
Embedded Software Testing
Unit 3: Static analysis and core reviews &

Metrics
Lecture 6

Seer Akademi – NPTEL MOU
Yeah Hello Welcome you to the next session of Embedded Software Testing. This is unit-3 the
last session of this unit - lecture 6. So, where we go through some of the software metrics and
books the tools that are used it is part of the static testing. And this unit is about static analysis
core reviews and metrics and we know that in the last session revealed about
(Refer Slide Time: 00:37)

The metrics,
(Refer Slide Time: 00:43)

(Refer Slide Time: 00:44)

The importance of a metrics so what is the basis on which we deserve the metrics especially for
these software size. So, we know that we are not deciding the size by the code not only the code
but the complexity and structure of the code is also important time in the program that is
underneath the embedded software. That is how we calculate the metrics.
(Refer Slide Time: 01:10)

Basically these metrics are required on a day-to-day basis or week-on-week basis or fortunately
basis or based on the customer’s inputs is to make sure that how well we have done the program
testing or well the other on track. Well the program is progressing.
(Refer Slide Time: 01:31)

Likewise, so we
(Refer Slide Time: 01:37)

Also have test metrics lifecycle analysis, communiqué, evaluating, and the reporting. So, we
basically identify define then we will communicate the identified metric how it should be entered
how should be used then with the help of that we will evaluate after capturing the data, verifying
the data and the metrics calculated using one formula on the capture data. Then we will try to
report it effectively with various formats of either using the tool or with the help of any
documentation that is useful for the stakeholders. Similarly, we will take the feedback on stake
holders about the complete report of the test metrics.
(Refer Slide Time: 02:33)

Then we have studied about the software testing metrics types.
(Refer Slide Time: 02:40)

Manual, Performance and Automation testing metrics so, manual what we do is test case
productivity, execution productivity, defect and execution efficiency, severity about this manual
type of metrics. We collect in performance in terms of our execution some of scripting and that
especially the performance of the whole environment and technicality of the tested program will
be.
(Refer Slide Time: 03:08)

Reported and some of the important metrics also we have studied like test case productivity. So,
Total number of raw steps divided by number of hours that took to develop that will give the
steps per hour is what they discussed about the defects. This many steps can be developed for our
work so based on this it will be used for
(Refer Slide Time: 03:35)

Estimation and the improvement over the period similarly, we have defect acceptance in terms of
how many defects are valid and what is the total number of defects that gives the percentage of
defect acceptance.
(Refer Slide Time: 03:52)

Similarly, we have defect rejection total number of defects that are rejected divided by total
number of defects give a percentage of the rejection ratio.
(Refer Slide Time: 04:05)

Similarly, test case execution productivity number of test cases executed / the execution efforts in
terms of hours will give the productivity of the execution.
(Refer Slide Time: 04:16)

So, it is more productive if it is 100%.
(Refer Slide Time: 04:27)

 It is based on hours next one is the efficiency. So, efficiency is basically an important metric to
determine the efficiency of the testing team in identifying the defects and execution of the
software testing.
(Refer Slide Time: 04:51)

Then we came to defect severity index in terms of how severe are the defects are. So, this is
calculated based on formula which is cot index from the number of defects or that severity we
have a total number of well defects that will give the severity index and that can be divided into
two parts, severity index for all valid defects, and Severity index for open statistics.
(Refer Slide Time: 05:26)

 Similarly, the automation coverage in terms of total number of our coils percentage will report.
The example there are 10 test cases that are automated out of 100 tests then the coverage is 60%
sorry it's 60 test cases are automated in automation coverage, the total number of percentage is
(Refer Slide Time: 05:52)

60%. Then there are two important metrics in terms of progress on the embedded software
testing or optical viewfinder. So, actual effort- estimate effort / estimated efforts into 100 is what
effort variance. So, this should not be more than 5%. Usually the embedded industry variance
should not be more than + or – 5%.
(Refer Slide Time: 06:24)

