
(Refer Slide Time: 00:08)

The next session of Embedded Software Testing Unit 3 static analysis and code reviews, and
metrics, Today’s class is about continuation of the static analysis use and code review is Lecture
4. So before that we will go through a previous session what we have, we quickly so static
analysis is one of the important static analysis prospect.

(Refer Slide Time: 00:37)

So, stack memory has to be allocated statically by the program. And it cannot be underestimating
as well as it cannot overflow so, to measure that we need to the analysis. The measurements can
done in differ rent ways. So we need to be binary excitable map file. In the map file we can do
line analysis of the in terms of stack. I can be depends on the somewhat we are using. And stack
overflow ways one of the important session is stack analysis.

(Refer Slide Time: 01:19)

So stack overflow was varying to a correction of a machine exception. And unpredictable
program execution is a software exception likewise.

(Refer Slide Time: 01:33)

So an unintended stack overflow may occur during the execution of a program for different
reasons. The reasons could be a hardware failure such in the module interphone or the processor
etc. a software development there are programmer or developer would have introduced and in
own memory of such error to the programmed. That it would be in the software development
error.

An unintended software behavior that means software some issue suddenly it is unintended. So,
that is one of the reasons. Memory corruption, memory is not written properly. And a single
event upset. Due to us stack overflow would have happened. So likewise we have different
reasons for this stack overflow. This is to be analyzed.

(Refer Slide Time: 02:32)

So as per the ESEA guidelines stack overflow need to be taken care such whether the analysis is
non performed to different whether or not it is missed it to perform continuous stack that means
to building program or not. This continue monitoring of this stack

 Is used which will perform in real time when the program is running. It is a specific task
allocated for it tiny program or tiny strains of time. That can be used. And we monitoring
mechanism should be what the requirements are. The event that the monitoring takes the time so
overflow them accepted behavior should be straight and forward. That is what we earlier talk.
The next one is the spring’s time’s needs.

(Refer Slide Time: 03:19)

Is the one of the important aspect that many will not to or will not follow this will be done by the
IVNV the independent validation verification team. In all to check that the codlings have to been
followed. So why we codlings standard is important? There are high chances have been done due
to interptation are violation of the coding standards. Program can have bugs for all that there are
different guidelines and services so one of them have been highlighted here. And it is
recommended to you is since standards and tools such as checker and MISRA-C 2004 rules. So,
there are different types of standards and guild lines that it recommends.

(Refer Slide Time: 04:15)

Recommends symptoms of the complexity if the program it is poor coding standing can works
then more standard so, that it to have a standard.

(Refer Slide Time: 04:26)

There are common object of the coding standards, that reliability, portability, maintainability,
testability, reusability, extensibility, readability. That is very important. So, that the code is
maintain of them. So sample rules so we had seen.

(Refer Slide Time: 04:41)

Like we can I have multiples out line for single line red ability is lost and we cannot have
macros, except source control, identified should have been forwarded with the descript or
reaming full names. And the functional lines cannot we more than 200 lines.

(Refer Slide Time: 05:05)

Did you maintain and it scope of the identifier should be very clear so, that the declaration
should be declared in the smallest possible scope. And type case only use the required not always
and the precedence is one of the important aspect of the programming. A precedence rules of the
controlled. And increment and decrement of the rules could not to be used it is a sub expressions.

These are the one of the rule that we have seen in the earlier class. Today we will see about
continuation of the static analysis and code reviews. Okay, so, coding rules power of them it is
one of the good guidelines given by Michel mc dowel. He recommends 10 good rules if you
follow definitely your program is mature, or Trans of bugs or very much avoided in terms of the
trivial issues could have been proven in by the programmer of the coder. Okay, what are those
powers of 10? It is tried to understand restrict to simple control flow constructs. That gives
control flow construction of as simple as possible try to break a bigger complex programmers
into smaller constructs that is what it means. The first rules are about. Does not use go to
statements set jump one jump or regression? So it is recommended to provide these things.
Second rule, these are called as a golden rules by Michel mc dowel, so second rule is about give
all rule to the upper bond.

