
Hi, all welcome to the next session of embedded software testing with series with lecture 21 so
today we study more about white box techniques and continue our white box testing
understanding with more details and we will try to conclude this unit 2 in today session and in
yesterday session we discuses about the web techniques of white box testing etc branch condition
testing.
And before that we study that statement testing branch decision testing data flow testing so in
branch conditions we know that the testing does source code which kinds of decision and the
individual Boolean operands and the Boolean operands with the decision conditions will test
with the help of decision conditions testing are also called as branch conditions testing the next
of type of testing which is also called in terms of branch conditions.
In combinations testing where the testing aspects will be done on the source code which
reorganize the decision individual Boolean operands within the decision condition all the
possible line is that are going to be feed into the Boolean operands such decision will be tested so
accordingly test cases will be define such way like that independence is achieved then we have
studied about the modified conditions testing.
The outcomes especially the result whatever is going to arrive it will be tested also the last one
the linear code sequence and jump testing here we assume the three types of TR testiness ratios
where TR1 is number of statements, statements coverage basically TR2 is number of control
flow statements versus control flow protocol branches and the last on is LCSAJ executed so that
will be used its initial but no there a use the other type testing.
So we also went to some examples and there is a LCSAJ table and total number and the start line
finish line and jump line addressed the last one is the D1 sincerity specific testing is called
MCDC basically D1 process addressing to each life cycles activities such as planning
development and testing, testing is called as integrate process and under development it has the
requirements, design coding and integrations and we have studied about the few examples of the
AND GATES the OR GATES table can be arrived so this typing of testing is also called as a
truth table approach where all the possible combinations which we see the independences as well
as the outcome of the testing will be tabled and according to the test will be prevent okay.
(Refer Slide Time: 03:58)

So in today session we will study about then gray box testing a I said in before class it will mix
of both white box as well as the black box sometimes what will happen is the black may not
sufficient to coverage or the distributions in the terms of testing similarly the white box sorry the
black also may not be know so into balance between both of them that specially the integrations
test cases system some of the system black.
And some of the white box coverage we need to be balanced so with the help gray box system
that is the addressed white box test can be intimately connected to the inputs of the code they can
do more expensive to maintain number of approach test because of the complex screen other
aspects as that one looking about the input of the control gray box thus here what I said is some
knowledge of the internal will be more gray box testing can be very effective when coupled with
error guessing so another type of matter called error guessing.
Where the error are guessed based on the knowledge unit under test and that will be implemented
the test design will be applied accordingly so this test are gray box because they cover specify
position of the code they are error guessing because their errors are based on the guess about
what error are likely that means that test will be carried out as a pre test sort of thing the it
deserve a knowledge about what could be the likely failures.
That could come based on the his knowledge about the system and about the code so he will
balance between specify portions of the code as well as the black box features so he will apply
certain test cases those test mechanism is called gray box testing so this testing strategy useful
when you are integrating new functionality with a stable base of legacy code so that means what
we have a base code which is working most of the time.
And which does not have much issues or it does not have unknown issues and they is a new
cases of code or the functionality is being add so what we do is we will try to understand how the
functionality is implemented with the help of the piece of code and with the help of the system
understanding of the knowledge we will try to apply new test cases so this kind of new test cases
mechanism is called as gray box testing okay.
(Refer Slide Time: 06:44)

The next one is all are basically the additional details what I am trying to give you in terms of
white box testing the main methods in white box testing coverage and all we have covered in
earlier we will act to that they are different testing methods and test philosophy and the test
details that is to be studied okay so we will study about it test driver and test stub so what is the
test driver what is the test stub you might have eared about this so all the embedded systems
having embedded system testing mechanism.
We will apply this test driver and test stub particularly useful for software testing where unit test
is adopt so okay so the test driver software which execute software in add to test it that means
test driver is again a piece of software that is test software which executes what the software that
means the embedded software unit which is under test to test so providing a framework for
setting input parameters executing the unit and reading the output parameters I have a diagram in
next slide I will explain it you can understand it batter.
So what will happen is sometimes some of the input parameters executions and expected output
may not be possible with the realistic inputs so what we need to have is development of the small
driver which drives all this inputs and call the piece of software and drive test and express the
result so with the help of the test driver this will be done a test stub imitation of a unit used in the
place of the really unit to facilitate testing.
So this the complement basically of the test driver on the other side where the actual piece of
software which is suppose what will replaced with the stub so that we know that the tester is
working or not properly to see that what is expected and the same thing will be replaced actual
piece of software to compare the expected result and arrive it conclusion result the test have been
passed or fail so that is how test of the used.
(Refer Slide Time: 09:22)