If it is minus also it is not good it is plus also it is not good.
(Refer Slide Time: 06:29)

But this we have underestimated or we would have works with that shows the index basically on
how the estimation effort works and how well the program are coped up with those systems.
(Refer Slide Time: 06:43)

The next one is being the schedule variance. Here iteration for the duration actual number of
days - estimated number of days/ estimated number of days bounded into the percentage. So, this
also cannot be more than + or – 5% of variance because we cannot afford too much of an
overrun. Two important terms schedule overrun that means if it is -> -5%. Schedule under run if
it <5%.
This schedule is so fast that it is well ahead of what has been estimated. That is what it gives an
indication. So, that is what is about schedule variance.
(Refer Slide Time: 07:57)

We have the scope change so scope change indicates how stable the system is and how much of
scope change from the original scope. Scope can be increased as well as decreased depending on
the complexity of the project and overall the program went ahead in terms of development
testing. So, that is what the way we have studied in the lecture 5. Today we will continue on the
six which details about the metrics for automation. Automation scripting productivity,
automation test execution productivity, automation coverage costs compression all this will be
automated.
So, that is the sort of a thing we generate is typically based on some tools like mixing sea power.
So, we know that common metrics are used effort variance, schedule variance, scope changes.
(Refer Slide Time: 09:02)

So basically for testing we need to deal with the facts in terms of managing what are we facts
that we have considered for generating be test metrics, test metrics basically. So, for RBT, RBT
is nothing but Requirement Based Testing. So, we need to have a metrics ridiculously done in
terms of reporting for example how many requirements are completely tested without any

failures? How many requirements have failures? How many requirements are untested? So, these
are very important metrics.
It is not just enough to report a pass/fail count. Failure count, Invalid count, Not applicable
count. There are different sorts of counts which are a result of either re-excretion or six in the
software core or pics in the requirements. It is also important to highlight how many
requirements in terms of what are the sorts of requirements of functionality? There are executed
without any failures. That is what this indicates and similarly how many requirements really have
failures? That is what the functionality that is failing is?
That is what should be indicated using the metrics. And the other one is the other requirements
we move uncovered or untested is also another important element of the software metrics which
needs to be factored. Basically, this will be a building work for the components in terms of oh
well how solid is a context testing and strategy is and how well the product is. Basically, the both
are complemented each other and as a whole it should be very well supported with this sort of
the metrics.
So, how do we achieve with the comprehensive actually? Before relieves a degree software of
our customers we will build all this metrics in terms of reporting. So, what are the fixes we are
fixed? What are the issues we had? And how many programs? Basically he will ask correctly
how you tested. What is the strategy? What is the report that you have?
All this will be reported. And coverage is also one of the matrices so coverage will copy
requirements as you said in terms of the failures non-failures and the coverage etc, so basically
more thoroughly tested products will have more confident outputs in terms of metrics so there is
no surface at large.
So, definitely college is a strict concept because it has multiple dimensions including cork a very
detailed combination for all these tests design techniques coverage also requirements covering
more likewise we have various aspect factor for all the reporting. So basically at the end up
testing we will be reporting bumper percentage the goal is to achieve 100% testing requirements
or 100% requirement and at the end whatever the regression you do this should not be any
failures.
 So always the percentage should be decreasing that is what the aim of the metrics report well we
are reporting a band of artist’s end of our artistic inverse of our testing
(Refer Slide time: 13:58)

So let's say look at the some of the example for the various charts that organization uses in terms
of reporting the facts and the software metrics, you can see an example is basically being
provided by mix black account setting services an example again, so nicely it is presented in
terms of requirements are in one column and the current progress is showing in terms of
coverage it is this table talks about requirements coverage by area currently untested tested and
failed tested and passed.
So altogether the leftmost column should be one hundred percent that what it aims for right. So
what are the types of requirements or categorization of the requirements but it looks forward.
(Refer Slide time: 14:55)