Definitely, we need to have for loops but with the fixed bond where it is going to complete or
where is going to end. For example, we have a loop I less than 0 I plus, plus it is not too be

completing here. More on I should end with 10 or 100 or whatever it is. Better to avoid any
expressions such as cost and value something like that constant expression. So this will
definitely, lead to an upper bond, an upper bond has been using for loops or wide loops. The next
golden rules do not use dynamic memory allocation after it is initialized. So, we know
initializing is important any variable are objects that are to be defined should be initialized using
the initializing function.

Once we have initialized the variable or memory or any program flow constructs. We should not
further work on the re initializing of the memory, especially that is what we talked about. So
better avoided this kind of a allocations. How much memory is going to take during the
programmed instruction? You fix it means initialization of allocate accordingly. So, do not use
dynamic memory allocation. But dynamic memory allocation is a big chapter, by itself
embedded software system. Some peoples are having memory allocation because they do not
know the behavior of the program.

So, especially, where they use speed possible code there is a free new and all that part of
dynamic memory allocations available. But it is recommend avoiding that much, and especially
after initializing of if it all using the dynamic memory allocations. Do not use again. So that is
what it means. Okay, the next one libel functions to no more that 60 lines of text. So you have
seen 200 lines in one of the guidelines, what Michal mc Douglas says it 60 lines is the
maintenance code.

Or a good enough number of lines for the embedded system function. Text here means an
executable some difference of code or executable object code. It is also called a line of code.
Lines of code could be having executable plus commands. What it he means here is programs so,
better avoided more than 60. Use minimum two assigns for only function of more than 10 lines.
So, if function is having more than 10 lines, minimum 2 assigns have to be there that means
every function should have 2 assertive statements, minimum, If it is more than 10 lines. That is
what was changed.

61 declare data objects and the smallest possible level or called that means we have a inner most
available of the scope we are going to defined with the looping function sub expression likewise.
Better to declare if it required to be used in that level. So use within that levels of scope any
declaration of the data objects. Which is going to hold the data? So you check these rerun value
all non complaints. You know void function or non void function. Void functions will write
nothing, it is 0. Depends on the system again it could be 0. Non void function will write any non
value. So, check the written value of all non void function and check the validity of all function
for this. So, it is a golden rule, very good should be applicable or any standards means the
parameters, what are you follow or we pass it will function the parameter 1 parameter 2 so like
this we have a declaration level parameter N is the declaration. And here we have written

suppose written is some int X could be a better avoid some signals, so suppose written as a signal
and the any picture either it is right way, it is getting done the value that it is going to return
especially, for where we have a written for some value. It is nothing but non void functions. And
also we need to check the validity of all function parameters that means the parameter is going to
pass and used in the function better to check it is slightly define and used so the next one is to
limit the use of three processor file inclusion and simple macros, that means preprocessor line are
there right, and any macros etc.

So all this you avoid and use only for file inclusions, includes for example, studio IO.H, and any
macro like define, debug could be true. So simple macros is and any inclusions, file inclusions
use it or limit it basically, not more than this actually there are number of preprocessors like or,
if, all that, try to avoid how simple macros for these case, so it is better inter ability and bugs are
less, they having a simpler macros, the next programs may need better documentary trend use
with as per the need it need the control of the developer or the re programmer next one in the
limit the use of point so point is very important aspects of the embedded system this to a
memory, where it is getting a reference.

 When it is getting used to try to use as simple as point as in the reference tries to arise variables
in all there. When it is absolute is necessary use it. Use no more than one level of reference is for
especially. We have the reference here to the point of that it used do not use more than one level.
For that, dereferencing of the so limited last one being compile with all one available in pedantic
mode and use one or more modern static source code analyzers. That is what source code
analysis we have seen we have studied like in terms of understand for C++ are poly space and
souse that and try to analysis ay warnings any violence’s for that and in additions very important
to have the compiler throwing warnings or info or error fixed that is very important. So we need
to have the complier giving the warning.

