Before joining the next session of embedded software testing,
(Refer Slide Time: 00:08)

Embedded Software Testing
Unit 2: Testing Methods

Lecture 20
Seer Akademl — NP TEL MOU

Unit 2 series we got to move on to this second unit with couple of sessions we will take out
practical and we are more focusing on the embedded software testing white box testing aspect
and technique, we will study about the white box testing techniques in more details and in

continuation of the earlier sessions.
(Refer Slide Time: 00:38)

White box testing

* |n other words:

— Gtatemsnt Testing
— Bransh/Declslon Testing
= Data Flow Tasting
Branch Condifion Taesting
— Branch Condifion Gombination Tasting
— hedified Condition Testing
— LesadLinear Code Sequence And Jump) Testing

A
Today we will study about the branch condition testing, branch condition combination testing,
modified condition testing and LCSAJ testing. So before that we just touch base on to the
previous session here we had gone through a table of structural coverage analysis or structural

coverage types,
(Refer Slide Time: 01:02)

Structural coverage types

Covarnge Criiena Stwarest Decmion | Condition | Condren’ | MODC | Huhipe
Coverzge & I e | o Cizndhbon
Coverage COVErIDE
Evary poind of ey and gadt o ini: N * . " .
ooy s beren inecked ai keasd
==
Seery sixlement n e program *
mira D) skl @i Rasi oo
Epary Secison it he pogeam b & s B &

wEen @l paers ble ouleomes ot el
aLed

Ewery condibion in o decson i e * s . .
SO0 TRIT Teh LakEm Al [ias die
cuirmes al ksl once

Eatiy condibon in . St on nas . o
oen ko e inde pencendy a¥ed

sl Secrasin's aulisans

Sezry cormbination of candion ¥

oUtTomEs wikin 3 deckeon has
Sean Aased of ieasi onoe

-

-

Basically which is used for structural coverage analysis, structural coverage analysis are
extremely very important analysis method we are using for industries like aero space where the
analysis meet the provide with the structural like, data, space industries manufactures, such as

buying air bus etc..
(Refer Slide Time: 01:35)

White box testing

+* |n other words:
— Staternsnt Testing
Bransh/Ceclslon Testing
Diada Flow Tasting
= Branch Condifion Tasting
Branch Condition Combination Tasting
— Meadified Condition Testing
LEsANLInear Code Sequence And Jump) Testing

-

S
We started the white box testing technique in the statement testing the coverage to cover the,
(Refer Slide Time: 01:41)

White Box testing: Statement
coverage

Statement Testing

= Execute every statement in the code atleast once during
test case execution

= Requires the use of tools
= |nsbumantation skews performance

= Coverage

Exscuted statements
Tetal numbker of statements

Staternent Coverage =

.
Statements that are in the code and we also learned about software instrumentation,
(Refer Slide Time: 01:48)

SW Instrumentation

« Software-only measurement methods are all
baszed on some form of execution logging.

= The implication is that after the block is entered
every statement in the block is executed. By
plar:.ln%a simple trace statement such as a printf{),
al the eglnnlngbnfeh'er',f basic block, you can
track when the block —and by implication all the
statements in the block — are executad.

+ |fthe application code is running under an RTOS,
the RTOS might supply a low infrusion Iu}?ﬁl_rg
service. If so, the frace code can call the S at
the entry point to each basic block, The RTOS can
log the call in a memory buffer in the target system
or report it to the host,

"';"' B TR Th o
Which does the,
(Refer Slide Time: 01:49)

SW Instrumentation contd.

= An even less-intrusive form of execution legding might be
called ‘ow- wilresian printf). & simple memary write 15
used in place of fhe pontf(). At each basic block entry
point, the logaing function "marks” a unigue spot in
excess data memary. After the tests are complete,
external software correlates these marks to the
appropriate sections of code.

= Alternatively, the same kind of lagging call can write to a
single memary c2ll. and a logic analyzer [ar other
hardware interface) can capture the data. If, upon entry to
the basic bleck, the legaing wites the cumrent value of the
pragram counter to a feed location in memory, then a
legic analyzer set to trigger only on a write to that
address can capture the address of every logging call as
it iz executed. After the test suite is completed. the logic
analyzar trace buffar can be uploaded to a hast computer
for analysis,

Inclusive hooks in terms of entire for the marks which are required within the code so that the

cordage will be traced, it is a tracing mechanism it is called software instrumentation.
(Refer Slide Time: 02:03)

SW Instrumentation contd.

+ If the system being tested is ROM-based
and the ROM capacity is close to the limit,
the instrumented code image might not fit
in the existing ROM,

* You can improve your statement coverage
by using two more rigorous coverage
techniques: Decision Coverage {DC) and
Modified Condition Decision Coverage
(MCDC).

Since the code basis is huge, so we cannot afford to have it manually. So there are number of
tools that are used for software instrumentation like, vector caste LDRA RTRT, etc., with the
help of instrumentation. We run the unit testing statement coverage and coverage due to in terms

of percentage,
(Refer Slide Time: 02:26)

SW Instrumentation contd.

Staterment Coverage:

To acheve stalement coverage, every executable slatement in the
prograrm is invoked at keast ance during aoftwars teating. Achieving
staternent coverage shaws that all code statements ane reachabla (o the
confext of DO-1738, reachable based on test cases develsped from the
recjulrerments),

* AF [x > 1} and {y = @} then z = % / x; and if;

+ By choasing x = 2.y =10, and z = 4 as inpul b this code segment, svary
statermnent |s executed at least onee, However, I an o is coded by
mistakea in the Nrst statermant inslead of an and, the fest case will no
detact & problem

+ Accoiding lo Myers®, “staferenf-coverage caterog 15 o weak that it
is generally considerad weeless,” Al bost, stalement coverags shoukd
be considered a minimal requiremsnt.

