
Welcome you to the next embedded software testing session.
(Refer Slide Time: 00:07)

Lecture 15 of unit 2 on us discussed both those testing methods in test selections criteria in
previous session,
(Refer Slide Time: 00:23)

We studied about equivalence partitioning and in the last class we studied about boundary value
analysis and equivalence portioning both and today we will discuss and study about state or
event transition. We know state how it is going to behave in embedded system. Before that I
guess we will just do a test selection, criteria for equivalence function and criteria analysis what
is the difficulty we had? We know that equivalence classes.
(Refer Slide Time: 01:05)

We are going to have in terms of valid and invalid where the normal behavior of the system or
normal expectation of the requirements are under valid equivalence classes and other side of the
valid equivalence classes is the invalid equivalence classes.
(Refer Slide Time: 01:22)

And also we had studied about after we choose a good test case out of this equivalence classes
using that group we start the boundary for each of that equivalence class valid or invalid in the
test above that equivalence class and above the groups below the equivalence class in terms of
the values and basically we had to reduce the number of test cases in terms of requirements.
(Refer Slide Time: 02:0-0)

Wherein the behavior is same could be valid or invalid and also we said an example of boundary
value analysis from -99 to +99. We had seen number of -110, -99, -98, -10, -9, -1, 0 -1 then we
had 9, 10, 98, 99, 100 means the boundary value is the test above the boundary and below the
boundary of a lower like this define it. So 17, we explained in the next slides in terms of
minimum just above minimum nominal average or average discount.
(Refer Slide Time: 02:49)

The middle one also it can be called as intermediate mode and we have a maximum and just
above the maximum, so this all will do covered in terms of equivalence classes.
(Refer Slide Time: 03:02)

While doping the equivalence classes we have to careful identifying the tests as especially for the
problems like next date problems where we see we cannot afford to give emporal with a month
of 31 which is not realistic and we should have knowledge of the requirement aspective.
(Refer Slide Time: 03:27)

Similarly that triangle column also we have discussed there in able to define whether it is triangle
or non triangle. Non triangle inputs of no use so we need to define what type of an input is on the
definition of the requirement such as triangle or excel triangles. So that was what about the
boundary value analysis and equivalence partitions.
(Refer Slide Time: 03:55)

We had an X types pro active infatuate that we are clearer on this, so what we had exercise for
boundary value analysis at a temperature meter example the refrigerator as two signals, so two
indicators are identical. The optimal temperature in the refrigerator pre indicator is lit that means
between 3 and 8 which shows that green.
Whereas if it is below 3 and above 8 it will indicate as red the temperature in this can be divided
in to three intervals we know that from infinity to infinity means here any number on the lower
side, three degrees but not including 3 degrees it is here let give them in the, we have include and
from 3 including 3 till 8 including 8. Similarly not from 8 but just above 8 it is a part one or
whatever it is till another infinity values.
Such as 100, 200, 300 that are the capability of that particular temperature sensor.
(Refer Slide Time: 05:24)

So for this example when using your boundary value analysis there should be one test case for
each boundary in every equivalence class, so there are about 5 test cases identified for
equivalence classes for this example the first one being test case of A negative infinity even -273

is a little hard to create and furthermore not very likely to occur. That means the temperature
needs to be managed 273 such as or very less.
So we could give something like this 70 max so next one you hat test case one B here we have
the problem of being close enough to the boundary since being on the boundary is outside this
interval. Is five valid digits a good estimate? That it is can we have 3 digits or 4 digit of
embedded software specification we should have an answer specificities how much it can go? Or
it will don’t have.
We should have a valid embedded system where the N service capable of so and so ranges.
Those requirements will take care of only 3 and the we should have a knowledge of the
underneath sensor or the hardware which is capable of taking a max of both the size so that is the
test case 1a and 1b equal, then we have test cases 2a 2b with second set of test cases both
modules are inside the interval.
So these values are the ones to choose that means there is a interval above 8 dependency so one
of that similarly we have the other one also below 3 k it could be anything 3- 10, 30 depending
on that capability of that sensor. Then we have test case 3a same discussions as 1b on the other
side and test case 3b same as 1a on the other side that is on the left side so that is how we can
have a boundary value and square this example.
Now the last test selection criteria technique that we will discuss today is about state or event
transition. So what is a state?
(Refer Slide Time: 08:12)