So we cannot disable that option will compile the warning could be a correstatical error, or
correstatical issues because complier would not care about that. What about the user as set that it
will going to do it. So better to take to all the warnings that is what it is pedantic mode you
means, doable it and it one or more static analysis to analyze any dead code is there complexity
of intro all that you taken care.

So that is what the 10th rule is. So this is what the classic coding rule. That is to be followed if it
followed an appropriately. Definitely, which follows program being having errors is very less?
That is what based on Michal McDougall puts is be taking here so that the end of coding rule
code reviews.

(Refer Slide Time: 16:32)

Now we will come to the embedded software, program reviews, inspection and process. This is
very important part of the static analysis this is one of the important topic for embedded software
testing. So it have right methods of reviews right inspection sod progress very followed so that
daring the review we will bring out all the program or any of the elemental of the embedded
software system.

So this is very important to have reviews inspection and process. So each development phases
the translation form in the previous class you know. And how you will move between phases we
will generate for products right, we have seen the entry and exists here. So each exit criteria we
will receive from a work product. So we know that we have embedded systems developed in
phases each phase will produces the outputs or any products or dry products from the review. It
could be any of the development phases. And this purely based on the translation of the entry to
exit.

So as we will talk about exit as an evident we know that some product is been done or delivered.
So that is what it means. This transition need to be tested. How we are going to test is this
transition is proper or not this is called transition. Or phase transition. We have several that it will
come out. That need to be tested in those are something like by documents or coder any of the
analysis anything it could be so all these need to be tested. So tested we will do with the help of
reviews or inspection of got through there are different types of reviews we will study that one
by one.

Okay, so we know that in an early stage of the development cycle majority of all the defects 50%
of the all defects comes from the requirements or the functional specifications. And the review
process should prevent the defect divagation. The review process we will prevent the defects at

the earlier stage. Cost of defect migration to the next page id must higher than finding defect of
the phase where it was introduced.

And the next stage, it can cost and the order of magnitude more than and does not to the stage
after that. Os we know every stage, we pass on so the cost will go high as we get more issue. So,
that the cost is maximized the error is just the structure of the product is deducted after the
product is to the customer and minimized with the deducted in the phase where it was introduce.
So better to pervilaized effect when it introduced or when it is reflected as you done. And avoid
or to reduce as much when it is going to the processor going to the customer. Okay, so we know
there are different phases of the life cycle of the embedded software system. Just it could be a
requirement specification, function specification, design specification, code, user’s guide, test
plan, test specification. These are typical embedded software system so we know that
requirements specification types the purpose of the requirement phase is to the uses of properly
understood.

Before translating the design in the requirement specification the purpose code performance of
the requirement is clearly defined expect that thing which performed against the user
requirements. So all this hard defects need to be reviewed. The next one of the functional
reviews specifications this function design use the process functional specification and designed
is the process function specification or design the process of concentrating this requirements
initially set of inter face specification or the function specification.

In the functional specifications the scope care test and performance criteria of the system in
terms of hardware of and software that may to be the requirements are clearly defined. So system
testing is performed against functional specifications. Basically this requirements specification is
either testing or accept the testing function specification which we will test of the system level
which is nothing but system processor.

So definitely there are products are buy products of these specifications that means too high a
review or analysis. The next is the designs specification. So the internal the design of the process
is system requirement into the detail set of instruct their data structure and data flows algorithms
anything it could be. So in design specification the more power of the typical solution of posing
against the exits architecture and application to need the system requirements of clearly
specified.

Compound testing is performed against the internal design. The architecture design or low level
design is also called as and the component testing is with the help of the code. Also it will use the
base with the help of low level design. The next is the code. That is the process the code is the

process of translate the internal design or specification low level internally specific set of code.
So what we are going to check.

