
Embedded Software Testing
Unit 3: Static analysis and code reviews &

Metrics
Lecture 5

Seer Akademi-NPTEL MOU
Hi all welcome to the next session of our embedded software testing that unit 3 series and the
lecture 5 and unit 3: this is about static analysis and code review & metrics, and reveal more and
study more on the metrics.
(Refer Slide Time: 00:26)

Also we will try to recap what we studied in the last class.
(Refer Slide Time: 00:35)

 So we go on throw the coding rules, this is one of the important static annalistic. There are 10
golden rules by Michael McDougall, so those need to be up to time and reviewed and unleashed
the embedded software code.
(Refer Slide Time: 00:54)

And it is also important to know what should we be reviewing it, and at what stage. So all these
will be as per the plan, again is what we need to review, there are guidelines and rules and those
rules are all against the inch of the these artifacts in the embedded software life cycle, so
requirements, function specification, design specification have their own guidelines and rules,
and checkers also will be different and these life cycles we will have a transition criteria in the
terms of re-exit. So the transition criteria is need to be satisfied in order to, say that product is
ready for going to the next to the life cycle output.
(Refer Slide Time: 01:44)

So we have how much to review also is one of the product term, so there are different reviewing
a body like here level, self review, offline inspection, likewise there are many types of reviews,
and we will have software guidelines and rules, that is aims objective depending on the
complexity of the embedded software system. So that we will decide how much we need to
review.
(Refer Slide Time: 02:14)

(Refer Slide Time: 02:15)

Next one we studied about these program inspections, walkthroughs, and reviews. Basically
there will be a team involved in while doing the program inspection they will offset will be
given, set of documents to read and visually instruct before the meeting and the participants will
gather in the conference, meeting, the participant can be choose geographically who work, that’s
what we see in the industry.
So basically they meet each other, the objective of meeting is to find hour, but they do not want
to bother about the solutioning of the errors. That is how to debug and how to fix that in all work
and it is not part of this reviews, it just identifies the errors.
(Refer Slide Time: 03:09)

So In walkthrough typically a group of developers with three are four being in the optimal
number will perform the review against the subjective depending on the complexity. So one
participant in this it will be an author, so others will review again as projectors and have
conclusion error and in concern with the author of the program.
(Refer Slide Time: 03:35)

So there is a group code reading that is interior code set will be divided in to two group, and that
group will go through the code and they will discuss about the code issues and inspections
whatever they have done in the terms of procedures and all that, so they will flirt a checklist,
checklist is also called as a tool, so what the checklist will have is a inspections in the terms of
declarations comparing events, controls flow, the data flow, the input output of the program
interfaces all this tend to be checked basically.
 That’s what they do, and when they do a inspection on, there will be typically four to five
people, one of them will be called as what? Moderator, so these were primarily responsible for

all the activities and he also has to ensure the errors that are being corrected, I guess what is been
found as well in the conference meeting.
(Refer Slide Time: 04:51)

Peer review is something like he method, wherein the other equal programmers or testers
involved for evaluation. That means, group of people are at the same level in the terms of
development or testing against the each other artifacts they will do a review, and off course here
also checklist and guidelines are same as they used in the other review methods. Any
improvement also can be followed, so all the updates optimization lecture by peers, that will be
taken care as they bugs fixed along with the improvement.
So it also gives an insight into approach and methods that I have in the higher level from the
detection clear reviewer.
(Refer Slide Time: 05:32)

So the types of peer is, review process what we studied in the offline peer review, walkthrough
peer review, inspection peer review.

(Refer Slide Time: 05:44)

(Refer Slide Time: 05:44)

So basically the objective of always will be to evaluate the deliverable work product, to verify
the completeness, compliance, and find defects. Scope is to conduct the offline review of the
different products, it is the example I have put, it could be anything of the embedded software
life cycle of the product management plan document are the test static files etc. and the
deliverables is a part of the offline peers, lower level designs, test cases test plans anything that
can perform for this offline peer review.
(Refer Slide Time: 06:26)

And there is a four important of processor aspects. Entry criteria inputs outputs, and the exit
criteria each has its own transition mechanism in terms of deliverables of the outputs.
(Refer Slide Time: 06:44)