-

If the percentage is notTOO% we will need a manual analysis of gaps and ;[he gaps could be in

terms of decisions also.
(Refer Slide Time: 02:35)

Statement coverage contd.

Shwisaren
{
Scatamant 1; o
Exatzment Z;
H-=zomdne | |
Shabernan 3, Slalsral 4
End ¥ ""_'_,.--' o
| el M3 i
[Statement 5; Stmrentd
Srainmeeril
o sletements are o be exencs2d TR
¥ L 3

b
So in that case what we do? Branch decision coverage we will take care where the coverage is
done, the type of total number of executions divided by total number of decisions multiplied by
2, because 2 times it has to be the decisions box need to be analyzed. Why because there are,
(Refer Slide Time: 02:55)

Statement coverage contd.

+ When cresting fest cases for steberrenl coverage we can make ase af the conlrm
Tkaw graph

« Theslatement cowerage remdires slabements in the code 10 be axacibad We Kno
thatthe boxee and the diamorde regresent all the stabements in the code,

= By fellowing the paths through Be code we cover all the diamonds and all the
boxes are covered and thus we have slalement coverage (aecoiding la the
relatiznwih McCabe reasure there ehould te three or lees beat cagae and in tig
352 wo wers enaugh).

= Haow much af the total axacarabls stafaments have besn hit (zoverad) by the
various ksl case seenanas

s Foradecisvg statermend bath free and false condibions should be fesked | even
ther decmion skalement is afimplicil foom)

are said b be covered

« Taachiess 100% decision coverage both Truee & Falze condilong haws o be
achieved in 2 dilferent Test seeanas, avan ihaugh he statemean is of “Implcil it
Torrm

-
B i Nl *r=m web w2 oi=aralsdy pcurce ssamz s

Fourth comes of the decision box that is diamond box.
(Refer Slide Time: 02:59)

Branch/Decision Coverage (testing)

+ Create test cases 3o that each decizion in the code
executas with both rue and false outcomes (basically 2
test casas)

— Equmvalentte executing all branches
« Heguires tha use of tools

— Instrumeantation
« {overage

Executed decision outcomes
2 " Total numbksr of decisions

Diecision Coverage =

-

b

It could be true or it could be false, and in continuation of the white box testing, we have gone
through the data flow testing where the way of the data optics or the analyzed in terms of the

flow and
(Refer Slide Time: 03:20)

Data flow testing

« Data-flow testing uses the contral flow-graph to
explore the unreasonahls things that can happen to
data (... anomalies).

+ Consideration of data-flow anomalies leads to test
path selection strategies that fill the gaps between
complate path testing and branch ar statemeant tasting

+ Dala-Tlow testing i the nama given o a family of test
s-vate?ies pased on selecting paths through the pregram's
canfral flowe in order to explore =equences of events related fo
the status of data objects.

+ E.g. Pick encugh paths to assure that:

] I:".'EF‘:,' data UL-_.EG1 has been indialzed priar tols uee
— Al dafined objeols have boen used af leas! once

-

"*' rn“"..l'.\.'.\. T8 rrea P SO Lr=8 CUTR T RACT T o= A
Every data that are used or the objects that are used,
(Refer Slide Time: 03:25)

Data flow testing — data object
types

o idiDafined, Crealed, Intialized
ik} Killed, Liredehines, Relased
= Usesd
joi Ussd ina calcdodon
doi Used ima prechoaie
* Anabjci (= 9. vanabka) is definad when i
— GppEaE N oo dats decanadon
- masagnes 8 new vales
5 a e ihat has beer opaned
5 dymamically alocalss
= anobct i usedwnen i1 part of a computatiznor s predicata,
A wenable s used for @ computatizn fch whan it zppears on tha RHS
(zometimes aven the LHS in case of amay indicas 1 of an azsignmeant
slatement

Avwanable s used ina pregicate (phwhen it appears directly in that
predicale

-
S TR AN T O m B -8 Ima S each r g BE 2T

Will need to be analyzed and tested here. The data object types could be DKU used could be it is
used in the calculations or used in a predicate, so in the objectives defined when it is in the data
declaration of the new value or just been opened or the3 file has been opened that is also called
as an object. And is a memory using in variable is allocated is been done with it or using

constants or the allocations we can use so this data object types are.
(Refer Slide Time: 04:05)

Data flow testing — data object
types
* Examples Def C-use P-use
1. read {x v} i
2. zzx+2; z o
3. of {zy) FY
4 w=x+]
I W x
5. y=w+rl
a. print (=, v w 2} v Y
X, ¥,
w,Z

Used for data flow testing wheresegregafedlfferent types of data in columns such as definition
C use, P use is a calculation purpose you see X, Y, W, C in this example used as C use or
confession use that as P use or the predicate use, is Z and Y you can see if bracket within that Z
and Y is closed so you can see in the predicate value directly in the bracket so that is why it is

called as C use.
All these data will be observed and analyzed in term of data flow testing is should be tested

against the indented functionality or the specification of the system alert test.
(Refer Slide Time: 05:02)

Data flow testing contd.

« Data are as important as code,

« Define what you consider to be a data-flow
anomaly.

+ Data-flow testing strategies span the gap
between all paths and branch testing.

-
b

So there gaps between paths and the statements and the branch or the decision or the data flow
will obment it in terms of strategies that can happen, so each of the client of code and the data
objects will analyzed and using different values for example x in to y as per it can take value
between 0 to 10 we know that how we can provide inputs 0 to 10 with the help of equals class
and boundary value on the things also will depends the if condition below so that it is satisfied it

could take the path within these or it could take the path within the else, so all these gaps will be

analyzed with the help of data flow testing.
(Refer Slide Time: 05:53)

White box testing

* |n other words:

— EStaternent Testing
— Branch/Declslon Testing
= [iata Flow Tasting
EBranch Condilion Tasting
— Branch Condition Combination Tasting
— Medified Condition Teeting
— LCSAJLinear Code Sequence And Jump) Testing

Our next is the branch condition testing which we will study today, so what is the branch

condition testing?
(Refer Slide Time: 06:02)

Branch Condition testing

« Branch Condition Testing uses such model of the
source code which finds out decisions and the
individual Boolean opearands.