Code is references. References there are data declaration issues, computation issues, comparison
issues, control flow errors, algorithms, calculation, control flows then what else interface errors,
input, output error, data flow, data declaration, references, all these are the part of the code and
check against that should be done when we do the review of the intended code the next one so
the user’s guide. So basically every software products that is delivered to a customer is the both
executable code and the user moment so basically executable binary they going to deliver. And
how to install and how to use the embedded software code on the target board has to be
instructed properly to the user of the system.

This is nothing but user manner. It is also called as you should be having the work instructions
how to use this. So this document is known as important manual code. So this code is important
like code it was it is quality is there significant factor the success of the success or failure of the
product. From the point of view of the user if the manual says something and the user follows
this functions and if does not works the really helps that the code is instruct is right, that means
some issue it is not been behaving what is the documented. So that is what been behaving what is
documented.

What is the document of the plan is required. Test where we know lot of the aspects in the test
plan. It has to take all these and who is going to test what is schedule what is the environment all
these will be part of the plan. Like tools coasted I mean the schedule all are going to take what
sort of a level of testing which going to become it help what tools likewise it is going to have.
Last one being the test specification of the test case instructs. Test cases are strategies all is going
to be designed, all is will be there that is to be reviewed or inspected using a process. That is
what the review has to do.

So these are the things that have to be taken care doing the review process across the life cycle of
the project. So basically why it is called, each life cycle will produce some sort of the output. The
output could be one of these requirements function specification, design, code, users guide, test
plan, test specifications.

Of course you can have more test reports, execution reports, process, metrics, etc. so, you will
take each one when you go through the next session process. Okay, the next one is how much we
can review. So the first one is what to review? The embedded system, the next one is how much
you need to review? I am going to review the entire requirement and I am going to review all the
metrics that are support the information for the requirements likewise. We are going to have so
we need to have a careful sampling it is called as sampling basically. Suppose for example, these

are specification these are the functional specification, we will going to sample using the
sampling criteria.

You should be defined during the plan of the testing of the development. Which it says some
supports 30% sampling which should be done that means there are thousand requirements 300
requirements, how to be sampling. You see that whether it is implies appropriately, with in the
assigned, or in differ module, as per the specification is as per the standard likewise. This is
basically from independent prospects.

Of course the development perspective that ever is going to develop has to do a 100% review is
called as self review. Self review has to be 100% and we have a clear review that is also should
be a 100%that 50% review means person A product will be reviewed by person B and person B
is sort of implicated by person A. so both of them are peers. To have an independency they need
to cross that against each outputs of the products so all these like designs specifications, code,
and code has to be reviewed, user’s guide has to be reviewed, in terms of sampling at the
different levels.

Of course we have a quality in a quality person is going to review based on his criteria based on
it could be in 10% 20% is again depending on the criticality of the program. Program is nothing
but the entire life development cycle or criticality of the level of the software. Whether it is more
critical safety contents are there security is all this chapters in terms of the review selection and
that is what the important for doing the how to review aspects.

(Refer Slide Time: 30:14)

Okay, coming to the review detail like, we have different types of reviews and different types off
program inspections and different types of walkthroughs. So what are those? Oaky and why it is
important? Why because not all testers of software applications reads decor the concept of the
studying program code as per the testing effort. Certainly is accepted. Because t is going to be
emphasize as a one phase of program inspections walkthrough and reviews. Definitely we had to
have a dedicated process for doing these.

Then only the important of the understanding the code and reviewing the code will going to exist
so several factors may affect the likely given testing and given actually reading the program code
the size or complexity of the application size of the development team. It time line of the
application development. All this matters, and the background and the culture of the program and
the test in team all these are very important in identifying the review process walkthrough the
instructions all this are important factors.