So next type of peer review is walkthrough, the objectives, scope,
(Refer Slide Time: 06:49)

 Entry input and output executed in our basically removed outside, that is needed to be identified
for this. So next one is inspection peer review,
(Refer Slide Time: 06:59)

Where referred in the earlier slide, a group of people will gather, they go through the artifacts in
the terms of big programs code the SRS, HLD, LLD, all together and try to come up with the
errors that are there in the executing program also suggest to improve in the terms of efficiency
of the program.
(Refer Slide Time: 07:25)

So these also have entry input and output that they given in.
(Refer Slide Time: 07:28)

(Refer Slide Time: 07:29)

That if we move to the next one test metrics,
(Refer Slide Time: 07:35)

Test metrics, basically test metrics is not just the launch of code,
(Refer Slide Time: 07:41)

It is basically based on the complexity. And the test how it is going to be conducted, and how it is
going to be reported, basically customer how is going to be satisfied all these artifact need to be
collated and identified in terms of its importance, to drive what is the metric that is good for a
particular embedded system.
(Refer Slide Time: 08:04)

Okay, so we will move to the next session with that background, so I will start with the test
metric. Here the object is the process defines the metric and analysis process for the projects,
support services, LOBs and organization. This defines it process; this process also defines the
performance models for statistical management of process. Objectives of this process are,
established organization metric objectives, aligned with the business objectives that employ them
to the line of business.
 The projects and the support functions level specifying the metrics data collections for the
mechanism, so basically it is to define the or establish the various metric that organization needs
for that particular environment project or the in made project that is falling within the LOB, that

is line of business and it is typically called in the embedded industries, that could be aerospace,
the automotive or it could be a such systems part of the main domain.
So the conductor statically analyses of the data that sub posses project, support functions, and
LOB organization levels, here sub process are something like, which are derived process from
the main process.
 Projects you know project and the support function something like we have a project content,
project need support functions in the terms of administrative, or resources, resource skills, hr
could be involved anything, all these matters in the terms of dependency or radicality for the
successful testing program, testing project I would say.
The embedded system projects are also have the life cycle of testing projects, so that is very
important to have, all these organizational aspects in terms of processor projector support
functions, LOB organizational levels where it is going to make some k decisions, to support
smooth functioning of the testing.

So all this will be artifact in the test metric, so that is one of the organization objective, then the
next one is established and maintain the connotative understanding of weak performance of the
organizational process and provide the process performance data base line and models. Establish
feedback mechanism and provides report to relevance stakeholders, that means for each of the
process that we have established they should be a good feedback mechanism, that will help in the
terms of correcting any issues that itself can have, that means we have a review process and
review process itself has some issues, some corrections are required.
 So for that how we are going to evaluate based on the feedback, the feedback will bring out
some of the improvements in the particular case and particular process that is been followed. So
that will be reported to the relevance stakeholder such as test manager or project manager it test
relate is the main stakeholder. So there are subjective provide data for processing improvement,
so this is not only enough to have , or to identifying the , this mechanism in terms of metric it is
also important to have some sort of data which can help in growing the project process, so that is
also one of the important test metric.
(Refer Slide Time: 12:53)

 Okay, so test metric again I will go through that and it is very important quantification. So
quantification of the data is nothing but the, the metric, but the metric is not just the life’s of
collides, life’s of collides is also one of the metric, here reliance of collides size of software is not
based on this, life’s of code, size should be subjective based on the complexity,
(Refer Slide Time: 13:21)

Structure of the program that is being used. So, basically attention is focused on control-flow and
data-flow complexity. Structural metrics are based on the properties of flow graph models of the
program. It is very important to have the complexity of the embedded system program and
embedded system testing aspects.
(Refer Slide Time: 13:44)

With the help of that the size of the actual metrics that is going to be evaluated in the reported
will be done.
(Refer Slide Time: 13:56)

So, test, metrics importance you know that very important to have metrics reported to type
customer and how much bugs have been fixed? How many are passing how many are failed?
How those fails are addressed? How they are going to be justified? How they are fixed in
different cases? So, what is the action taken? And what is the trend? So trend we will see in the
next slide today. So, basically the trend will give a clear picture of where the testing will be
going ahead. So, that is what it gives, the picture of the program.
 So, very important to have a defect metrics trend as the monitoring aspect of the test metric, also
it provides metric to provide an improvement for the current process, in terms of how much we
can optimize? How much you can improve etc.
(Refer Slide Time: 14:47)

e
(Refer Slide Time: 14:53)