You go through this diagram which will help a clear picture of all the test driver and the test have
been used so basically the book refers to this diagrams test stub of course test particular test for
set up for environment having both the driver on the even side and stub on the other side and the
unit is used in the middle you can see the driver calls unit in test and unit in the test can be
replaced with the help of stub is like a wrapper we can have for this.
So what does the wrapper do basically whatever the information that we need to get it from this
unit you will be driven from this driver and wherever the possible expected output that is
expected from this unit will be turn with the help of the stub so stub will be replaced the actual
unit which is unit under test so that is the basic of test stub and drivers so interfaces between two
systems, two system part can why it is used basically test stub.
And test drivers are basically for the interfaces so two system parts not to test the interface on the
none side we use the driver because the other side w are going have the interface and when their
closely in conjunctions we be not able to test it so for example so we have a unity one and
suppose we have a use the unit two and we want to test the unity one with parameters set as
parameters one parameter two and expected output as expected output one, expected output two
and how does the unity one is going to intimate.
Is with the help of the unity two so what will happen is that is interactions between these and
what we are going to do is we are going to replace this piece with the help of test driver and
similarly vice versa while testing this piece of interface with the parameters whether going to use
the test driver here will be one we can called likewise the interfaces between two systems parts
can be tested with the help of this mechanism if both system are available here available means
available for the tester to test it in depend so that is what is means or it is not available we are
going to club both of them and drive it.
So this can have consequence for the testing time because the time is more required for us
actually provide this and to start testing a system part as earlier as possible stubs and drivers are
these that means still suppose some functionality in the embedded system come to the develop
and other functionality is not being not developed how we are going to test that implemented are

ready functionalities with the help of the drivers, driver specifications details for known and with
the help of inputs.
And the parameters the test drivers are developed and tested basically it is useful for testing the
interfaces so established called the system and that test and provides the information the missing
system for should have been given and a driver calls the system back standardization and use of
a test stub actuators basically if you have this test bed actuators define in the under stage of the
project it will be very good for each piece of the software unit under test.
So it will greatly input the effective use of stubs and drivers the test bed provides a standard
interface for both the tester to construct the construct and executive test cases and for this stubs
so each separate units must have a stub so we need to have a stub as well as the driver to test
both of them inter change away and techniques for test automations such as data driven testing
can be applied effectively where data is very important.
And all the type of data that we have sallied, like PK CK CUS and all that can be tested with the
help of this there combinations the inputs that is need to be driven can be done with is actually so
such a test, the testing of mean the use of such test during integrations testing and that
automations of lower testing is easier basically so considering all this aspects to need to have test
stub and drivers okay that is about test stubs and drivers and entire box testing with the white box
testing mechanism.
(Refer Slide Time: 15:57)

Now we will come to the various coverage testing tools that are used in the industry in general so
logic analyzer, software performance analyzer, vector cast, LDRA, RTRT there are lot of tools
like this so which will help basically used for having the coverage and the instrumentation the
unit test tools etc will be done with the help of this, it could be one tool are a multiple tools
depending on the complicity of the embedded software that is been used okay let us try to study
understand the basic thing about this tools okay.
(Refer Slide Time: 16:54)