So basically this is not a computerized based testing. Of course we use some tools in terms of
identifying the reviews walkthrough set of that. But this is not automated. Generally the reviews
are not automated. Surely it is done by humans for human testing or you want to call. So no
automation is done. Here automation is not done means for reviews there is no tool in terms of
producing the review aspects. But once we have reviews we can have the metrics and category of
errors and all that using the excel sheet.

Or any tools such as maxilla whatever it is. So, human testing is basically called and inspections
and walkthrough in team of people reading or visually inspecting the program. With either
method, participants must conduct some preparatory work. Any method they can use it. But you
should read. Or you should visually inspect. That is what inspection means and walkthrough also
same thing. The climax is a meeting of the minds at the participant conference. Then the
objective of the meeting is to find errors but not find solutions of the errors. That is to test not
debug.

The primary thing that walkthrough the inspection does use first they will go through the or there
inspect the program. It could be a requirement or it could be a code or an execution anything the
part of the embedded system. So it is very important to have process in terms of inspections of
walkthroughs and basically at the end of their going to greet all the reviews we were done all the
inspectors we were as the entire participations comes us the objective is to be find the problem.
That is all and concludes whether the problem is rightly identified or wrong or not rightly done.
But there is no solution that is going to be identified. Just reporting have been inspected or that is
been reviewed.

That is what the aim of the next phase of the inspection of walkthroughs. So there are different
methods for doing this that could be any analogy method such as standards following or any
program process or we can have some criteria reading in the computer based testing. That means
we can have a checklist identified in a tool or excel sheet and against checklist that will be a tick
mark user will keen and to generate the report.

So that is a about program it could be a requirement a code it could be execution, anything. This
is part of the aspects of the embedded system. So that is very important to have process in terms
of inspections of walkthroughs. And basically end of that they are going to weight all the review
as we were as done at participates of this the object is to find the problem that is all. Conclude
whether the problem is rightly identified or not rightly done. But there is no solution identified
just the reporting of the errors.

That is been inspected or that is been reviewed. That is what the aim of the next phase of the
inspection of walkthrough. So there are different methods for doing this that could be any
analogy methods such as any standard following or any programming process or we can have
some criteria in computer based testing. That means we can have a checklist and defined in a tool
or and again checklist that will be a tick mark and non tick mark user will keen and will
generated in the report. So that is about program inspection walkthroughs and reviews this study
about program walkthrough.

(Refer Slide Time: 35:42)

 Okay, so basically it is refer form of part of software testing. What is says is a walkthrough, a
group of developments with 3 or 4 being an optimal number it could be more depend on the

complexity of the embedded system. They will perform the review. Only one of the participants
is the author of the program and majority other than the author. So one will have a author and the
other one will be supporting in terms of during of review.

So they will do following the testing principal stating that these usually ineffective in testing his
or her own program. So basically we do in a walkthrough a group of developers 3 or 4 depending
on the progress one will be the author other will be he reviewers. So that is what going to
happen.

So an inspection of walkthrough is an improvement over the holder test checking. Usually
developers used check by self review this is an improvement that we have seen now a days.
Inspections and walkthroughs are more review basically again because people other than the
programs authors are involve. Definitely it is going to be effective. The independent and UN
biased reviews aspect to the taken up other advantage of walkthrough resulting in lower
debugging. That means either corrections anything we need to do.

We do not have much time the cost will be less. And when there is a error form it is can be
located which sort of the code this error id there. This is the advantage of this inspection. In
addition this process frequently exposes the batch of error or a group of issue fallowing error to
be corrected in one sort. Whereas inspection if you do a computer based testing, normally it
exposes only symptoms of the error. It will just error it will not well defined the problem is. So
that is where the advantage of inspection is there.

(Refer Slide time: 38:26)

Okay, so inspection continuing that the program inspection is set of procedures and error
deduction techniques, for group code reading. Basically it will be read in a group. More
discussion of code inspections focus on the procedures forms to be filled out, and so on. That
means there is a checklist and review guidelines as per the inspections process will be taking
care. Here after a short memory of the general testing here we will focus on the actual error
deduction technique.