When is our functionality that means requirements in terms of functionality how are they tested?
What are the values for other puzzles? The next aspects are something like usability how useful
the product is comes on usability aspects then reliability requirements then we have performance
requirements, then we have instability requirements so all this categorization of the requirements
you cannot anymore like performance, performance article, performance again you can sub

categorized timing, speed memory likewise communication also one of the requirement
functionality or requirements category that you can have for all these here to report on a total
saying that how many are currently being untested? How many are failed? And how many
passed?
Here in the first one you see function there are a seven percent of the total number of a test us not
being tested, there is ninety-three percent that have been tested in that three percent are failed
ninety percent is passed, similarly next one twenty-five percent untested seventy percent failed
fifty eight percent passed.
So basically all the facts in terms of requirements it will bring out, so very nice way of providing
the report. We say the metrics can be factored and presented so that the customer and the higher
program management will be aware of what is going on in the software testing project it
basically use a trend.
Next one is again from the same have said very interesting way of for presenting V the
representation in terms of all it's called as a trend chart also called as a burn down chart that
means how well the program is progressing? And where it is going to end? So what is the trend
that is what is happening in terms of various metrics that are going to be that are being captured
during the test execution?
This is reported using an excel sheet or there are several tools / be used for reporting the metrics
you can see so it can be represented by anyway but here our example, this figure talks about the
bugs open and relations how it is being rendered for the particular duration, so we know the teeth
at the end it is here over we want to reach it by the current trend, so 9\5\2009 was the last date
and the program is being reported every week starting from 719 the program the test program
was started on cyanide to and the till 8:30 august 30.
This was reported and it was ending on 9\5, so you can see there are two colored graph or the
dotted lines the red one being total opened bug open and the green being total resort that means
how many bugs on the particular day are open and how many bugs have been closed see finally,
we should aim for the complete bugs closure that means the green should meet the red so that is
what the trend should end with testing or MD program.
So here there are total number of normal and then 110 bucks of total bucks are projected and
start of the program so there is a zero bug and the next week so we have about you have to put a
cursor here and move it and said about 30 bugs are opened out of which still it is zero no
resolution or bugs are still open and during the second week we have about 50 bugs that are open
and you at the same time there are about 10 or 15 bugs have been reserved.
Similarly we have one two three fourth week about 70 bucks have been reported and about 60 to
70, 50 to 60 bugs is odd, and in the fifth week we see about the 92 bugs have been opened and
about 80 bugs having 70 to 95 having closed our resolve those bugs are resort, and in sixth week
we have about 110 bugs and bugs are already open that means testing is done but it's not fixed,
because not all the bugs have been resolved sorry about 90 bugs are they still and in the end
when we reach the milestone or in the last date we have 110 bugs there are being resolved this is
all the trendsetting trend set or trend chart will be drawn, you can clean these details using an

excel sheet, excel sheet we need total number of open bugs total number of evolve and we need a
date and the upper limit of for the right hand side in terms of goggle references.
So with the help of that excel sheet there are formulas we can apply and draw the chart, of course
there are different types of charts it is up to the user or the test manager or the test lead how we
can present it so that it is convincible to the customer and the higher program management.
(Refer Slide time: 22:13)