Let us briefly understand about a state. Many embedded system as are parts of embedded
systems or basically with the help of states state based behavior. It is something a different
modes which you can also call it as where the embedded system will move from one to another
one that means it has a pre defined set of actions or executions for such mode or such event, so
based on the criteria that in terms are that,
Based on the criteria that it takes is from that particular state it has the number of behavior that it
has to behave so basically any of the embedded systems are partly the pieces of the embedded
systems can be intermitted with the help of state based behavior so state based embedded

systems are state mission is also called as if they implemented in melanin embedded systems
especially complex systems in the industry.
Such that telecom or mobile any GPS or GSM system it take the control motive for an engine
control systems where engine control has he many features or functionalities given based on the
different states, similarly we have aerospace products the A matrix sub systems having state
based or state driven applications. If you see in these systems the state based modeling is used.
So basically in state machines,
Or state based embedded systems are a developed with a help of module because modeling is a
good concept in developing such states so we have a state diagram from that maybe we can have
a small session on what is state based modeling for the development purpose? Similarly we can
understand the state model based testing that we have studied model based testing in one of the
class in the previous sessions.
So models composed during this process are basics for the test designs for this all these modules
are the basis of designing these systems having state based behavior so the testing is called
module based testing. The purpose of state based technique is to verify any relationships between
events, actions, activities, states and state transitions. Transition is something like the entry and
exit of different states one state to other state the moment is called transition or the entry exit
from one state to entry to another state is called the transition.
So upon occurrence of certain conditions those conditions are called events so based on those
conditions or events that condition will occur. The events could be some actions, sorry as a result
of event the matches will take it, as a result of action some activities are going to be happening or
executed, so that is how I state transition will happen, by using this technique one can conclude
this system state based behavior meets the specifications set for this system.
What you mean this with the help of this technique we know that how the system is being and
existing on state based behavior and testing is we know that how we are going to reconstruct
specification such for the system testing different conditions different events of state transition
we will help us know whether it is transiting or not whether it is doing a entry in a state and
whether it is exiting from the previous state etc…
All this can be known it as technique called state transition testing and the state based behavior
are the projected using tables or activity charts or state charts, so just name that I will put this so
that we get to aware this the embedded software tester, so basically state this systems are
represented with the help of tables state charts, we will study little all this how they are tables
also will be there? Like there are few elements which are part of these tables.
This table is also called as group of table using function pointer in C this is basically
implemented with a very critical aspect in the embedded software systems where we have
complex mechanism in terms of different states and numerous events triggered based on a
numerous signals artery that means we have try to push suppose on state this under state and we
have a state change wi6thin these two.
And of course we need to define a state entry also how this state can be entered? And how this
state can be exited? So let us say state one this is state two 2 states are there these two plugs you
can have a multiple states in the embedded system suppose state 1 needs to be enter so there are

certain events that needs to be e1 or e2 or e3. Systems under satisfaction of one of the events or
all the events could result in enter ate in the state 1.
Suppose let us define the state 1 as initialization so upon power up there are certain conditions
power up is one condition the assistant will enter into any state once the init state is complete that
means there are different activities the action is two activities such as initialization or software
etc so this state will be complete so once the state is complete that means the condition is that
have to be or the actions that are to be concluded or completed within the state.

So that means we are good for going for next state use exit criteria is satisfied, that means we
have an entry criteria and state to in satisfied. Here this entry here this exit so we know that state
2 is entered this could be a main application similarly we can have next state, next state like this
with the help of a state diagrams and this state can go to first state also based on the pre set or
some events that will result in switching between the states.
So that is what definition of state, this state diagram is basically state diagram this state diagrams
are basically represented with the help of text I think having expenditure example how tables
will apply, that table will basically define the state and events state charts also will define
complete state machine entry exit all the values and everything and we have a lookup table
identifying the functions.
Which are functions which are responsible for writing into different stages these are the
executors and aspects that are part6 of the embedded software systems. So showing format of
those states of condition mechanism in order to test it so how we are going to test it? Mostly with
the help of model based testing will because state machines are state transitions which terms
basically there is no model.
We study about model based testing in the next class or next sessions. So that is about state
transition you can see an example of states.
(Refer Slide Time: 18:41)

