermittent issues are very difficult, so that is disadvantages of top down
testing. Some observations maybe impossible to so we cannot observe some issues of the top
down testing modules encourages the idea that test and development can overlap. That means,
the top down testing have a close relationship in the within development aspects,
So basically it encourages the ideas that understand development can overlap encourages
differing full testing of modules because low level modules are not computing so we are leaving

the high level modules and basically we may not be completing the integrity process it is
partially done partially passing so of them low level modules are to be explode so thing are
difficult in the top down integration testing.
(Refer Slide Time: 31:38)

The next one being the bottom up testing I will correct it quickly so what we do here is we know
that test drivers are needed for the bottom up testing and advantages are such that helpful in
errors are likely deep down in the dependencies structure, if the system implement of the thing
that it is more complexes at the deeper level especially on the device drivers of the modified top
down then it is better to take up this activities.
It is going to be advantages the bottom up integration testing, rest conditions are easier to create
basically you are lowest of the modules to understand and create facility, observation of test
results is based on the easier that the ideal effort in creating stub modules you don’t have issues
in creating the stubs, disadvantage I
that need to create driver modules but arguably easier than creating stub code and tools like some
j unit help but basically driver module we need to create so you need to understanding of that,
that is a so it is easier in creating a stub because we can see the code and we van drive he values
what we need to develop the driver. The entire system is subjected to its smallest amount of test
it means we are focusing only on the smallest part of the entire system.
Because the top modules are included in the tests at the final stage we are not addressing at the
higher level incrementally we are testing one by one on the bottom up low level modules and as
we go in to the higher level we are going to test at the high level tests
(Refer Slide Time: 34:15)

So those are the advantage and disadvantages of the bottom up and top down integration testing,
now there are other methods of integration testing of the touch basis what are those? First on
being these are all basically referred from sources how they are aware from the industry in terms
of defining term or creating plus every industry typically different than initiate than actually
being lot of based on the weird in complexity skills and compartments rules so many aspects are
there.
All these are to be considered as referred to normal as types based on that they will decide and
they will define a name for the type of a integration testing strategy, next type of integration
testing is hybrid testing and it is also called as a combination type combination integration
testing, so it is clear that judicious combination of stubs and drivers from the use to integrated
approach.
It may not be purely positive to stubs on the you can take integration or may not be possible to
use a driver alone for the inside drivers aspect sometimes we have to mix up both based on the
complexity in the kind of system that has been integrated and tested. so we need to give a
judicial approach to combination of this we need to take care of this based on the tip boxes to
that we use.
So that is called high build test strategy which is this both, as of for some groups of modules you
may want to take non iterative approach and just consider testing that all at once which means to
chose the big bang for our integration process, some of our groups of the modules may not be
able to take up to the right relative to the bottom up and we can take separately as a one shot
testing.
But when we are doing the other dependant modules those kind of the things also can be done
depending on the type of modules that we have so this concerned a hybrid test strategy, so using
this approach there are various of potential criteria for how to group those modules so basically
hybrid test strategy is useful process other set grouping is an very important aspect in integration
testing.
We are grouping based on the pictures, requirements punctualities, performance etc so there are
different criteria that we need to follow for grouping the various modules, so what are those?

One is criticality you said on group of modules that provide the most critical functionality and
chose to integrate those part first that is we identify critical groups first which are very important
to testing very important part of the entire embed system.
First you broke it then rest of them will fall that is one of the deciding factor when the cost this is
also equally important look collection so modules dependencies on code low in dependencies
have and choose to integrate first, that goal here is to review the cost of creating stub code, so
that what will happen is we cannot be doing stubs because it is going to add a cost so integration
is based on how much cost for the front office stuffs.
So if we’re going to be too much then we need to collect such modules which can have a many
less dependencies on lower part of the code so that the stub mode we don’t need to have much so
that the past is appropriately taken care these two are very important here cost means no we
speaking of dollars is basically we have fault of course at the end of the day all it matters the
money.
But we look for the efforts how much efforts it is going to take and complexity or criticality we
saw some of the important deciding factors for identifying the test strategy like bottom up and
top down they have their own advantage and disadvantage where you have a system having
complexity is my suggestion such as close look, and more interfaces and larger systems outside
moderate large this kind of systems I suggest have a testability where it bases of both test stubs
and drivers.
Test stubs and drivers means top down as well as bottom up, so both being followed coverage
and are all were second aspects once we have that integration don with a satisfactory test
coverage and test reports for each of the modules automatically coverage process takes place and
wherever the gaps are there and you can fit in to any of the test strategies that are any system
strategy all can be taken.
It is basically we need to address the entire system from this aspect so that is where the hybrid
test strategy comes in to play before winding that we need to understand bottom up and top down
so let we have an appropriate mix of test drivers and stubs so that is why I think forward
(Refer Slide Time: 40:53)