« Adecision is a feasible statement which can
transfer control to ancther statement depending
upon the logic of the decision statement.

« Adecision condition is a Boolean expression
which iz estimated to determine the result of a

decision.
» Mormal decisions are found in loops and
selections
Aal hilp Vblog guisa e s oo

Branch condition testing uses such model of the source code which finds out decisions on the
individual Boolean operands. We know Boolean operands such as less than, greater than, less
than equal to, greater than equal to etc. so that decisions coming out of that are tested with the
help of branch condition testing. A decision is a feasible statement which can transfer control to

another statement depending upon the logic of the decision statement.
This decision having a logic, having the Boolean operands and as a result of that the control can

be transferred to different statements or single statement depending on the logic that is been
applied within the decision statement and a decision condition is a Boolean expression which is

estimated to determine the result of a decision, so decision basically the condition so it will have
the Boolean expression in terms of lesser than, greater then, less than equal to, greater than equal
to or equal to etc.

So that we will decide basically the result of the decision whether it is one control or one sort of
statements or it should take another sort of statements, so basically these decisions are used in
loops and selections. So loops you know it could be a why loop or for loops or do why likewise
we have based on the land like constructs we have different groups similarly collection sin terms
of cases we know that.

So this decision is implied within this type of statements, you will see in of this how branch

condition testing is taken care, so in terms of branch condition testing.
(Refer Slide Time: 08:16)

Branch Condition testing

» Test case Design aspects:

= Test cases should be designed to exercise
individual Boolean operand values within
decision condiions.

— For every test case these should be
clarified:
= input to the component
+ for each daecision estimatad by the tast case,
identificatian af the Baclean operand to be
exercised by the test caze and its value

+ gxpected result of the test case

Test case design aspects how we do have a test case design aspect? So before that, so 100%
condition coverage means that test data clears the coverage’s also saying that how you are going
to do but 1005 coverage here means that the data will ensure that every condition that is executed
at least once during the testing coverage that will include also the branch condition don’t get
confused with the branch or decision control here condition coverage called the in terms of the

Boolean operands and the extensions part of the decisions will be tested.
And in terms of designing the branch condition testing test cases should be designed to exercise

individual Boolean operand values within decision conditions. For every test case these should
be clarified before we do the design we should have an input to the component that is part of the
decision condition, for each decision estimated by the test case, identification of the Boolean

operand to be exercised by the test case and its values.
Expected result of the test case, so these three should be clear for the tester before re designs so

all the Boolean operands within the decision condition will have to be exercised operand values
such as you can see an expression, let’s start with a for loop for I is 02 I less than 50 I ++ and A
less than B and in to this things etc. It could be multiple statements as well as a complied lock
also, will be called depending on the nature of the performance.

So here we have a for loop this lock will be executed in terms of 02 less than 50 means 50 times
it will be executed, here the index is I so obviously the index will have a incremental or the
incremental already there is based on the index certain conditions are used and you can see on
the right hand side along with this it is very important to have this right hind side expression also
to be satisfied are revaluated before the lock is getting executed.

So we know that statements embedded statements and we know that there is a block A less than
B we are going to do it and true it will done if false this will not be executed and now since we
have A less than B as a condition branch condition we need to evaluate all the aspects of A as
well as B in order to test the Boolean operands, so the Boolean operands could be logical
expressions such as or and etc.

So basically the test or needs to respond what are the inputs to this lock that needs to be taken
care for each decision estimated in the test case identification of the Boolean operand to be
exercised with the test case this are the action that lock is going to do for each of these Boolean
operands expression? In terms of inputs will be exercised and also it carries out in terms of
execution.

In codes what is expected as for each condition while it is getting executed that is also very
important to understand. So that is about branch condition testing and next one we have is slide

modification branch condition, branch condition combination testing here what we do?
(Refer Slide Time: 14:08)

Branch Condition combination
testing

« Branch Condition Combination Testing uses such
madel of the source code which recognizes
decisions and the individual Boolean aperands
within the decision conditions.

« A decision is feasible statement which can
transmit control to another statefent. It depends
on the logic of the decision statement.

* A decision condition is a Boolean expression
which is estimated to define the result of a
decision. Mormal decisions are found in loops and
selections.

g

Branch condition combinati(;;lmt-egt.i.ﬁé uses such as model of the source code which recognizes
decisions and the individuals Boolean operands within the decision conditions, that mean there
could be decision within the operands itself during operands so that also will be exercised. So
whereas in case of branch condition alone what we will do, we take care of the decisions and the

individual Boolean operands.
Here we take care of decisions and the individual Boolean operands in the decision conditioning

so we have decisions also we have lot of Boolean operands or expressions or operands or path of
the decisions that also will be exercised in sever they get as [mean so that is why it is called as a

branch condition combination testing. A decision is feasible statement which can transmit control

to another statement we know that, it depends on the logic of the decision statement.
That means how the logic is going to be derived based on that decision is feasible decision is

called a feasible statement. A decision condition is a Boolean expression which is estimated to
define the result of a descion that means it is a condition basically Boolean expression condition
which is testing at a define the result of a decision that means the Boolean expression will have
drive the values in such a way as the decision outcome will be earned.

Normal decisions are found in loops and selections same way as the we have combination of that
Boolean operands within the decision condition are tested with the help of this so each of this
Boolean operand is need to be tested or the variables is taking care. So test cases design how we
are going to do? For branch condition combination test cases should be designed left side
combination of the Boolean operand values within decision condition.