An inspection team actually consist of 4 people one of the 4 people is basically it is an example
of typical embedded software. Do not get bias take business and defined number it could be 5, 6
different on the complexity and the intended program. The less also so one of the 4 people plays
the role of moderated. The moderator these expected to be a combatant programmer but he or she
is not the author of the program. Basically he coordinates moderate and he need to be appointed
with the details of the program you knows whom to contact who is take over there? All these
information the moderator will have.

So the duties of the moderator will include distributing materials for the people and scheduling
the inspection and the inspection session. And he should lead the session. The record all the
errors static form in the session I assuring that the errors of subsequent and he should lead the
session. You should record all the errors that is formed so that the errors that are going to be clear
are not will be communicated to the errors. Okay, tools an error checklist for inspections data
represent compactions comparisons all it will be part of the checklist. Against that the check of
the programs will be done. So basically the moderator is like a quality controlling in a second
team member is the programmer the remaining team members will be the program designer or
the different programmer.

And test specialist also can be involved. The moderator distributes the program list and designs
specification to be other participants, well and advanced before meeting before the inspection
session. The participant is accepted to familiarize them to the material required the material.
During the session basically couple of activities will the programmer narrates the statement logic
of the program, so Suring this course other participants should raise questions. And they should
be perused to determine whether like this or not.

It is like the programmer than the other team members we will find many of the errors on during
the narration. They will raise the hand and raise the issues the simple act of reading alone a
program to the audience seen to be a remarkable an effective a detected technique. This is what
one of the activity. The second activity the program is analyzed respected to the checklist of
historically common programming errors. So two things will happen one is narration, other one
is analysis. So narration he will narrate code logic and that entire so user will raise the doubts
then it will be recorded.

The second one analysis is will be done against the checklist such as what are to be listed here
the other program has any errors symptoms of data represent computation set the so always will
be recorded in the session. And the result of the inspection he will distribute the errors the
developer or the author of the program. And the moderate has insured that those errors are that I
fixed or justified or it is rejected or accepted by the implementer. That is what he is to be
ensured. Okay, that is what program inspection is.

(Refer Slide Time: 43:28)

So next one is the peer reviews. The peer review is also one of the important embedded system
static analysis review method, so what are they going to do in a peer review. And we also study
about peer review and types of peer reviews so peer review method warning the other equal
programmers tester involve for peer review. Other set testers are programmers are independently
reviewing each other at the test. That is what peer review above. So there is again some
guidelines same as that are used in the other review methods. Peers remain the same levels of
that. So that is why it is called as peers that means there are some 10 functions and 10 functions
are grouping the developed by 10 people.

And for these 10 functions is above and another 2 people are developing the test cases or test
functions all are considers as peers and they can review across their auditors so they are called as
peers. Any improvement on the update can also sort of. That means it is not just enough to do the
peer review identifying the bugs of identifying the errors that program or test has the also
important to have an improvement in terms of optimizing automating and speed I will say
improvement in terms of effectively effectiveness. In terms of the output of the program how
much it can be effectively done.

It could be a pervious method, it could be short method all is can be sort of. So that is what
improvement can be expected in the peer review. So gives an insight in to be approach and
method with a higher level, while one become peer reviews that means it gives a polis tic
approach of what is intended the peer review fact that is what it means. So peer reviews is very
important aspects we will see peer the process.

(Refer Slide Time: 46:21)

What is the peer review process? And types of peer review process. So there are 3 types of peer
reviews can be done, offline peer review, walkthrough peer review, inspection peer review what
are those?

(Refer Slide Time: 46:34)

Okay, offline peer review process is as per the objective the purpose of the off line review is to
evaluate the deliverable work product, to verify its completeness and find defects. The object is
to remove defects from work products early and to minimize the rework. That is what the off line
peer review. Where peer reviews will not do together but they will take off line offend and they
come you with the reviews. That is what the objective. Scope is off line review will be conducted
for these following work products.