So there are other types of integration which we look centralized integration this type of
integration is issued when central part of the system is necessary for the rest of the systems t
function that means without this central part nothing works that is heart of the system. For
example OS or a kernel so definitely we need to first address’s the kernel or the operating system
first that is centralized.
And surrounding is cemtralized part for our sub systems which can be tested subsequently, the
central part is necessary to run the but it is too difficult to this part with a stub, so you cannot
replace the OS with another stub OS has to be there or the OS won’t be there for testing so that is
the central part of the program of the entire embedded system, the Accenture of the system is
such that if central part of the system is developed first and made ready for production.
This kind of systems what they do is first they develop the kernel of thebe schedule the lower of
the OS and surrounding that they will increment the developed subsystems, so that is how the
architecture will be headed first so after that new modules or the subsystems are released to
upgrade this system or to add completely the updated functionality of the new functionality.
So that is how centralized integration is going to be done, but here also again centralized system
we will have subsequent close up system we can adopt either top down or bottom up or hybrid
whatever it depends on large the system is ? Or how complex the system is? So it is very
important.
(Refer Slide Time: 42:58)

So there are other types of integration testing just we will discuss one or two line for this here
integration the strategies used for systems with structure where you have libraries mid layer
lower level layers where the systems are there so this type of integration testing they use it so
interfacing only occurs between the layer directly below and the above so don’t talk about
bottom up or top down sort of things.
But each layer is tested in isolation using the top down or bottom up or big bang strategy so next
step is the integration of the layer according to a top down or a bottom up order the advantages
and disadvantages are same of top down and bottom up strategy the integration and isolation of

the interpretation is easier and therefore discover the causes of defects is also easier because we
have addressed the layers.
So based on the layer s different other layers are going to be integrated in testing. Next type is
the client server integration this strategy is used for client server architecture where you know
that database and the server and client will have all sort of things embedded architecture is going
to have this strategy will have more appropriation, the client is integrated either top down,
bottom up or big bang the server is substituted by your stub and driver.
We can use stub and drivers to repair the server for the server the same approach is used for
testing server itself like top down bottom up and stubs and drivers are developed for the client,
finally server and clients are integrated collaboration integration so basically collaboration is a
collection of objects which work together to achieve a common purpose or in sense realization of
useful means studying of useful and test cases carried out of test cases they are test results, the
system supports many awkward because it has to reveal many schedules many objects belong to
more than one collaboration because we have lot of collaborations there can used in many
scenarios.
So basically the collaboration is the focus here so choice of the collaboration will become the
necessity in terms of covering the computer system that is also collaboration integration I done,
so basically they use for object oriented systems or object based systems and which fully covers
the component and interfaces where the collaboration is made, this also have advantage and
disadvantage similar to top down and bottom up.
Where are interfaces are not clear dependencies are low something like a big bang sort of a thing
because most f the components are collaborated together and only when the collaboration is
complete so integration testing start big bang we can call it this collaboration kind of testing, but
it does not require full sort of integration facility and the new tests are enough actually for the
end to end functionality.
And the overlap of the collaboration pictures so you just say I am very subjective again to chose
what sort of a integration testing types. so we have studies bottom up, top down, big bang these
sort of type of integration testing’s top down , bottom up, big bang, hybrid, centralized, these
above fiver are very important most of them are used additionally we can use layer, client server,
collaboration, integration.
So likewise many types these are the main type of the integration types that can be looked into,
next once we have identified the integration all these types of strategies integration next step is to
identify the environment form the integration models.
(Refer Slide Time: 48:50)

Ho we are going to have so basically for integration test environment it is mix of components
unit level and system testing it is both it takes care write so definitely we need to have an
environment which supports both unit level sort of environment and system level, so we will
have an need of a test driver perhaps we can reuse the test drivers that was loosed earlier for
component testing.
That is why we told that these are component testing because for doing the unit level testing we
probably developed some test drivers those test drivers can be reused for integration testing, so
additional tools like monitors where we require to read and log data traffic between components
and all that basically why we are interested is so interface between these components and while
doing the interface definitely we need to monitor or the data is getting interacted.
So to understand the flow of data we need to have test environment identity different tools such
as monitors.
(Refer Slide Time: 50:06)