For every test case these should be clarified the inputs to the components, for every decision
estimated by the test case identification of the combination of Boolean operands and their values
the expected results of the test case. So similar to the branch condition testing in addition we
have a combination of the Boolean operands within the decisions the operands all that need to be
exercised so that is the purpose of branch condition combination. So next one is about modified

condition testing,
(Refer Slide Time: 16:57)

Maodified Condition Testing

» Modified Condition Decision Testing uses such
madel of the source code which recognizes
decisions, outcomes, and the individual Boolean
operands within the decision conditions.

« A decision is feasible statement which can
transmit control to another statement. It depencds
on the logic of the decision statement.

A decision condition is a Boolean expression
which Is estimated to define the result of a
decision. Normal decisions are found in loops and
selections.

y - |

So what modified condition testing does? Modified condition decision testing uses such model of
the source code which recognizes decision, outcomes, and the individual Boolean operands
within the decision conditions here additionally we have outcomes also important of this output.
What sort of output the speck or this function expected? So based on the need of that we are

going to test it how we are going to test it?
It is with the help of all the decisions that means decisions, individual Boolean operands,

decision conditions and the outcomes of the result that is also a deciding factor for the modified
condition testing. So we need to have all this possible combination in terms of modified

condition testing. A decision is a feasible statement which can transmit control to another

statement. It depends on the logic of the decision statement.
Again the logic is very important here, based on how and what are the values that we are going

to type on this it is going to decide the decision output as well as the Boolean operand within the
decision conditions. So a decision condition is a Boolean expression which is estimated to define
the result of a decision. Normal decisions are found in loops and selections. So a grand this

whole we expect some result and the result we want as per the specification.
And that result we want to achieve and to be done with the help of such values which can be

driven within the Boolean expression part of the decision conditions, that is how modified

condition testing is executed may be we will touch this,
(Refer Slide Time: 18:56)

Modified Condition Testing

+ Test case Design aspects:

— Test cases should be designed to show that
Boolean operands within a decision condition
may independently influsnce the rasult of the
decision.

— For every test case thesa should ke clarified:
= The input to the component

+ foreach decision estimated by the test case
ilentification of the combination of Boolean operands,
their values, and the result of the decision

+ the expected result of the test case

Modified condition with demsmncoverage in detail with respect to new cinerary process which
is followed in the aspects in this, Test case design aspects, test cases should be designed to show
that Boolean operands within a decision condition may independently influence the result of the
decision. That means to understand here suppose variable A and B are used to derive C, C is

supposing horizontal.
So this modified condition is such that independency need to be verified that means because of A

I am going to give the result in C and because B I am keeping A as constant so you will have two
paths on this, so like this we will have multiple condition and Boolean expressions are in number
of various groups and logic that in all the cases need to measure the independency it is very

important.
Independency need to be verified so that is what the modified condition testing because A is

having some value such as 0 and sorry and B equalizes 0 so what will happen A and B will
become 0 which could result in something processing some result 1 to say so nearly we have
proven that when A has become 0 C the result of the operation will have an impact on the output,

similarly when A is 0 B any value 1, 2, 3 whatever it is.
But when the impact is due to A because A added with any of the value within thin the B will

result in unknown value it could be a result wrong depending on whatever the expression is so A

and B will drive independent, 1 will keep it as constant like B as we will keep 1 next to the sorry
we will keep A as constant next time we will verify B in terms of 1, 2, 3 etc so the independency
for the B is been verified.

So that is how we are going to have so you have the independency see that the independency is
achieved, because of 1 path or 1 input the decision is condition is going to go so that is what it
means test cases should be designed to show that Boolean operands within a decision condition
may independently increase about the decision whatever input here implement the Boolean
expression as an so we are going to verify the operands for its independency. For every test case
B should be valid we need to have a input what are the inputs that are going to drive for each
decision estimated by the test case identification of the combination of Boolean operands, their
values and the result of the decision the expected result of the test case that also need to be
understood before the modified condition testing.

So that is about modified condition testing, the next one is linear code sequence and jump,
(Refer Slide Time: 23:23)

White Box testing: Linear code

seqguence and jump

« Linear code sequence and jump ‘jLEE.ﬂ.J} is a
software analysis method used to identify
structural units in code under test. Its primary use
is with dynamic software analysis to help answer
the question "How much testing is enough?".
Dynamic software analysis is used to measure the
guality and efficacy of software test data, where
the quantification is performed in terms of
structural units of the code under test. When used
to quantify the structural units exercised by a given
set of test data, dynamic analysis is also referred
to as coverage analysis.

.
- Al

This generally we follow not with this movement indirectly through modified condition testing
will add it certain specific industries or applications that report to have this, so this is a software
analysis method basically used to identify structural units in code under test. Its primary use is
with dynamic software analysis top help answer the question how much testing is enough? That

means basically it will have an analysis of how much is tested?
In terms of dynamic software behavior or analysis, dynamic software analysis is used to measure

the quality and efficacy of software test data, where the quantification is performed in terms of
structural units of the code under test that is based on the structural unit and its behavior or the
functionality the dynamic software analysis is used so it used to measure the quality

identification of the software test data.
When used to quantify the structural units exercised the given set of test data, dynamic analysis

is also referred to as coverage analysis. So when we are done with the dynamic analysis we will
also come up with the coverage analysis, so that is how this is done basically to drive how much

of the testing based on the test data is needed is what is been derived for the linear code sequence
and jump testing.