Basically project receivables statement of works contracts whatever it could be and that is what
the off line reviews to be follow. This one example that what we have contracts whatever it could
be and that is what the offline peer review is. This is one of the examples of what the output and
internal deliverables such as PMP project management plan basically so these all also can be off
line review or either result of off line review, process we have a external deliverables. Like low
level design, code it could be different such as SRS function specification document such as
LLD, HLD test cases test plans, test concepts, test scripts, selected service result component,
which are identified in the transition plan. All is part of the off line peer review process.

(Refer Slide Time: 48:24)

Okay, let us see the next offline peer review process such as entry criteria how we are going to
enter into offline peer review example is project management. Hoe it is going to be offline peer
review. So review planning with PMP level work product ready for as per the criteria identified
in PMP. Inputs product or process work item ready for the outputs updated work products review
that means review is considered as complete only when the review are taken then and verified
updated offline peer review defect log identified by reviews and each defect log there is status
such as open flows in progress.

Defect log will have status all could be rejected also. You should show one of the status the
defect log finally you make sure that the review record is closed with all the individual defects
are closed. So, when it is open that means that defect has been identified and if it is in progress
means the efforts of the particular review is view in progress that will under fix. It will not fix.
Rejected means that defect identified is not accepted. It is rejected. So the exit criteria of the
offline peer review are reviewed and updated work products. All defects are tracked to closure
and required sign-off is obtained.

Capture all efforts of the review processes that mean how many efforts w taken in terms of
review processor offline is getting capture. Next one is the walkthrough peer review process.

(Refer Slide Time: 50:39)

 we are having to a walkthrough of the hard effects peer review process objectives e is the
purpose of the peer review walkthrough it is evaluated the deliverable product to ensure
completeness compliance and find defects. The objective is to remove defects from work
products early and to minimize the rework. Scope is offline review to be conducted to be
following work products.

Basically statement of work, contract documents and it is an example and internal deliverables
such as project management plan, the external deliverable such as requirements hardware
requirements, functional requirements world level requirements designed documents LLD, HLD
test cases test plans and walkthrough peer review process entry, inputs, outputs, exist criteria,
same as same whatever we have seen in the offline review process. Here the hard defects are
walkthrough with different team members for the peer review as and similar to the instruction
and inspection peer review process.

(Refer Slide Time: 52:03)

 What we do the purpose here is to walkthrough and evaluated to the deliverable work product
ensure completeness compliance and find defects. The objects are to remove defects from work
products early and to minimize rework. Scope is peer review inspection that should be conduct
from the work products such as project management plan SRS high level design, system
requirements service system design any of the work products of embedded system for the
example taken from one of the embedded system process that is followed by the industry. All
external deliverable and the documents and components which are critical in the software
development life cycle should be subjected to the peer review inspection.

That means all the exponent deliverables should be inspection peer reviewed. That is what the
meaning of. The project manager or quality analyst form call for a peer review inspection in
other circumstances also wherever it is nesscesry. Here also we also entry criteria inputs outputs
exist criteria that have to mention in the inspection theory process. Okay, that is the end of the
review process and that is static analysis aspects in terms of the peer review and the static
analysis sorry coding standards what we have followed to be last and today’s slide.

(Refer Slide Time: 54:05)

The next type of static analysis is test metrics. How all we go to produce the test metrics? And
what are the test metrics that are used or embedded software testing and how it is going to be use
in terms of static analysis. That is what the test metrics will bring it out. Okay, quantification, so
basically test metrics bring or it will quantify the various hard defects in terms of how much and
what is the percentage what are the pass fails what are not applicable what the burn down charts
is likewise.