This is again from the book embedded soft ware testing by Balt brook man and Nottingham so
here he is depicted a state machine a state chart basically will it of a state recorder, let us try to
understand from those understanding the states and the state chart. So there are pre states you can
keep the grade one off on recording so take recorder can be in of state if take recorder can be in
on state, take recording can enter in to recording state.
How half state will enter? There is a small dark emergency that is from the switch of we can say
so we have switching icon here which will help in terms of going to the state. So that is why it is
called as test state and terrific rated cam go into on state with the help of some operation or some
action that is remote of event, event power on initialized system that means once you power on
with this power on switch and you can connect to the power supply.

And make switch from off to on it will enter so the event is event power on so action is the
initialized system so these things are important state event and action with this, this state is
defined or shifting o the nest state is defined. Next is on what is going to happen within on? Or
what are the events or actions that are going to be taking place this state that is on state you can
see a circular arrow transition to self this is an important turn.
When on it can be there in on only because user has not done any operation here just followed on
see we waiting for the user to operate further could be play or as you can see in next state
recording or anything. So till then it is going to be these unite. So that event could be called as
event result or initialize system that means not on it is just waiting for the result event to happen
or it is waiting for the initialization any further initialization for the next.
The next part is recording so upon user tresses the recording that on what will happen is? It will
enter into recording state, element is called start recording on the action is start recording, so
there will be guard there will be turnings called guard so what you digest from on to recording
guard will be triggered this is called guarded transition and of course some recording we can
again go back to on state by stopping it so you can have another event called stop recording.
And the guard could be the next one similarly recording to half we can go but there are take the
guard us with the we should first do a stop and we should go for off. So likewise it defines state
path entered and exited so there times are very important concept state, event, action. So that is
about an example about states how the state transition is going to happen here we can see three
these are state, so what we have seen the different events.
(Refer Slide Time: 23:43)

Those are expiring in the next table next bit so let us do a small example on this o there are two
levels of aspiring this or the flow between A and B you can see, laporfiding A those side as B the
simpler turn we will try to understand, so what is told about the synchronization between ortho
original groups stored on each information that means two orthonal events are going to occur
with different states and how they taken care is what is been explained.
So there is a state 1a, state 2a state 3a in the first orthonal section and it will enter into the next
orthonal with the help of state1b, state2b, state3b state 1b and for system within this stage

executing this stage there are different events that is to occur so state 1 A is been entered in type
of forearm and event1 will go to state A and from state A event 2 it can happen it can come back
to state 1 similarly state 1 into state 3 directly you can go the event is 3.
Similarly from 3A we can fall back state 2A with the help of event 4 then also there is a second
orthonal region the inventory can also give up to the next one which will result in state 2B state
3B state 1B etc state 1B can be directly enter with the help of this so there is a synchronization
mechanism that is depicted here in the one around so that is not go in detail about this but we
have to understand from this is that define states are responsible,
For taking into the inputs from different events and going to the next state in the fall switching
and three times are state in action basically enter remember for embedded software system.
(Refer Slide Time: 26:20)

Now the behavior of the system can be classified into the following as three types. The state
transition behavior is divided into three types simple behavior the system always response in the
exact same way to a certain input independent of the system’s history. That means it won’t care
whatever happen in the past but it will behave the same way all the time for certain input. Second
type of behavior is continuous behavior.
The continuous behavior the current state of the system depends on its history such a way that it
is not possible to identify a separate state. That means based on the history it will decide whether
it will switch it or it will notch it so basically it is not possible to rectify a separate state this is
continuous behavior. The third one is state based behavior where the current state of the system
dependant on the system’s history and can clearly be distinguished from other system states.
That means we know where the system it lie in this sort of a behavior that means the current state
of the system is very well prepared on the system’s history. But it is possible to identify a
distinguishes state on the other state where it is, so this is a state based behavior second one is the
continuous behavior where we don’t know or we are not able to identify the specific states for
the particular input it is again depending on the history.
Simpler behavior we have clear input and it is very much independent so it will behave of the
same all the time same that is what it means. So now let us move on to next,