Is basically an software code path fragment consisting of a sequence of code that means a linear
code sequence followed by a control code jump in consist of the free items basically start of the
linear sequence of executable segments at end of the sequence and target line in which the
control flow is transferred at this end of this, suppose function 1, 2 I am just mentioning in
numbers like which one in number of function laws are executed by the fragments are there in

the function.
so what do we do with the LCSAJ basically how much are you test for this is what is going to

tell that is its basically code path, code path fragment I may testl, I may test 2, [may test some
by randomly N 20 may be N. so that means consisting of sequence of code it is called linear code
sequence. And jumping to the different linear it is called jump control flow jump basically so

what do we do? Do you have a code path fragment?
Consistent of sequence of code linear code sequence followed by a control flow jump so we start

with this and then we will have a control flow jump and basically the jump could be achieved
with a following three types that is start, then end you know that we need to have end for the
function in law and the target line. That means with the help of this target line how we have

jumped to the end basically.
That mean the target line each control flow is transferred at the end of the sequence, so with the

help of this will basically used where we have numerous functionality having expected output
and similar sort of inputs you have some of the functions so that is how you use the LCSAJ
method. So in the continuation of this basically LCSAJ method will have the TER which is

called the test effective ratio.
(Refer Slide Time: 28:46)

White Box testing: Linear code
sequence and jump

Tzl eifecibapriari ratisfad]
Coveraps Srakiue Talnce sne e G geuge hmy ik Rreing tes cean achevad, The
mosl basie ez (s the sropedion of slatemenls execulss, Tesl Efecdvensss Rada 1
{TERT A
TER1 = Mg, of simnbs sencined O oelal me, of @xcobasle sints
Highuar brssd cosarann malice can el ba geranmid, o pariole Fl

¢ TERZ=nro. of cantml fose branches axacuted (lal no. of contm | fios brasches

+ TERJI=no.of LCSA] aescned ! zla no. of LOSSs
Thesn eedrics saiisly @ puse sy, winehy wten TERS = 100% hes Dean achiesead i
follrwes 1k TERZ = 100% and TERT = 100% Rave also bsen achiesed.
BEod the TERT & TER2 meelrics wene in use i the sady 1870 and fne thind dal=s from ihe
b 150 1=, The requremsnt [or scheang TER = 1EF; wem the level cngnslly == lecied
fiar tren COR TR depgnis sbandard umil o s sopparenka: By the BCDC medifio:

. (i -1 L 1 addiicnal msouinsm=m 0 158218 Highes l=us 5 TERDT = 1005

Fran s macdasal o0 ey ol paeds. noduding saciciicis laepreny ane: |:H'|-\.l'l_|
O graci cal greblem of wing TERS & tral many LoSa)s can mever e execubed dus i
the conticang cond bons ey conlsin

i Whipm=da

So what is test effective ratio? It is number of statement executed by number of effective
statements, number of control flow branches executed by total number of control flow branches
they have number of LCSAJ executed by total number of LCSAJ. Altogether you can have a

TER that is effectiveness ratio how much of the code we have sequenced and jump in terms of
testing.

So accordingly we will have this sort of testing and coverage also will take care of this, coverage
or metrics are used to botch and hours testing has been achieved the most terrific metrics is
proportion of statements test effective ratiol TER1, is called as number of statements executed
by total number of executive statements. Higher level coverage metrics can also be generated in

particular thing.
The next level of TER control flow branches is in to whatever admission are branches that we

have seen before you are right total number of control flow branches how much is there? So
whether we are able to test it or we are able to free value the metrics, so this TER will give
basically in the sequences whatever we have done, so TER 3 number of number of executive

statements divided by total number of LCSAJ.
So this metrics that is for the hierarchy whereby when the TER1 100% has been achieved it

follow that TER2 should be 100% then TER 1 should be 100%, so I used to have TERI1 as to be
100% so that the number of LCSAJ are executed by the total number of series become 100%. So
this is been traditionally very old method so both the TER1 and 2 get results for 70 and the third

results for the later 70.
And the requirements actually for the TER1 100% was the level and used to be called TER and

then they define TER1, TER2, TER3 like this levels of testing based mention based on the safety
and embedded software they will have a definitions of the embedded software levels. Later they
have a MCDC modified condition decision coverage that we have studied in the numerous

slides.
So it was added 1992 higher levels of TER 3 100 has been mandatory for many other projects

including aero space telephone and banking. So where there is a mandated TER3 should be
100% liners force sequence and jump is 100% mandatory when practical problem of using TER3
is that many LCSAJ can never be executed due to the conferencing condition they may contain.
We know that we have different jumps sequence that is start of the linear sequence of executive

statement.
And the target line to which control flow is transferred at the end of the executive statement, so it

is basically it is the units in the map that executed all of them to subjective but it is mandatory.
(Refer Slide Time: 32:21)

White Box testing: Linear code zequence and jump
+ Example G cods:

glaciane <xidih re
ichids =wlting.as
Machde =THlRAs

sairmblA OOILUNNS 25
EAT MARREE 2
ideireRANTOUNT 50
Suine| TERATIONE 752

Il mnln valdj
1
imi coarne = 0 doinEWANTOLUONHE] val = [;
mramaal [lzlaba. 1, MEBECO_ UMY " 5 Lewa 151
solab= Iy
whils | ccuml = [TERATICHS §
1
sul = nbarangy]| = MAAHD DL UNVING;
Italufeal+= i
| bonsiafwpl] = WULEECERIT |

I
Lotel (el @ MRS DURT:
counbie;

|
rasum |3

.
> Eh el

So here you see an example code.
(Refer Slide Time: 32:32)

White Box testing: Linear code sequence and jump
= Fromthis code. the following is a complets list of the
LCSA] triples for this code
LC5A) Numbear Starl Line Smish Lins Jump To Line
1 10 17 5
2 10 21 4
3 10 28 17
4 17 i7 el
5 17 21 25
& 17 26 17
7 25 L 17
4 28 28 -1
= Ak e

And for white box testing of LCSAJ recent example using example from Wikipedia and just used
here you have a C code having a library included here you have function of tattoos which is
consume columns, consume rows, iterations and 750 in the mean are the main and we are
initializing a called equal to 0 and array totals of fix and value and local variable equal to 0 and

then we shut the memory with totals.
It has oversight of that integer it counts 0 in what it does is while the count is less than iterations

that means 750 times this block will be executed this value will be execute of some number and
modules consume columns and total array will be assigned with 1 implemented if the total of the
particular value is greater than maximum code it will assign the ledger count, the count will get

implemented so that up to 750 times it will be executed. Hence it will not be assigned.
So with help of this example so there is a LCSAIJ triples it is called as I said start fine finish line

jump line, so there are eight LCSAJ numbers have been identified and start line is 10 or the first

three or then we have the start line of 17 for the next three and then 7™ one is 25 and the 8™ one is
28. So based on this follows which there are LCSAJ numbers for that and total number of
LCSAJ are 28.