Vector cast this is the tool from vector caste corporations the aerospace is being used more where
the define different levels and they do the instrumentation of the source code and they run the
tool you will get the report such as this what is been showed below so for a data base sort of
applications aerospace is being used we can the matrix what are the matrix it can generate so
with the help of this matrix the conclusion will be done so as to see that whether the vector cast
output is hundred percent coverage is done are not done you can see the data base total time
number of data base have been interested here.
And complicity is five straight forwarding testing that means all the statement or the version for
the conditions that are aware for each of this data ten, ten out of ten have been executed saying
that the coverage is hundred percentage similarly you see another piece of software that is been
tested with the help of the vector cast some functionality package called manager and desires 1,
2, 3, 4, 5 types of funct6ionallity like place order clear table get check total etc each of them have
been tested with the help of a vector cast with the instrumentations mechanism.
And you can see the complicity it has the complicity of five we will try to understand what is
complicity in the next unit three and complicity of other piece of 1, 1 with representing last one
is two so there are total 12 complicity images that have been tested here with the help of vector
cast and the coverage is some like 63 percent in cast in the first where the place order is been
executed where the coverage is 14 out of 22 that means to say their the coverage is to be done for
22 executable statements or decision or whatever.
It is, that out of which only 14 of it have been covered saying that 63 percentage have been
covered similarly for that next you can see 100 percent coverage and this one is 77 percent 7 out
of 9 and the last one is zero percent saying that none of the statement have been executed or have
been in worked with the help of this tools whatever instrument testing we have done so all
together they generate the matrix of course we studied about the test matrix and all that in
separate session in detail but to have a glance of tools of what tools commercial they are using I
am just trying to present it the various tools the overall coverage is 71 percent and they cannot

say the inner column introduced for a different piece of functionality or thing that will be
showcased.
(Refer Slide Time: 20:33)

The next one is LDRA it is one LDRA and the one of the popular tool that is been used in the
aerospace industry here also similar to what instrumentations we have seen so there input can be
generated which will help in terms of doing the in testing you can see how many in test cases are
used what are them are passed so what is the report likewise we have complete coverage of the
unit under test okay.
(Refer Slide Time: 21:07)

So the next one is being RTRT this is also one of the good competitor and popular tool that is
been used in the different industries including agriculture, finances, embracive automotive
telecoms, aerospace etc widely nit have a different variance of this tool such as RTRT bed RTRT
embed likewise so it is from IBM you can see that details in the backward side there is data sheet
and all that which talks about this so the rational test really time is called as RTRT so what it

does means the source code such as C, C++ adra whatever it is head into that RTRT 2 so what it
does is the steps are part of the RTRT.
In terms of configuring and using it so the environment will be define first the test harness will
be created and with the help of test harness stub will be generated then we will have executables
for the corresponding test harness then actual be test after the executions of the test on the target
environment we will have the results and then result will be used to the report what is that
coverage and all you can see on the right hand side is it is a code coverage or from lance memory
or trace analysis all the aspects of the testing white box testing will be done.
And similarly test result will be reported to support this coverage or justify the coverage or
justify the coverage to analysis it and it is a cross complier that has generate etc to complies the
development harness and the bills and it uses the target such as micro controllers it will be altos
or it could be with machines simulators or emulators on the target machines so that is how the
RTRT will be structured to use on the white box testing methods okay that is what is about
commercial tools that is used for white box.
(Refer Slide Time: 23:46)

So let us study what is logic analyzer a basically logic analyzer can record memory access
activity in real time, it is a potential tools for measuring coverage so what is does is we various
test hooks using embedded system and the test hooks will record different data a dictated piece
of memory and that can memory can be recorded with the help of analyzer that analyzer is called
logic analyzer and there are logic analyzer probes.
That will be hook into the memory and with the help of probes it will accrue the data in real time
and we will have the coverage and will provide results and coverage. A logic analyzer is
designed and used in trigger and capture mode that means the logic analyzer can be used as
trigger and capture mode for the memory or the interfaces that will be hooked for that piece of it
is basically it is hardware and software both that logic analyzer has may not have a diagram to
show how the logic analyzer
The logic analyzer is design in trigger and capture mode it is difficult to come out it trace data
into coverage data so what is means the trace data whatever it got it we may not able to cover it

to in order to come convert that into coverage with the help of this but what it does is the overall
measurement it does we do a sampling method is called statistical sampling with the help of this
logic analyzer can be used to have a coverage on the trace data on the trigger mechanism in
continuations of the logic analyzer.
(Refer Slide Time: 25:48)