(Refer Slide Time: 14:54)

Okay, the next one is being test metric life cycle, so test metric is a life cycle it again depends on
the particular project so this is been defined in one of the ISN general, I put the reference in the
bottom, so what it says is, there are four test metric life cycle aspects that will be delivered and
all that will be used so analysis, communiqué, evaluating, and reporting.

Okay, test metric life cycle analysis has identified operates what is going to be used, define the
metric identified, define the parameterize for identifying the metrics which are identified, so
these are basically first phase of the test metric life cycle, that is analysis life cycle, analyzed
phase. What we do first is, identify the metric to use, so what are the metric we used, we are
going to have just identify those, it could be a fast fail count, it could be total number of test
cases mapping to the requirements, it could be a defects fixed category like high category, low
category or defects of criticality or defects of inner issues likewise, so those need to be identify
process what I am going to accept.
 Then once I identify that metric then I need to define what that metric is going to have, suppose
last fail count, what is the last fail count? So you need to have definition of cross ways when
there test is being passed, when it is verified sudden expected results and actual results in the
aspect position are matching and it is define as pass. And those pass metric fixed or identified
and similarly it fail metric also can be identified and we need to define them.
 The next one being define parameters for identifying the metric identifier that means the various
parameters that are used for identifying in the terms of inputs are there transition criteria, that is
been forward. The next phase of the life cycle test metric life cycle is the communiqué; here
what we do is explain the need of metric to stakeholder and testing team. Basically who are
going to develop this test metric? Who are going to deliver the test metric? Who are going to use
it?
Basically testing team and the relevance stakeholders surrounding the testing team.,so those need
to be clearly explained about what we have done in the analysis, we have collated all the defects
information inputs of the testing program and that needs to be communicates, that needs to be
explained to the relevance stakeholders, because they are going to develop it or use it, whatever

has been defined, if we equate the testing team about the data falls need to be captured or
processing the metric. So we have defined it, we have identified it, how we are going to do it? So
all this how we need to be clearly or told to the testing team, that is very important, so this is
what we do in the communiqué life cycle part of the test metrics.
 The next one is the evaluating. So what we have done in the communiqué is, we have told and
start the activity of a metric collection the metric usage and all that, so once we have the metric
available that needs to be verified, that needs to be reported appropriately I mean report it in the
next life cycle part, for reporting before that we need to have appropriate calculation in terms of
percentage calculation, it could be trend updates any formula is to be used all this have to be
done.
 Because usually this will be done at using automated reporting, automated way, so how they do
usually is in excel sheet, so excel sheet is a very good tool to enter the terms and reporting the
artifacts, so all these will be the part of the capture verify and calculate the metric, so verify also
is one of the important aspect, why because this is been captured rightly and correctly without
any errors, so that is also important aspects.

Basically what we do is, we will evaluate the captured data and verify against data is been
correctly captured and we do a calculations which will be, which will help basically reporting the
metric, usually we use a different tools for capture and the calculation, The final life cycle that is,
the reporting. So what we do in reporting is to develop the report with effective conclusion, that
means we need to present it properly so that the customer could be higher managers or it could
be any program management team, then we need to be knowing what is going to happen, what is
going on? And what is the defect? How is it been captured? How they have been evaluated? All
these aspects have to be presented appropriately.
 So we need to develop a very good report in terms of objectives, scope, description then we
should have a evaluating mechanism, what are the issues that are found to be testing and how
they have been reported all these, also we should end the report with the conclusion and
somebody saying that this product is fit for use or this product has some issues, why those issues
are there, if those issues are fixed or justified brought good to use, the product has major issues
or the minor issues, all them can be rightly reported, that’s what this mean.
Then it needs to be, once the report has been done, we need to distribute to the stakeholders and
respective representative, we can also have a distributed to developing team representing team,
who can take and look in to this and try to improve or fixed the issues that particular aspects, also
we need to, it is very important whatever the report we have been developed and reported, is
rightly understood and rightly been reached to the stakeholders, so how do we do?
 How we are going to do is by taking inputs the feedback from the leveled stakeholders, so that is
what we do with the report testing life cycle. Okay, so software testing metrics types, what are
the string model types that we have today for an embedded system project, we know that, we are
going to have different types of testing, so they all broadly categorized into automated manual,
white box, black box all this static analysis to be reviewed artifacts, all this will be the part of
one of this three. What are those? A manual testing metric performance testing metric,