The first one in LCSAJ then start line 10 is used and finish line is 17that means 10 is wiped after
these values and 17 is the 28 positive last power backing. So within this what are going to
happen like assumed as one LCSAJ similarly we have 10 then 21 and finish line is 17 jump line
is 28 that means it is 17 so this is a 10 set and we have 17 11, 12, 13, 14, 15, 16, 17 and the
jumped line 28

So likewise we are going to have start line 17 and finish line 21 they draw a table so that is about
LCSAJ understanding where the use the TER test effective ratio with help of the LCSAJ is the
sequences where the sequence of executable when it starts and it ends and the target line with the
control flow is getting targeted, so that is how they are going to test it. And you can see some of
the table tasks about started line are the same.

Which is same here 28- 28 is same that is the last one written 0 is the same and the jump line that
last program, similarly we have 17-17 the last line is 28. So that is how the key aspects will be
tested in the LCSAJ type of white box testing.

(Refer Slide Time: 37:42)

White box testing

« | other words:

— Statemsnt Testing
— Bransh!Declslon Testing
= [iata Flow Tasting
Branch Condifion Testing
— Branch Condition Combination Tasting
— Meadified Condition Testing {MZ)
— LoSANLinear Code Sequense And Jurg) Testing
= Medifizd Condition Decision Covarags Testing (MCDC)

-
b

So the last one being I have added purposefully because they use this type of testing in aero
space so very important to understand this, we said different standards where the different levels
are safety is being defined based on the second level of the particular embedded software and the
system, so for that type of system that device is going to be mandatory. Which is called modified

condition decision coverage testing, so we will quickly see what this is?
So introducing modified condition testing followed to,
(Refer Slide Time: 38:49)

MCDC — Modified Condition
Decision Coverage testing
+ More used or applicable to
spa:efaerospace with |:FJ-1?8EF Process

- To satisfy one of the key objectives of DO-
178B

+ Also called as truth-table approach where
logical expressions are being tested

+ Snapshot of DO-178B

4;«. Frl, hiizsinverveah e resen gt papene byt on-200 1m0 3 TR0 o

It is more used to or applicable to space/ aerospace with DO-178B process, to satisfy one of the
key objectives of DO -178B. Also called as truth table approach where logical expressions are
being tested so where we have an exam question. We have a truth table so what is a truth table?

We will study that in the next class, and example snapshot of DO-178B.
(Refer Slide Time: 39:26)

MCDC — Modified Condition
Decision Coverage testing

Indagral Frocessas
Dlaranin “mnfewinn (Smrtior B
ml - # Configuration Managemeni (Siechon 7
o amiry Sssurance (Socnon B)
Camificatdon Liakan (Sactir 8
I
ol b T PV S
O Ly e e PEREEEETEE] PR
' T -
i | Recpamments Ei Cmmign o] Coding | Imagration :
: Snction 5.1} (Gmctian 5.2 iGimctiorn 53] Gmchion 5.4 H
| t t ! :
:

- Rt B Rt RrRal b e g T e byt o 2O AT 3 TS et
I will just have a look in to this, so basically the MCDC is modified condition decision coverage
testing, we know we have seen condition coverage and decision coverage and condition
combination decision coverage it will enhance basically by requiring that each condition we
show independently is outcome of the decision process. The modified condition testing the

combinations it is similar to that but it is string line process may follow it.
Independence requirement ensure that they effect of each condition is tested related to feather

conditions. Whatever achieving requires more spot full selection of the test cases we need to
have a truth table sort of a approach but you have a three variables we will enable 15 type of

combination, we don’t need to develop them. So that is why it is very important to select the

good approach and select such inputs.
And suppose in general if N inputs are there minimum of N+1 test cases for a decision with those

inputs need to be there, for example A or B we will have test cases. For example we have
independency of this A or B suppose this, is there then we will have some stagments executed so
A can have true it can have false B also can have true and false, so what are the test that we can

do it to show the independence?
So the combination could be TF, FT, FF so the independencies can mingle that it is not required

because it doesn’t touch the independence an you have only tested when the A is concerned as
input through and A are B will result in true only, so to achieve the independency we need to
have a test combinations we have FT and FF this will provide the coincidence it can have a proof

also it is subjective again depending on that.
Here you can see decision coverage MCDC testing what they use, so basically we need the

example snapshot DO-178B the different processors and sections that has it draws a life cycle
DO-178B software life is called and this diagram is known as NASA document you can see the
references and we have decrement loss and have a planning it is focal instruction four this device

will be process at the different sections against the each section that has a checklist.
And each section will have interface different aspects of the MCDC coverage and the testing

process so we have a planning instruction four we have integral process which is evaluation
verification section 6, configuration management section 7, quality assurance section 8, and
certification liaison section 9. So this will be part f the planning that is to be addressing similarly

the planning also will take care of this blocks which will be plotted here.
The planning will specify about development aspects so that is part of the development we have

requirements section 5.1, decision sorry design section 5.2 coding is all part of section 5.3 1,2, 3
sections are about definition in section 4 followed the DO-178B has to be strictly followed for
the embedded software development if it is DO-178B or example like space and aerospace

industries so there are AVR sub systems BOS sub systems need to implement,
Based on the software level that DO-178B will be fandoms, so requirement region coding

integration, so this perceptions are part of the process that needs to be pointed out or supported
with the help of planning which is instruction code similarly the very important part is the
integral process which has perfections, which will identify the verification process, configure
management process, quality assurance, certification liaison.