So integration tests environment before the software unit and the system integration a test but it
is created and is comparable to the test environment for the simulation model that means a word
testament to specify or testament which will have an environment which is going to be used for
unit as well as the integration process identify all the interfaces and higher modules and
necessary imports which can be compared with the simulation of the test environment.
In a prototype stage the best object is an executable version of a software unit set of integrated
software hat is developed on basis of the design or generated from the simulation model, so the
development could be based on the model or could be based don the code so we can develop a
prototype we can develop the integrated software based on the prototypes that have been
developed so far.
For the test environment and that prospect execution or executable version is will be used by the
integrated software so that integrated spoftware are basically developed this in the basis of the
design of the architecture of the embedded system, that is how the test environment test bed isd
h=]going to be formed for the integration.
(Refer Slide Time: 51:48)

 so the first step is to compile the software for the execution basically build the process of the
integration test environment, so step is to compile the software for execution in the host
computer, the environment has no restrictions on resources of performance and powerful tools
are commercially available basically we need to compile and post first because we have
developed the code in host we need to compile based on the standards this makes development
and tracking a lot easier than in target.
We have to show that we cannot afford to have on the scratch from the target only first host level
will get complements by compile and collecting all this thing formation and install this and all so
this kind of testing is also known as host kind of testing first we have to develop the host
environment and try to test as much as the host done will be target larger system, the goal of this
test tests of this hosts compiled software used integrated software used and verified according to
the technical design and validation and simulation module used in the previous stages.

Incrementally starting point is validated there is all the simulated environment that is done first
and the second stub is software use or software integration is to compile the software for
execution on the target processor of the embedded system, so far we have done on the post target
based environment I think we have studied in detail simulator emulator and all that similar to that
same strategy but here the focus is all the interfaces integration of different modules.
So second is basically we are going to develop for the target and before actual execution of this
software the complied version can be executed and emulated of the target processor, you know
that there are emulators and with the emulators we know we can assume the code behavior and
the function of the code and all this at the system before actually we execute the simulator may
run on the development system or on host computer, so the chances of the emulator can also used
by the portable systems. So goal of these tests is to verify the software we need to execute
correctly and target the processor which can be software if compiled on the host should work
same way and has been tested on the target systems this is where it s very important n this
environment identified and used.
(Refer Slide Time: 54:46)

So there is a cable here based on the hook simulation level for the software unit and software
integration basically this basically identifying based on the test but actual basically half of this
doing the tests so we have embedded software and what sort of a processor and what can be
tested on their simulation and this one based on the simulation process, the software we need the
software integration.
So first it will be tested on the host as an experimental basis and the processor we have not going
to use the target processor we are going to use the host processor such as six because most of the
personal computers will have Exide this six structure but the tools will support what are the
comparability on the target system? So rest of the embedded systems is simulated apart from the
experimental course.
The second type of testing unit or integration is target than actual environment that will be target
environment there we use the emulators and rest of them can simulate so this is how the test
environment can be brought so but both the situations the test must or should give a simulates for

the input of the objects and provide a features to modify the test object and to record signals
basically we validate signals inbounded we should support this environment and basically this
can be done with the help of break point storing, reading memory and calculating variables all
debug steps and all this can be time machines performance analyzes all this can be used there
should be supported in the test environment.
(Refer Slide Time: 57:17)

so continuation of integration test environment in the hardware software integration test the test
object is a hardware part on which the integrated software is loaded the software the software is
incorporated in the hardware in memory basically a flash, the piece of hardware can be an
experimental configuration percents hard wired circuit board containing several components
including the memory.
So hardware is a focus here hardware software integration to goal of the hardware software
integration is test to verify the correct execution of the embedded software on the target
processor in cooperation with surrounding hardware so that is what will be elaboration of
working of the hardware software integration because the behavior if an hardware is an essential
part of this test it is often referred as hardware in the loop.
So those are different types of in loop situations software in loop simulation in loops hardware in
loops basically these are integration strategies that are to be introduced used so that is there to
identify the test environment for those hardware where we need to have an integration
continuation of integration test environment the test environment for the hardware software
integration is interface with the hardware depending on the test object and this degree of
completeness and the following possibilities in this
(Refer Slide Time: 58:53)

Basically it offers inputs stabiles it signal generators output monitoring with oscilloscopes or
logic analyzer combined with data storage devisers in circuit equipment to monitor system
behavior on points other than the outputs so these are some of the environment dependant tools
that can be used then simulation of the environment test object in a real time simulator so what
we do is basically we have a test hooks or interfaces from the target systems with the help of host
book’s this tools will be plugged and logic analyzers oscilloscopes or signal generators that can
act as an input or output to conduct the test that is what the meaning of test environment here
(Refer Slide Time: 59:50)

Integration test environment so in integration test environment basically we identify all the
stimulated inputs and in focus on the captured output and tools that are used that are going to
used for capturing output so that we end to end the part is being verified so that is the focus of
integration test environment so we b will continue the test integration and integration
environment in the next session and we will try to elaborate more on the integration environment

and generating test cases, example of test cases and how we can generate and we will also try to
understand the integration test etc in the next class.