In particular it is difficult for sampling methods to give a good picture of ISR test especially the
piece of software having a ISR inter service pertain you must be aware of this so basically this
the paten parts of the embedded software where an interrupt occurs for the normal show that
interrupt has to be handled with the piece of control flow or functional flow whatever the action
that needed that action and all will be part of the paten part interrupt services a good ISR is
passed means say that ISR has to short and sweet that need to get passed and come out of that
protein that means it is two flags.
So that it can come out very fast ISR cannot be bigger, it cannot be complex and it cannot take,
refer to take more time. If an ISR is infrequent that means the frequency of the ISR happening in
the embedded life cycles is as the probability of capturing it during any particular trace event is
correspondingly low. That means capturing the trace data is lower because ISR is happening very
less frequency. That is easy to set the logic analyzer to trigger on ISR accesses.
So, but easy to set the logic analyzer because the capturing the mechanism will be easier, this
coverage for ISR and other local pencil code can be measured by making this supply control in
to test suit with the value can basically set to trigger and trace just that code, so what can happen
is we are trying to focus using the piece of software which are the part of the ISR, what we can
do since ISR software is very fast.
And very frequently happening in the system and the system handling the complexity in terms of
more number of ISR what best can be done with the logic and un logical which is there and we
can commenter rest of the code and focus only on the ISR, what is in trigger that capture the data
and what ISR can suppose to do and analyze the capture data with the help of logic analyzer and
do the coverage there is ISR which is caravel of doing covering all the in time result,
(Refer Slide Time: 28:40)

So there is another set of tool it is called software performance analyzer, so performance could
be in the terms of,
(Refer Slide Time: 28:49)

Memory, that means memory as to be accurate or intended for sudden portion of, suppose say the
requirement can say 50 percent of buffer, memory to be reserved for future update or scalable
etc, so what will happen is we need to say that, for example we have a one MB of memory we
should have 512 kb of memory to be used one MB, so that is the requirement and how do we
test? How much is the software is taking?
So there are lot of meditates and there are lot of tools also, so those all are coming under
performance analyzer. We using the information from the linker and these tools can be displayed
for a information on a function or modular bases and they are the raw memory address, so with
the map file for each of the embedded project, this will be done with the help of builder, that
means compile slaved with the help of this map filed will be generated, this map file will have of
all the incoming tool such as the addresser.

The hop codes and BSS, stack and all those information with the help of that memory map and
you know that how much it is going to take this build for that particular embedded project and
with the help of that we should be able to arrive it with the performance of that particular tool, so
whether there are tools, analyzers from the different vendors mostly it will be done manually or
statistical. So performance testing,
(Refer Slide Time: 31:00)

Performance testing and consequently performance tuning are not only important as part of your
functional testing but also part of important tools for the maintenance and upgrade tools for the
embedded life cycle, so I have in important aspect of connections memory you know, and speed,
speed with load, so this is very important to have the performance of the embedded system,
stable.
And continuous without the change and with the efficient, with efficiency having this scalability
modularity, this sees one of the performance requirement they use it, not only enough for have a
memory satisfied speed, speed means not fast basically with various conditions in the field
should be performed consistently and scalability etc. the other thing is timing, it should be
accurate and stable, and these also one of the performance measure they have it.
(Refer Slide Time: 32:24)

So, performance testing and consequently performance tuning, not only important tools for the
maintenance and upgrade, upgradability is more and embedded system is ever living and
growing, because of the fixes requirement, more requirement in another will be embedded
lecture. Performance testing is crucial for embedded design and unfortunately it measures in the
one type of software characterization that is most often ignored.
That means, assume and many of the embedded system involved in the industries they do less
priority to performance testing in tuning especially in a begging or middle of the project, that
they struggle in the end because they never been meet the criteria of the performance and lot of
works and errors will occur due to performance issues, so that is why it is important to have in
understanding of, what is the performance of the embedded system accordingly we need to have
testing mechanism.
Specially on the memory, speed, timing and the load or the minute and we should use a
analyzers, which is performance analyzer, map files and all, probably we try touch base simple
map file and have a understanding of part of it does, basically it is part of the embedded system
course, I will try to address it in the future.
(Refer Slide Time: 34:03)