Once we have this addressed that aspects of the embedded system will be called as DO-178B,
further on the MCDC,

(Refer Slide Time: 45:15)

MCDC — Mcdified Condition
Decision Coverage testing contd.

+ The MC/DC citerion enhances the conditicn/decisian
covarage criterion by requiring that each condition be shown
to independently affect the outcoma of the decision

« The independence requirement ensures that the effact of
sach conditian s tested ralative 1o the cther conditions,

« However, achieving MC/DC raguires mare thoughtiul
selection of the tast cases, as will be dissussed furthar In
chapter 3, and, in general, a minimum of n+1 lest cases for a
dacizion with n inputs.

For the example (A or B), test cases (TF), (F7), and (FF)
rovide MC/DC. For decisions with a arge number of inputs,
ACDC requires considerably more test cases than any of the

coverage measures discussed above

-
-

R, iz merveah bns ross et e Byt on-200 1 Amd A TERACDE el

The MCDC criterion enhances the condition/decision coverage criterion requiring that each
condition be shown to independently affect the outcome of the decision, same as what we have
studied in modified condition combination testing here with most demonstrate aspects will be
addressed. The independence requirement insures that the effect of each condition is tested

relative to the other conditions that mean we have a certain combinations.
So those combinations because once you have this core is executed and a piece of code which is

responsible for some of term will definitely need to be tested and traced so the rest of other piece
of the core will have o be constant, so then independency of this specific block will need to be
ensured, how we are going to do is? With the help of independence testing the condition and the

decision coverage that we have,
However achieving MCDC requires more thoughtful selection of the test cases, as will be

discussed further in the chapter 3, that is there in the you can have a look with the following
having the which the blocks in detail about MCDC this is not the scope of this of the embedded
software system because we are talking about in general all these aspects need further if

interested maybe you can verify about MCDC for aerospace how they have addressed.
So in general the minimum of n+1 test cases for a decision with N inputs, for example you have

A or B they have true false, false true, and false- false this will provide the modified condition
decision coverage, for decisions with a large number of inputs where we have A, B, C, D, E if,
or, and all that introducing request considers the more and any of the coverage request about, we

will take some examples.
(Refer Slide Time: 47:43)

MCDC — Modified Condition
Decision Coverage testing contd.

+ Logical AND gate expression testing ex.

Takle 5. Bdinitem Tests far Threesiopun amd Gate

. A
oy | TestCase Mumber 1 | 2] 4
2 _:]—':'(’J Input & Tlelr]|r
™. c Input B | T T F | T
o Input & rlrlr | F
iatre 3. Three-d T El F
Figure 3, Thuee-iupur amd gae Kt T F
= Fir!, hiizimverveah bane ronen g =¥ pesne oyt em-200 143 903 TR-RACT pt!

Here you can see a logical AND gate, where A, B, C inputs are being handed in this block and
the result of this is D. so it is called the three input AND gate that means there are three inputs A,
B, C there is a anklet here you can see A, B, C is a anklet B is the result, so this also represent
different gates so that gate representation now all part of the numerate curriculum where R and
all the stuff represented this way these are all typically used in the requirements and against those

requirements test cases will be done.
So in this type of what are number of minimum tests for this three input and gates are listed,

what they listed? Let us see, test case numbers there are aboutl, 2, 3, 4 test cases are there sorry
three test cases numbers are being percepted, each of them consider in one at a time but this A as
an input B as an input, C as an input also we need to have a D as an output for this condition, so

those kind of test cases need to be exercised.
What are test that can have for this MCDC? First one A, ,B, C are provided as T that is true the

output will be true, similarly A, B, C we provided input as false and B has true- true the output is
same or the output is false similarly third one we modify B as false and A as true that could be as
false., and in fourth case the input C is provide with the input as that and the output is that, so

basically type output is depending on the false conditions that can be driven either this inputs.
So because of C only the process form how we are going to excess by providing the inputs D,

suppose if the D is providing false in cleaning case all this for A and B sort of that case C is in
test case prove and in the next test sequence we are in to A as true and B as false likewise we are
going to have a table this table is called truth table, that is why in C approach in boost for such

expression where we use AND.
So these kind of tests we are going to have one test will take 1, 2, 3, 4 values sorry the columns

first one keeps all the considerations as 2 second one all the considerations as different values the
output as same and that 2, 3, 4 where are to equal to D there are due to independency in either A,

B, C etc so that is the MCDC table is drawn and test cases are drawn, let us take another example
(Refer Slide Time: 51:47)

MCDC - Modified Condition
Decision Coverage testing contd.

+ Logical OR gate expression testing ex.

: A Table 6. Mininvmn Tests for a Theee-inpar ar Gare
e L . TesiCaseblumber | 1 | 2 | 3 | 4
= -~ Cl gl A F T F F
_>"'—|_L Irget B [[f [T [F
' Irgadt © F F F T
Fagiare 4. Tleeempul or site. Cuipit D F T T T

+ Likewise - xor, not, comparators are
tested..

- Rt btz inerregh bvs reven g e apans o ST A S13TE-RAETA pdt
Here we will go through the three input OR gate where A, B, C are fed in to an object and result
of output is D in the previous example we have B is an output there are from the animate so what
are the test cases that you can draw so we need to preserve in the input A input B in this, in order
to achieve output B out of the condition we need to exercise, so this is a table which starts about

minimum tests that we need to drive.
In the first test case we are going to have input A, B, C all are as false the output will be false, in

rest of the test cases you can see 234 the output is always true why because one of the input is
true. So why it is called as a minimum we need to understand we may have one more suppose
what are the composition we can have do we have true, true, false? Will we have false, true, true?