automation testing metric. So we will study each one, what is manual? What is performance?
And what is automation?
So we know that testing can done manually like analysis, some of the assembly level debug or
testing cannot be possible to do, the dynamic testing automate evaluate,
(Refer Slide Time: 24:08)

So we need to use environment such that the environment is given and verified manually. So
those manual testing metric also need to be captured, also we know that the static analysis is also
a part of the manual testing. Where we do the testing without executing the program so that will
be the part of testing, performance testing, performance of the exhibition summary , exhibition
data, it could be an a client side, server side, and the efficiency all these are like driving
performance and memory all this will be separately reported in the performance testing metrics.
 The automation testing metric, so what we do is, we will capture and report the metric for the
automation, and how much is done? What are the artifacts? What will they lose in the automation
of the tests?
(Refer Slide Time: 25:20)

(Refer Slide Time: 25:21)

This type of study, software testing metrics detail okay manual testing metric will have a
productivity , test case productivity, test exhibition summary, defect acceptance, defect rejection,
bad fix defect, test execution productivity, test efficiency, defect severity index. So these are
some of the testing metric, so some of these important metric in this model explain you in the
next slide, so basically what it does, when we go throw the testing life cycle, here we do a test
case development, test procedure development, and test script development and test execution,
test exhibition, regression testing.
 All these so we will defiantly will have different types of artifacts accumulated in the terms of
test cases itself and the program underneath which is been tested also can be used. So test case
productivity basically how much productive that the tested team has? In the terms of developing
test cases, and test exhibition somebody, that means in the terms of exhibition how it went well
in the terms of how much time it took for a manual testing vision, so whatever result you get
always be part of this summary, so that also be metric side, then defect acceptance whether the

defects 100 defects reported, how many of them are really defects? How many of them are
rejected defects?
 That also need to be captured, that fix defect and the program has a issues and the issues have
been fixed, but the fixed is not correct, then the test execution productivity, how much
productivity the test team or the exhibition, it could be a resource or it could be a resource strong
human whatever it is, so some test may take few hours and some test take few minutes, depends
on the complexity of the type of design that have been done, any test efficiency, how he test
efficiency is, the manual testing, then the defects where it is and acceptance , and how previous
defect are, coming to next one performance testing metric, you have a performance scripting
productivity, we have performance exhibition summary, performance exhibition data, in the
terms of both side and server side, we can assume this as a target. Likewise you can apply use
this example that is been taken, then the testing efficiency of the performance testing.
 Then the performance severity index, all the performance type of testing will have to be
captured separately using the testing metric guidelines. So that is what the software testing
metric types. We will pick up couple of good examples of this metric, test case productivity. So
what is the test case productivity or total case productivity? So formula is test case or TCP, it is
called as productivity but total number of test steps divide by efforts into step hours, or this steps
or that we will use total number of sorry, the total number of productivity of the test case
development, that means there are number of steps, say 100, and effort took for that is few hours
that will be divided again that and that will be nothing but the step hour.
 Steps per hour that is what the test case productivity, So example it is given here, so test cases
explains 12345, so each one has its own number of steps 30,32,40,36,45, the total number of
steps are 183. So for example effort that is taken for developing these steps in eight hours, so
what is going to happen is, the test case productivity is going to be 183 divided by 8, what it is
going to be taken here in this formula and which is going to be 22.
That means the test case productivity 22 rounded of 23 steps per hours, 23 steps per hour is
productivity. So what way this is going to be useful in what way it will be getting used, so you
need to understand that, so there are different aspects that are important, why that is important?
Why this test case productivity used , productivity is important of estimation and confidence,
these three aspects are basically the driving factors for identifying the this test productivity, so if
the test case productivity is good in a next cycle suppose on the previous sector that means we
are improved, and if I take a new project or testing project has come it’s so complexity and
testing required, we know we have taken this much to develop the test and we will apply or
estimating that new project.
 That is a factor we will use it and again it depends on the complexity subjectively it has to take
care based on this test steps all that they have written, whether it is similarity or it is different
then what we done in the earlier project likewise, so this test metric is very important. And the
last one is confident, basically if you use a confidence are a program management and the test
management by seeing the productivity how much productive the testing team in the terms of
developing test case, so that is what the important of a test case productivity. The next type of,
(Refer Slide Time: 32:26)