So this is a trend chart at the first one the next one being the burn down chart that means this
basically talks about the burn down of the program how I am going to meet on a given deadline,
you can see an example here of take tasks as test, so there are hours like 250 hours remaining and
25 tasks are to be executed, how I am going to reach it? so from the I will start from the left hand
side with their total number of allocated hours.
And as I progress my hours are going to decrease accordingly the tasks also expected to be
reduced so that many tasks we have reached and when we are left with they are zero our task
also should be reducing on the downside that's what this burn down chart will be prepared. This
is also being developed using an excel sheet here you can see on the horizontal axis from a day
zero to21, how the burn down chart is being projected are in terms of day.
And on the column side we have two columns from remaining a hog and on the right-hand side
the number of tasks remaining and then completed task, so you can add as many as a metrics into
this for about 3 metrics you can see one being the green one which is nothing but the ideal
burner. That means from the beginning how are we going to burn down towards the end that
means how are we want to complete the program on 21st day what is the ideal burn down chart
should look like and this one the arrangers sort of a column is the completed tasks.
So on each given one day or maybe alternate days or a week there are number of tasks that are
going to be completed and that will be highlighted in this color so all together those tasks should
accumulate as 25 and the blue ones are remaining reports at least we have a total of like a cocoon
the hours and you can see the variation finally we are left with almost zero it where should be
done well before the day 21 and light blue and is the remaining tasks so from the day one on
there is zero today we have all the tasks remaining.

And we have the full time available as we progress the task should reduce as well as the day of
the remaining time we will also getting reduced that's how the ideal burn down you can see, for
example you take on day eight so on day 0, 250 hours are left and task remaining are above 25,
so this is how we are going to develop the burn down chart and you see an example day 8 we
have complicated about how many if I draw in the right hand side, one two three so about three
tasks plus we already computed on day five one task and day 3-1 task so three plus four plus, so
that means about five task have been completed.
On this data day 8 so you can see the total number of tasks from 25 to 20 it has combined,
similarly on day 15 suppose oh so sorry okay on day 11, 5 plus another 4,9 so total number of
tasks should become about nine this is what you can see 9-25 about a 15 tasks are remaining, so
been while for executing or doing a task we have also consumed some effort alright so the effort
also accordingly has come down.
So remaining effort on each day and they each reporting day you can see it is getting reduced it
taken depends on the resources how much effort they have put whether resources are on vacation
and overall program you can see they up and down are common but at the end of the program.
We should make sure that we are going to reach the tasks completed as well as the hours well
within that the effort hours whatever we are going to going to consume should be well within the
range here in this example.
We should not consume more than 250 hours and we should make sure that when we reach 21
days we are done with good defect asks, so three parameters are important the duration the effort
and the number of tasks. With these three parameters we are going to report the burn down chart,
so this is basically being done with the help of several tools or a MTP or Microsoft Project man
or excessive so developing that and going to be embedded software testing but typically these
parameters are used for reporting the metrics of sample burn down chart.
(Refer Slide time: 28:38)

All you have to remember is two things we will report it for embedded softer testing then chart
and burn down chart these are important metrics this will give a clear picture of where are we
heading.

(Refer Slide time: 28:54)

The next one being the metrics capture and tracking tool, what are the tools in general reviews?
as I said there are several tools exist in the embed software industry or that could be excel sheet
MPP or any other capturing and tracking tool like we have a RT, RT which gives a percentage of
how much is the text have been gone past and failed we have LDR ray and we have vector cast
likewise there are main tools cantata like this.
Let us look into some of the common web base tool easy to use and maintain in general they
follow for the applications close to our test link and bugzilla, test link is for test the defect sorry
test management in terms of articulating the text metrics and bugzilla is used for defect tracking
and defect management purposes these two are these two tools are common tools in email
applications and any applications you take.
But these tools are not for testing or testing secretion, but they use for capturing and reporting the
metrics also for tracking, so test clips from a sourceforge.net you can go to back website or find
out or you can download can use is an open source as long as you are not using for commercial
purpose you are free to use that one and download and use it tall test cases test strategy and
execution given all that you can put it.
Of course it has a Configuring internal configuration management and you can use it for
plugging into the actual configuration also, and you can fine tune the tool as for move that is also
one of the good features of that. Maybe in the future session you can see this, I will try to go
through the sample test link and AD bug tracking tool bugzilla, so you basically it’s the web
based test management tool, you need a server and hardware to install and use that term he
knows. We will try to see a the basics of
(Refer Slide time: 31:40)