Yes.
So basically which is the deciding factor here not the false, the output is derived purely based on

the, the output true is purely based o the fact that any of the input is true. So we need to drive any
of the input in the first case any can become A in the second case B such as a C, so other cases
like both cases A and B true doesn’t matter because already we have seen the output has true, so

this 1s the minimum of tests.
Of course defining on the expression condition we can have more but it is like a PDS relevant

selection but as part of the MCDC called as an independency literature. How we are going to
show independencies, reach of the input that is responsible or effective in terms of the output not
to be driven. Similarly we have seen many of the inputs in term of false will result in the false

output so it doesn’t matter true or false all three are false.
Independency visual is set for each of the input so likewise we can have for xor, not, comparators

are inputs that is used in a logical expressions maybe you can take an exercise or xor and not so
not is very simple you know that not of A equals B. similarly A xor B you know that truth table
how to draw because logic expressions you know, so you can write what are the minimum tests

that are needed test.
With expression first one and the second one, so this is an exercise or total session will tell. So

that is about MCDC, you know that important method that is used in the DO-178B life cycle
process. So that is about MCDC we will continue the upper aspects of the next session, we will

go through some of the volts that we have added mainly what we can add is MCDC, DO-178B

extreme coverage part of this system.
Anything we have missed MCDC then test cases inputs and outputs you know then branch

condition testing, branch condition combination testing, Boolean operands so what we do is that

how much wants today we studied,
(Refer Slide Time: 57:29)

n:l' i - Cnaming Mimh | Hii Don v B v el = Dbl L L I e = Bl B o il
-Jr.n..l S T N R R Y 1
:] ek o o e
sl -
B R e b EEREE m o
- P 1y .

ESTwords

So rest of the words like branch condition decision, timing analysis, analyses I think timing
analysis analyses performances walking in test studied in these classes session we have seen,
Boolean expression logic we had gone through and from the recent session we had statements,
orders and will understanding about embedded software testing we will need to be aware of the

knowledgeable of this type of testing.
So let us study about, few of the glossaries

(Refer Slide Time: 58:24)
ES/T Glossary

Sl p=r i Drtaded disaviption of o e snsiion o kegical
1EL G eiken g Hhes indnkal snaion, acnoes
1 b sl el B pepeiied rewalic euplichily
pcfies i comcrese valees, The ioeel of detst s
B led b caccebad ol a ke
dorrly o e e,

S 1 wilcsdis with an ool
(==

Sk bl] il ol s Cored s WA P
b Fui Bekare e comnginc ik o b eie.
ated wwith o pamoaler npEe value,

Pyl pnbady A e bend wliess a dimulaeoad ordsakkal sk is
bl w ik o ool bo T ol o el

Ferid lvmr arsiene A syt wbere corrogiees ofF Hie sy Dduee

P by sty Frtimmang oF @ gesvous ieskod vk elpat i
e g vand iFganion do ersene thay Gabe hove o
ke Inoducad o aneoreral m o b el e
chanpss made.

Pk Soe wrivm! Al or saperion i

[Kick m casne of faibose w dburage

Pkl puthg & dmn i of th Sl i w e e meEs

ik sl Bhie idaks

ihe spiilnd qualey oquiie
oocciicd witk brimgdng @ parikoudar vosin o
production. isdmlicg any as kot slormaih

.ﬁ. L, T w0 O 1 SRS A0 L P2 51 _Ofi I ™

Is refer from the test cases standards, physical test case, you can get designed description of a
test situation or logical test case consuming the identical salvation, activities to be submitted, and
the respected result specifically designed in concrete values, level of detailing is such that when
test is executed in the latest is done this will have the concrete steps in terms of values and that
sop physically we made about in a descriptive manner sort of physical tests. Plant, environment
and normal cannot is the production industry is test plan etc. the environment attracts with the

embedded system, we condition is an important term,
So say environmental and store conditions which are not being fulfilled before the components

can be executed with a particular input value. And the sort of pre conditions attest following that
pre condition that are to be executed and that pre condition cannot be executed, pre condition
have to be there input. Rapid prototyping it is a developing test level where a simulated system is

tested while connected to real environment,
That means rapid prototype testing is a test driver that embedded system is simulated is tested

which is connected to the real environment. Real time system is a system where corrections of
the system behavior depend on that exact moment when the output is produced. That means
where the time is very hard this also called as hard real time system, real time system basically

deals with the behavior.
Where the different units that are going o happen in the embedded system should be happening

at the right time or the exact moment, for example we will take the embedded systems they have
access where users process one button so it should respond sort of time. So that sort of systems
we have in term embedded system. Regression testing sis very important hat as the retesting of a

previously tested test object following modification,
To ensure that faults have not been introduced or uncovered as a result of the changes made, that

means we have some in first or primary testing and that is been fixed like a primary department
design or the same test without modified that suit test environment or the test cases that sort of
the fixed code and results in achieve in test been passed. Result you know that actual result or

expected result.
Actual result is what we get it from the system when it is subjected to subsequent test, the

expected result is what? Been expected which is next part of the test case results. Risk is a
chance of failure in to damage that means while doing the testing’s testing of the embedded
systems which could based on the inputs or the robustness or the lower that we have on the

system it could impact efficiency or behavior we have looked.
And it could result in a dimension so this gives as a chance of failure multiplied by the damage,

this report in description of the extent to which a system meets the specified quality requirements
and the risks associated with bringing a particular version into production including any
available alternative, that means we have multiplication how we can do this aspects all will be
part of the this risk reporting, so with that we will end this session and we will take up the white
box some of the pending in the next session.