Metrics is the defective, the defective acceptance. So we know that the tester test and report the
defects, whether those defect are valid or those defects are invalid, that is also need to be
identified from the developers or the tester, so they are written a test steps here executed the test
steps and it has failed, the failure could be here into s, the trailer could be there in the software.
 Their field could be in the requirement, or files could be in the design, whatever it is all are that
side, also it is important to know whether the failures are real failures, acceptable failures, or
there is a issue with the invalid test case design or test steps. For example suppose we have, we
know in the test case design we have a accepted results column and we have actual design and
expected result is spoken through the actual result has become false, so we report this as a
failure, suppose instead of mentioning it true , the test arriver mentioned wrongly that false, what
will happen?
 The actual report, the actual result and excepted result will match, and the report has non failure,
so what will happen is, this falsely reported as a power but there is a issue, so we need to correct
that as a non excepted failure, so this is very important in the terms of defect acceptance. So
defect acceptance formula is like this, total number of defects we have and how much of them
are really valid, for example we have, 40 valid defects against the total number of 50, 100,
becomes 80%. Right, so that is the percentage we are going to wrong, so this will give me 80%
of defect that has been reported or valid and 20% is a issue. 20% are invalid defects, that the
defects are not really genuine or there is an issue with a test case or reporting whatever it could
be or documentation so it is very important to understand the defect acceptance as one of the key
metrics let us to be reported.
(Refer Slide Time: 36:09)

The next one defect rejection these also one of the important test metrics, this will determine the
number of defects rejecte4d during the execution. That means the reported defects are not
justifiable or the issues that is found out in the requirement, design or not accepted by the
development plane, those acceptances to rejection ratio of the rejection percentage, or DR
percentage. So defect rejection is nothing but number of defects rejected, here total number of
defects in to 100. That is the percentage. So, here it is a valid defect it is defects rejected. So that
is what the percentage.
(Refer Slide Time: 37:04)

Next one is test execution productivity, this also very important testing metrics. Because this will
give you good estimation of how much it is going to give? How much time it will go to take? For
a given product having so and so steps, and having so and so test cases. So basically this test
metric use the test cases aggregation productivity which is further analysis can give conclusion
result that means we have it test case productivity in terms of hours basically or days it could be
so there are formulas here.

 Test case test execute the productivity are driven, total number of test case are executed here by
hours the total hours days into eight, so eight is what typically the allocated time in a working
hours of the day basically, so that got the optimal value they use, so where (Te) so where t is
humored, t is calculated as test cases, so the number of test cases execute at least once, the
number of test t of one is nothing but t of one is said to be number of test cases that we tested
within, with 71 percent to 100 percent of total test case steps, t0.66 is equal to number of test
case retested with 41 percent of 41 to 70 percent of total test case steps 0.33 will give you a
metric as number of test case retested with one percent to 40 percent of total T systems.
 Okay, so basically here idea here is, we should have executed the test cases at least once, it
could take multiple interactions that are 5, but typically the productivity is based on the one time
executions, so that in regression we do not want to put the feet, the executions as we did in the
primary stage. So that is what it means, so retesting aspects will be defined like this T of one T of
point 0.66, T of point 0.33, that is the percentage that is 33%, 66%, likewise about 1 to 40
percent of total test case time will take retesting, and 40 to 70 percent of total test cases will takes
66.6 as the test execution productivity. And ideally 71 to 100 percent of the total test cases will
take the productivity as one, so that is what says, how productive we have in the terms of
execution against, this is what we have a testing equations productivity.
(Refer Slide Time: 40:45)