Test link how it will capture and the track? so it's an illustration of the test link, so for example
project test project, so this is the basic component in the test link, so test project will have this
many parts, now before that the definition of a test link or what it says about different things that
we need to use for the tool test case we need, so basically test case describe certain thing task by
our steps that means steps can be actions scenario and expected results will be part of that.
 So test cases are the fundamental piece of the test link test suit, so we need to have a Test case
we need to have a test suit, I will put next one to this each of this probably definition of the test
link tool, there's test plan, test project and user, so these are the basic definite of a test link tool
and so in that framework we are going to have it, so this framework will are going to have it, so
test case the describes the test case through steps.
Steps are action type scenario that suit so bridge gate test suit organize test cases two units will
organize multiple test cases and let it suit its structured certain specification into logical parts, the
next one being the test plan. So test plan is created when you would like to execute test cases, so
test plans can be made up of the test cases from crash project test plan includes builds false forms
and any of the binary is equitable environmental contrary the items all this can be probably the
part of the test plan,
These are assignments, test results, all the part of the test plan, next one being test project, test
project is something that like this till the end in the test link, so till that project is closed the test
project will be created in test link, test project I will undergo many different options throughout
the test link like them, because we are going to configure and reconfigure it again.
As I said it has an inbuilt term ocean mechanism so we can use that, this project includes the test
specification with the test cases requirements and all of the keywords, users within the project
have defined also, this framework will be assigned to different users, so users will have their own
roles and as per the role, they will keen use update in all that activities they do in the excel, so
that the metrics is collaborated all together.
 So, next one is being the user, what is the user? so each testing user has a role that defines
available test link feature, the user can be administration or other user likewise depending on the
role we will have a project team using the test link, so this is at test link 1.6 example what is

being told here, so this from the source forge, see test project has at a test specification
requirements test plan and any other customized fields.
And reports on the other hand will be used and we can import and export the compatible
elements into these framework depending on the type of import item or we can we form to
export the existing one we can do it then the users of this frame work will be using the test link
tool with this framework and the he will play around all the specification, requirements, test plan,
custom fields and reports.
And he can also attach digital items like in his scripts part of the test cases he can attach within
that. So all this will be part of the framework that will be used in test link. So that is the
important of our metrics capturing tool and the metrics tracking tourism is basically used for test
metrics test cases and test plan and reporting.
(Refer Slide time: 37:06)

So the next one being snapshot of what are the functionality that it has this illustration of test link
example, so what are the different roles and functions that the people will use a test link as a
whole team, so the users can be a guest, user can be a test executor, user can be analyst, user can
be a test lead or a administrator, so in the end of this complete test before work that means
basically backs up the complete database of the test link.
Also is responsible for creating home or adding the rights to the users, modifying the contents
and managing the users. All this will be responsibility of the administrator, and test leader will
define the test plan and he will add test suits to the test plan and he can create builds, define the
ownership, define the priority all this will be part of the test leader, and also he can write the
requirements or import requirements from the external entity.
And in parallel to test leader there is a test analyst, who can also write and modify the
requirements or import the requirements, further he can assign test case of the requirements
because test analyst and just leads are very important around people. Who can decide what test
cases need to be used for what sort of a requirements? And test analyst also will help in terms of
describing the test results and reporting it is also responsible for test specification and assigning
the keywords.