The next one is memory usage, what sort of memory usage is there in the embedded system
testing, so basically we use a memory more with the help of memory map, and it will be able to
analyze the stack the in build memory it could be RAM, ROM, the flash or we can have as small
foot print in terms of false and all that, we will be restoring NVM, so that also called as
electorally erasable programmable read on the memory.
So there are various types of test for example for flash they use integrity test and NV test and can
be done with the help of walking ones where each memory cell is tested with zeros and ones, that
means whether each cell is capable of flashing or programming a zero a programming one. So
that is also called as pattern test, usually they use it in the system with 5a, 5a, 5a; you can see
5,5a last 5a is nothing.
But I will write it on in binary minus 5 zero one, zero one. Whereas A is 1010 and it is 10, so we
know that the cells, the first cell is addressed here mixed with zero and the same is each cell is
addressed with one. Similarly the next cell is addressed with one and next same cell is filled with
zero, so likewise we are going to have a pattern test or walking in test, that each cell in the
memory will be tested.
So, on the memory like flash or RAM is sent testing one so mostly these test are basically build
along with the code, because there are requirements which talks about this test how to be there
frequently should be done in the embedded systems, so they will have a implementation in the
embedded system itself but the certain frequency in the system is running but we need to log
whether that we have any failures for such steps.
These tests are called as division test. There are different types of division test that is not
something depending on the embedded systems of the memory and all these will be logged with
the help of those case, so that is the part of the memory user and memory testing that in the
embedded software.
(Refer Slide Time: 37:20)

So the next one is timing analysis, so there are stimulant timing requirements so test analysis
timing how much in the embedded is taking, timing analysis have to be come back. And mostly
the timing analysis has done with the help of time machines and trace machines which is
available in the debugger itself. The IDE is nothing but integrated development environment,
such as multi looter bag, code warrior etc.
All these debuggers have an a inbuilt time machines or trace machines that will be used that is
help full in finding the timing requirements in the term of analysis code and doing with the rate
points and measure the time, how much it is taking all these, so you can validate with the help of
that, some of the embedded system will provide codes and that codes the validates I can say and
they can instructed or IO ports.
So which will toggle for sudden range or sudden frequency on that can be put in to the scope,
scope means osscilar scope we have a multi channel osscillas scope on the Agilent, we can use in
the any of that osscillas scope and measure it. So such embedded systems we will have to all
ports available, but it may so happen that, that ports may not be there because it is a additional of
hardware and they may not be able to.
They cannot or they may not be able to afford to have that because it is going to occupy a space
and more current etc. for intermediate testing before the last build they may be having it within
the part of the board or the target board of the SPGA whatever it is. With the help of that timing
can be tested where the embedded software will be triggering upon certain events and that events
can be captured in the oscilloscope.
And for ISR’s we can analysis through IDE where ISR so we can have a counter and how much
the counter is to be located. The counter also can have registers, the timing registers can be used
along with the counters to arrive at on the time it has to come. So, manually it should be done to
analyze the ISR timings etc. then we have In-built registers on the target systems and
microcontrollers such as watchdog.
And also with the help of those we can state. Watchdog registers, timing registers, RTC that is
written in a real time clock. All this can be used for doing the timing analysis. So, with the help
of this we can do timing analysis. Okay,

(Refer Slide Time: 40:49)

So, have you understood the various tools control that? The applicability you need to understand
for the life cycle. Coming to the testing tools so there is a life cycle that is been categorized so
we will try to understand in brief what this tools lifecycle is. Basically it is called as the various
tools how they are getting used? How they are getting categorized? So what are the use and all
that?
Typically we try to understand based on what is the type of tools that we need to have in the
embedded software testing. Okay, so you can see a diagram here that depicts about the various
tools related to the testing life cycle. So, we know that there are as per the TM method or the
LITO physicals of the following behaviors of life cycle PSEC preparation execution and all those
stuffs, completion hours.
So, we have various tools for the p preparation we have a case tools analyzer complexity
analyzer for specifications we have test case generation or test case generator that will help in
developing the test cases and for execution we have test data generator record and playback tool,
load and stress tool, simulator, debugger etc. the number of tools given in that all need to be used
but it is a categorization basically that need to be applied and planned. This all will be part of the
planning.
Software verification planning is which we have studied in our earliest sessions. Similarly for
completion we have a floating information number and over all for P&C planning and control we
have different rules in terms of defect management, test management, configuration
management, scheduling and progress monitoring tool. Okay, so this is how the lifecycle data or
the life cycle aspects of the testing will be considered in terms of categorizing the testing tools.
And we will try to study some of them in detail as we go through some of the sessions like defect
management or test management, configuration management in the future process. Okay, that is
about the lifecycle we will try to quickly understand each tool such as planning and control
(Refer Slide Time: 43:41)