Test efficiency, how efficient we are in the terms of executing the test and reporting the defects.
This metric define determine the efficiency on the efficiency of the testing team and identifying
the defects. It also indicates the defects missed out during testing phase which migrated to the
next phase, so test efficiency is nothing but DT divided by DT plus DU into 100, this gives you a
percentage vale, where DT is nothing but it is the number of valid defect identified during the
testing, DU is nothing but number of valid defects identified by user after release on application.
 In the other words, post-testing defect, during the testing we have number of valid defects and
the defects that are identified and still after these are the application, it is nothing but the post
fully defects. Suppose we have detected some few errors two defects in the pre-released base of

the operate testing and that is been fixed retested and it is passed all these as close and we have
released still there are issues which is UN covered during the test execution.
 So that uncovered position of that is nothing but thee, it is the efficiency of the tester and
efficiency of the testing life cycle it shows. So basically the number of valid defect if it is DT
equal to, suppose 20 defects have been identifier and they are fixed they are released and the
number of defects found out during the post-testing field on the user side, if we say suppose 10,
so what will happen is we will keep it as DU equals to 30, and we have DT by DT plus DU, if it
is 20 divided by 30 into 100.
 So something like 60 percent whatever it is. Right, That means it is two third of the or the 60
percent of the defects efficiency we have, that means we are efficient 60% in terms of testing the
product, still we have a gap of 40%, it is not 66 approximately, so still we have a 66% issue with
the testing, that is we are not efficient, so in the embedded industry typically the aspect is 95%,
this is what the metrics they follow, because nowadays it has to be very stringent and it
companies are not afford to reproduce, re-execute again the retest and all that, because it is going
to add cost a lot, so we cannot afford to have a any bugs are post-release issues. We have to be 90
above percentage in the terms of efficiency that is one of the important metrics. The next one is
a,
(Refer Slide Time: 44:52)

Defects severity index, I will tell you overall so you do not want to bother much about the
formula and all, this is basically
The severity of the defects that means you has I hope 10 defects. So all defects may not be very
sever. I could be major issue or minor issue or trivial issue might be having a category. Severity
in terms of how much it is going to cause in terms of damage to the product. It is going to have a
impact on the product function on the behavior so it could be a major or minor so each one will
have an it is own weight age.
Basically that weight age is what we will give you the index the defect severity index. DSI is one
the important software testing metrics. That is where in the industry metrics. And for formula is
like defect severity index is nothing but it is some of the index number of all that particular

severity. That the total number of matrix. One can divide the defect severity index in to two
parts. DSI for all status defects, that means all the status have been reported this value give the
product quality and test.
And next one is the DSI for open status defects. This value gives the product quality at the time
of release that means when you are going to deliver the product at that time we are going to have
the open status defects. Those severity, will be reported, for calculation if DSI which open status
of defects. So, only open status defects must be considered. So the formula is for that DSI is
some of DSI index of open number of defects for this severity. Here the total number of valid
defects. And that is what a DSI open severity index will indicate.
(Refer Slide Time: 47:54)

The next one is Automation coverage. So this automation coverage is also one of the important
metrics we have. So this metrics gives the percentage of manual test cases which are automated.
This we know things cannot to be done 100% automation. So we need to do a subjective
automation and subjective manual testing. So that is the mix of both. So how much percentage
we can add to automate. Because automation we do not have a human depends. It is done by the
machine.
And we know the productivity and coverage. So coverage is basically total number of test cases
automated given the total number of space into 100. Give you the automatic coverage. Example
if there is 100 manual test cases, and one has automated 60 test cases then the coverage is 60%
that is what the meaning of automation coverage.
(Refer Slide Time: 48: 55)

The next one is effort variance. This is one of the important matrices that is usually managers
they do.
(Refer Slide Time: 49:19)

Automation coverage we know that how much test cases have been arithmetic against the
manual test cases the next type of the effort variance. It is one of the important metrics that is
been used by the program management of the higher of basically so, effort variance is the actual
effort minus estimated efforts and multiplied by 100. That is gives the percentage. So basically
what we do is we know how much time how much effort it took for a multiple testing. It could
be 200 hours. This is what is estimated basically that means start of the program you know that
200 hours we going to take for a suppose so much of test cases and actual that will happened is
something. So what is the variation how much it is getting a variance it is nothing but actual
effort minus estimated efforts it will give you minus 20. Usually it will be more depending on the
projects.