Test analyst is also can be called as test case writer or test case developer, first in here, it is up to
you how we want to define in your project. Test executor is an independent person according to
this you can have a same tester executing the a test ,so basically you will execute and describe
the test result, And the guests will have some sort of the wide axis you can browse the test results
and metrics .
 You can basically analyze identify the complete project details basically this can be customers or
PM right manager or any other interfaces people, such as QA quality assurance called deletion,
we also can be part of the test link depending on the project nature it can be done, so
administrator creates the test project test lead will import the requirements from mine or that the
member any tool produced one could such as doors from IBM or rectify.
And the tester describes the test scenario and context of the test cases and the alpha test
specification and he can also the test link also can create a regression testing aspects and tester
can be key in all the test cases and test leader will create this plan and you can add build any
script execution mechanisms working so few weeks ago.
Now the builders have developed the build the test link will add those builder and manager can
have a guest role as well to see the results of test cases mocking also, the another important
aspect of this thing is that traceability in dismissing here it's a very ,very, very important term
that has been used in embedded software industry disability form design requirements is a must
to be reported when we are done with the testing.
So there are several steps that are evolved for test link usage once all these test links are kidding
the execution is carried out and results are logged in and the project is being reported that is how
this tool test link is used, the next one being bugzilla.
(Refer Slide time: 42:23)

You can see an example sorry a test link only the tool is snapshot how it looks, you can see
whatever we have seen the roles in the previous use case diagram are the functional value here
you can see different elements that are displayed here on the left hand side you can see test
specification requirements, keywords, test project management, user administration, custom
fields etc.

On the right hand side you can see test execution, test plan contains test plan management, each
one has its own folders that folders can be customizable and these are the basic framework
elements form of part of the test link tone, so upon login these elements can be inspected
modified or reported are used so here you can see test link 1.7. 4 on had been has logged in you
can view this we can see this and add or delete whatever it is because here's the administrative
activities.
So the first step is already is logged in or clear to be project, then the second step you can see the
steps also being specified here as an example, a step 2 will be test project management in terms
of creating test project editing reediting test project as any of the user roles, step three is the
specification all the test cases will be kidding and in addition printing all that will be done, step 4
will have a requirements specification document assigning requirements to be test cases as step
five.
Step six will be key words management in terms of crisis ability, step 7 test plan management, so
test project management is different that test plan management test plan be should be having the
user roles and the environment and all that how builds are managed all this will be part of this,
step eight is test plan contents will be kidding, step nine is a test cases exhibition.
Step 10 is milestone management, weight management or release management, 11 into 12 are
executing and reporting the tests. So this is simple snapshot of a sample program using test link,
like this there are several tools and those tools can be used depending on the project and its
complexity that is being applied, so accordingly the reports can be done.
(Refer Slide time: 45:25)

So the next one being so it's not a defect it is the test cases and test management and the next one
being the defector tracker or the defect management it is also important along with the test group
of management, to identify the defects track the defects of closure report it affects to the
appropriate stakeholders, so that is why we use the metrics for capturing the defects and tracking
the defects, so it is called defect management.
So the test manager keeps track of following metrics of probably pick tracker number of or
opened effects per severity category at all times number of salt defects in a period or severity

category. you know the severity of the defects depending on its priority and you will report it,
and he will assign for the next fixes, total number of raised effects number of retests or defects of
immigration or retest the inscription are one, for defect to close it or report it total number of
retests, so all this will be part of the defect rack so test manager basically keep track of this
defector tracking.
(Refer Slide time: 46:47)

 So defect tracking his done,
(Refer Slide time: 46:51)

With the help of several tools, those tools are basically tied up with the test case tools, because
primarily because it can be imported, exported with the help of power tools such as a test link
and bugs are also can be reported accordingly. So one good tool this is also a open source tool it
is called the bugzilla, this can be referred and used from a particular, this also basically web
based on paper tracker.