Either defect management tool. A defect management system is used to store defects, trace them
and generate progress and status reports. Defects detected during the test process must be
collated in an orderly way. It should be organized properly. For a small project a simple file
system with a few control procedures is sufficient. Where the more complex projects are need to
have at least a database.
With the possibility of generating progress reports that tools should help basically which will
help testing team to analyze where they are. So, defect management tools such as drugzilla can
be used for management of the defects. So, that is part of the planning in control. The next one is
the test management tool.
(Refer Slide Time: 44:40)

So there is a tool with the ability to link system requirements to test cases basically the test are
managed how they can be retraced all this will be part of this. So, the tools should have the
ability to link the requirements into the test cases. They become very useful if system

requirements are changed or might change. Why this we need all these tolls is very important to
have control of the changes.
So, how do we do? So with the help of these tools it is very easy to change it. To plug with the
new requirements or function of the requirements etc. so, all this can be done with the help of
test management tool.
(Refer Slide Time: 45:20)

Then we have a scheduling and progress monitoring tool. There are number of tools available for
scheduling and progress monitoring is used. Such as mp3 and all there are different tools also
which can be integrated along with the test management tools such as test link or bugzilla for
defect management etc. So, it is very easy with the help of these tools for scheduling and
progress management is very useful for a test manager combined with the information from the
defect and test management systems.
(Refer Slide Time: 45:55)

And preparation phase and specification tools on the left hand side you can see it is a preparation
phrase and specification phase. There are case tools analyzers, complexity analyzer, and test case
generator. We will try to understand what those are. Probably we will try to detail it out the
future sessions. Okay, case tool generator preparation phase they use it specially for those where
we use object oriented model based systems, the tools such as union based tools are used or
consistency checks and all that.
So, they will be able to help in terms of the preparation phase. So, they can be used to check
whether are not be designed as omitted any things of embedded system management etc. so, this
is basically test ability review of the test basis what is getting planned in terms of preparation.
So, the next one is complexity analyzer which we try to study complexity, software complexity
in future class.
Basically this complexity analyzer which is understood for physical purpose from sky tools if
capable of giving indication about complexity of the software. The degree of the complexity is
indicated of the chance of errors occurring and also the number of test cases how much we need
and all. It has been in system thoroughly. So, for this the US standard called McCabe complexity.
One of the important good complexity measure, generally they follow in the industry which
identifies the complexity. This is basically getting identified within that in one of the next class
with the formula and all that. We need to know about edge and nodes basically you know that
software can have multiple edges and nodes by the fiction and the flow of the software with the
help of that complexity is arrived.
Okay, next one is the test case generator which is for the specification, test specification or test
cases. So, there are test case generators which are Mat lab, lab use and all that but sorry lab use
and all used as the spit in all the stuff so using something like Excel sheet based tools or VC or
python or Perl. These can be used from inputs such as requirements in test cases. So, with the
help of this two test cases can be generated automatically and assistant it will be used for
different requirement, filling requirements and all that.
So, that is how test case generators are used in the preparation and specification tools of the
embedded system testing.
(Refer Slide Time: 49:52)

Next one we have is the execution. The execution can done with number of tools and various
types of things we have definitely minimum 3 to 4 tools is used for any of the embedded system
having a normal complexity and here is the list of type of tools that are used in the execution
phase. Test data generators, record and playback tool, load and stress test tool, simulator we
know we have tried about some simulators.
Stubs and drivers we studied this below, debuggers we know that IDE is survived as debugger
for code analysis and all that. They have a static source code analyzer such as understand for
simulators like wise and call the resource on the code analyzer, error detection tool in the code
performance analyzers memory analyzers.
And the code coverage analyzers such as instrumentation analyzers –and LDRA so we have a
thread unit analyzer were we use in altos, which we are living in multiple threads in all that, then
other one is called thread protection tool, this specific tool were if there is a thread to the
embedded software system due to enormous code or the inners way of having the crash etc, that
can be identified with the help of this mechanism with this tool.
So these are the execution phase the tools are categorized, so, having understood this testing
tools and all that.
(Refer Slide Time: 51:37)

We will try to understand the testing terminology and all the stuffs in the next class. If the
configuration management tool also introduced, we try to go through that in the next class.