We have several metrics. Basically the test metrics are getting quantified. Physics needs
measurements of for time mass etc. thermodynamics needs measurements for temperature. The
size of the software is not obvious. We need an objective measure of software size. It is not the
metrics that is based on the size. But it is objective measurements basically that is what is the
quantification. This is very important when we do the metrics accumulation. That means when
we collect the metrics we need to be definite about how we are going to collect the metrics.
Metrics is not just a sign it can get directly help out the tool how much size, how much lines of
coordination are there likewise, so better it will be a determine measurement of the software, that
is very important.

(Refer Slide Time: 56:09)

Okay, quantification based on the structural metrics, it not the lines of code as I said it is the
structural metrics. So that is what test metrics we will bring it out. Attention ios focused on
control flow and data flow complex. We are seen that control flow and data flow the test case
execution of the control flow path and the objectives all these will be part of the metrics it will
cover.

Structural metrics are base on the property soft flow graphs models of programs. So that is what
basically the structural metrics is talk about. So that software quantification we do not on the
lines of code. It is basically we need to a motion of the so it is when comes the two testing
strategy. When we doing a testing how we are go9ing to test? Basically not base on the
complexity and its structure of the code. So something like we may come of this strategy such as
strategy A X needs some 2 test for unit. Unit could be a piece of software. So likewise we need to
have quantification.

So basically we need to be having questions, before we develop the metrics in terms of
quantification how it we test it and what is the strategy and when we can stop the test and how
much we can find the bugs. These are something like percentage are it could be some numbers
say suppose we have thousand lines of code and we as a tester based on the design requirements
and all. We will work out the strategy and he is expected to bring so 10% of the lines of codes.
Suppose are may be 2% 10% is too much. So 2% is something like 20 lines. The code is another
issue so something like how many bugs we can expect from the piece of software when it is
tested.

So there is one of the test metrics. So which testing techniques are more effective? Testing hardly
or smartly do we have a strong program or a week test shoot? So this kind of a question has for

collecting the various metrics while doing the test. So it difficult answers some of these questions
satisfactorily that we need to have a metrics in progress for that. We can discuss the aim of
empirical law of symptoms of size number of bug’s number of test strategies of expected number
of test required to find a bug. Testing techniques it effectiveness all is will be done with the test
metrics. This is the basically weight age so that is what we do when we do the test metrics. This
is basically weight age, structural metrics, contification you saw we are to take care when we do
the test metrics. So it is not we are going by the size of the software. When we capture the test
metrics it is going by the test strategy the structural aspects of the software. The structural
aspects could be control flow data flow and complexity of the program likewise.

(Refer Slide Time: 1:00:32)

 So importance of test metrics, why we need test metrics? Metrics is used to improve the quality
and productivity of products and services thus achieving. Basically test metrics with the help of
we know how much improved for a period of the embedded software life cycle. Or a regression
test or different types of test how much bugs we are able to gather how much bugs we are going
to fix what is the maturity of the products all the defects come out without the metrics we cannot
satisfy be maturity of the product. Definitely we are going to r3eport to the customer. And we
can have the customer satisfaction based on this metrics.

And it is easier to manage or easy to management for digest one number and drilled on if it is
required. There is a critical issue and they critical issues are getting this is all based on the test
metrics. Different metrics and act as a monitor when the process is going out of compound. That
means when we do the testing we are come up with they are going to come up with the different

metrics and trend of that metrics we will definitely give that is the program is going out of
control or within the control.

We will study about this different metrics trend and all that. There are different charts, in future
sessions. Metrics basically provide improvement for current process that means when we follow
the process it is going to be continuously improved. That is what the metrics is going to help. So
basically any process we take such as they will 5 or any level 6 etc. so they basically look for the
improvement and minimization of the errors when doing a production when we do a process
followed when we are going to have the life cycle implemented where the importance of test
metrics is going to come up. Okay, so we understand that the important if test metrics. How we
are going too represented. So we study those aspects of the next class.

(Refer Slide Time: 1:03:03)

 Object of the test metrics and test metrics how it going to be depicted what is robontom aspects
of the test metrics how the trends are etc. in the next session.