Where you use an HTML or basic problem to report update and generate the bugs and this has a
server client link and all that with the help of web based application this report will be generated
to capture the metrics. so that is how bugzilla being used you see very similar to the test link so
both can be used in conjunction to generate and reporting testing metrics ,you can see an
example of how typically bugzilla is a likely reporting tool, so this is the way that it is being used
for vouchering the metrics, and it is also used for tracking on a day-to-day basis or depending on
the type of tracking and reporting mechanism.
 This also a web based general purpose bug tracker, so based on the HTML and apache server or
what all the servers we have been using, and these are open source tool as long as the
commercially is not being good it can be used as they open source.
(Refer Slide time: 48:59)

And you can see the next page a snapshot of bugzilla tool there are four windows that is been
shown here on my website that I have referred here, and you can choose the way how you want
to report a type of image? How you want to report? Windows are there, horizontal axis what you
want to report? Vertical axis what you want to plot of the floor? A line chart being used this day
to day progress we used for reporting with a number of bugs.
Which are in numbers on the electron more vertical axis the same report is being displayed
reported the help of a bar chart you can see on each day how many bugs. so there is the uptrend
so on this day is 110 bugs have in report and in 6 on the other day it is so 261 likewise, similarly
the bugs can be reported using the pie chart, where you can see a pie symbol having is a slides of
resolved in pink color and new bugs in blue color.
 Reopened the bogs in yellow closed in green and assigned, verified all this can be reported with
alpha bugzilla tracking tone. So this can be effectively used on a date by pinching in terms of
reporting, so users re-test lead or who are the people who are still report will collect the data
from individuals or individuals also keen as a user in the bugzilla tool.
So that there is no manual intervention much required just they are to open the tool and the key
in the data and the report will be generated automatically with couple of clicks, so that is what
about the bugzilla.

(Refer Slide time: 51: 13)

 So with that we come to the end of a test metrics capturing, now we will go through some of the
glossary but we were there using so far or we are going to use it this again from the software test
book embed software test testing boot just, set a collection of test cases test design technique a
standardized method of deriving this case inform open spaces, test strategy we know that a
description of the related importance of the system parts.
And quality attributes leading to this change about desired coverage, techniques to be applied
and resources are to be located. Test team the group of people responsible for we could evolve
work with this the square will be described in the test plan, testing technique a standard
description of how to coupon certain tests activity, test tool and automated the aid that supports
one or more perceptivities.
Such as a planning and control and specification building shell pines and data test execution and
test analysis, test type a group of a test activities in by checking the system on number of a
people quality characteristics test unit a set of processors transactions and functions will focus to
collectively this ability review the detailed evaluation of the testability of test basis,
(Refer Slide time: 53:05)

Test type, test unit, testability we have seen, we can see testing a process of planning preparation
execution analysis aimed at establishing the quality level of a system test where all products
produced as a result of a positive square. Unit testing is testing of individual software
components white box testing the test isn’t techniques that derive our test cases from internal
properties of an object using knowledge of the internal structure of the object. So with that we
have completed the unit three test metrics, static analysis and code reviews, we will before we
end, we will just a recap of unit three.
 (Refer Slide time: 53:46)

So what are the unit 3 items that we have covered so far, so we have covered static testing this is
definition static versus dynamic testing static analysis reviews inspection and the test processes
control coupling and flow data coupling control coupling is also nothing but and will control
flow and flow analysis, then we had gone through software complexity the formula are using in
MAC away complexity make a base after complexity.

So we took a few examples and with the help of a static analysis tool understand because to
hitting space or miss for its return etc we generated a softer complexity, and static analysis
reporting parts then,
(Refer Slide time: 54:40)

We had gone through some of the worst case the execution analysis or aspects and tools that are
used in terms in terms of reporting the definition worst-case execution time and we had seen a
stack analysis and stack overflow, coding standards common objectives guidelines, reviews
inspection process, program inspection, program walkthrough and review process peer review
processes, what are the types of review process through offline walkthrough inspection?
And test metrics we saw in the today's initiative class, life cycle metrics types, or depth of
different metric types and metrics life cycle, test metrics and reporting it and we also touch based
important metrics details, test case productivity, defect acceptance, defect rejection, test
execution productivity, test efficiency, defect severity index, automation coverage, effort
variance, schedule variances for these are some of the important metrics that we had spoken, so
with that we come to the end of unit, so we will start the next unit which is nothing but the
software integration in the next session.