Appropriately it will be done. So you had the 100. Sorry you had by 200. It is giving you 10%.
Basically minus 10% so, similarly if we have taken the actual value as 220 hours that case how
much it will be come? 220-estimated is 200 it will become 20/200 that is the 10% so effort
variance. So whatever the variance from the estimated value of the 10% the typical industry the
variance accepted it minus 10 to plus 10. You may ask question why minus 10 plus 10?
Sometimes what will happen is it will be overestimated because of the lack of knowledge of
something.
So but we do not take that much of effort. To be on the safer side what they will do it. they will
add some 5 to 10% of over estimation testing. So what will happen is over a period that will over
here and there. So maximum allot this only minus 10 to percentage it is what they various that
we can offered. That is what the effort variance is above.
(Refer Slide Time: 52:28)

The next step of metrics is schedule variance so what you mean by schedule variance. We know
here also estimation is there. So estimation is done into this typical estimation I am taking about
there are different types. In terms of efforts, in terms of duration both are very important. In
terms of schedule this is all schedule aspects okay, so efforts variance will talk about efforts and
duration variance.
We will talk about schedule variance. schedule variance is nothing but the actual number of the
minus estimate number of base in terms of percentage suppose or 10 test pr 20 test or the
estimate days is nothing but 20 days. And actually they took 22 days. So what is the schedule
variance? Which is also called as we assume actual number of days 25? We have to neglect that
with the estimate is 20 dived by estimated 20 how much it will come 25-20 is 5 dived by 20
nothing but ¼ or point 5. Right, this is 25% so, have a variance of 25% usually typical it is not
have too much of variance schedule variance. So but it have a limited or controlled schedule
variance so that is why it suggested to have a SV and EV calculated by regularly.
So that we know how much we are progressing. So these are very important aspects of the
embedded software testing. So usually 5% is what schedule variance also it depends everyone on
the complexity of the product etc. so 5% is what they allowed? During the point is very

important testing metrics. By using the process throughout the project in been as well as the
beginning end all the faces. So that is what SV and EV effort variance and schedule variance.
Repeated effort variance is the variance of the estimated efforts. Schedule variance is the
variance of the estimated.
(Refer Slide Time: 55:29)

The last on is scope change. This is the important metrics also. The metrics this one indicate how
stable this scope of testing. We know what is our scope? So vary to we knowing how much it has
to be changed from the original scope that is been defined the scope is increase or decreases
during the test pr after the testing whatever it is. So, how it is calculated is it is scope change.
Basically that is the metrics we are going to produce. Scope change is nothing but hope minus
hope divided by previous hope into 100 in terms of percentage.
Where total scope is scope+New scope this scope increase total scope-New scope decreases. For
example, scope change, so pervious scope change suppose can be done this scope. 10 scope
means I have 10 requirements to cover. And that total scope is 20. So scope change is to be
calculated. We have total scope minus previous scope 10/previous scope in terms of percentage.
How much has been written now. 10-10/10. Equal to 1. It is 100% alright. Yes, 1 into 100. So,
100% of this scope will change.
That means trouble something like that. So scope is increased right, it is previous scope was scan
and total scope at the end of the testing or it has to be changed it has increased 100%. It is scope
is decreased then it will be decrements scope calculation. Previous scope minus previous scope it
is scope decreases scope. This originally I start with 100 requirements. That is the scope to cover
in the testing.
And the testing let us change scope of the testing. So, the change it could be added new scope
requirements or added new test cases or decremented test cases or scope the scope decreases so
the scope decreases or the scope increases. So that is what the scope change this one of the
important test metrics. They use across. Oaky that is what the software testing metrics so in the
next session.
(Refer Slide Time: 58:42)

 We will conclude the automation test metrics.
(Refer Slide Time: 58:43)

And now we are going to manage how we are going to reported what are the trends charts, burn
down charts etc.
(Refer Slide Test: 58:56)

and with that we will complete the unit 3 session in next lecture.
(Refer Slide Time: 58:57)