(Refer Slide Time: 28:26)

Functional behavior in state machine so basically we need to understand what are the
functionalities we are going to execute, so what we understood from this? There are different
actions based on different events all this all part of the functions one on the other day that the
particular piece of software is going to behave those functions are something like procedure or
different sound systems.
Which are driving the embedded system into switch between the different states so all this
functional behavior e are going to test it and cover all the states with the software enter and exit
that means the coverage is very important for a particular state as per the specification. So we
need to create test cases as per three steps which each state how to reach state? Using every
transition that from the default to switching.
That means every transition we are going to cover with the base to the next state with different
transitions, similarly the next one is for each possible chain of transition which means N to
switch coverage’s which means maximum of possible transition in the complete part of that we
are going to have it so we are going to create test cases accordingly. So state machine based
testing is called the quite useful model based black box testing.
See any type of function can be represented as a finest transition can be tested using this
technique so finest state machine in all beyond this you have but you can study that in embedded
system basis where we have different state machines define and its specifications are get it. So it
is transition based testing will help and identify the issues with those implementations of state
transitions, so somewhat it is the first step what we do using the state machine testing is?
Respect the model exam that means we are going to construct the model how the mode is going
to be behave here so we are going to with the help of test we are going to trigger some of the
inputs so that we could model is constructed, some ties state machines are used by a
imprissioners constructors as implementation tools. The models are used or developed so in
those case the state machines and of course been used directly we can directly use the state
machines otherwise this is a state machine model asked to construct based on the requirements
based transitions.

That’s it model base testing where awe developed the model first then defined the states or based
on the requirements depends on these simplicity of the complexity of the requirement of the
underneath transition we are going to develop the state machines. So what will happen is during
the construction of this statement is false can be there so the key properties with the state
machine is that all input files can occur regardless on the state of the machine.
Implemented through model based design or it could be implemented directly on the
requirements the requirements should be so good and clean fact it is implemented directly of the
requirements, so saying that you can test it if the models are level we are going to attach the
models to test it is the requirements of that statements we will brunch on the functionalities that
is underneath the requirements.
Need or different states that are responsible for state machines, so there are other detail like the
model based testing and brunch probably we will study that it will of the model based testing
class. So basically we need to understand the strategies to elaborate or fouls on the transitions so
very important in to understand the concept of transitioning and functioning which happen with
the help of that and event will result action.
So all this part of the state N I will say N, so it is very important from different state from 0 to
state N from state N to A whatever it is all are based on the transition. So we need to have a
strategy test on the transitioning between the tests so 0 test is coverage requires 1 test case
because we know that 1 terms and for each possible transition we have a one digit or one
possible transition is there.
So let likewise we have for N to 1 conscecute transitions where an N to switch coverage
requirement is there. So that is how state transition testing is taken care where transition has to be
understood very well. Now having understood the different behavior and its states, events actions
you need to categories the faults so what are the fault category that are for incorrect state
behavior?
(Refer Slide Time: 35:21)

We know that states can be mistreating two different errors or faults and how we can categorize
those faults in the state based embedded system behavior? The first is that the state chart do or

does not represent a correct translation or the systems functional specifications that means it is
actually present in the functional transition a state behavior test result technique is not capable of
revealing these types of faults because,
The state charts themselves are used as the basis of tests. So we not be able to identify the faults
it will be because our tests are based on these state based functional specification it is a troll
mated specifications are switching and all that we will not be able to find the problem the second
is called is state charts or syntactically it correct or inconsistent that means this faults can be
revealed by static testing.
So these are some of the hues that we can come across while doing the embedded software
testing using state analysis so this type of faults it could reveal the doing the testing itself or let
us strategy what we want or alternates we need to find out after finding these faults. So second
will happen because syntax errors are there or syntactically it is all implementyed or it is not
consistently behaving the implementation or it is wrong.
So these faults can be revealed by static testing so static testing anyway we will study it, so we
have analysis or inspection methods with the help of that there are additional adding tools just or
any other tools with the help of that we can reveal this kind of a inconsistent insist of input
output in the events those kind of a problems are found out with the help of that as static testing
if the faults found this way corrected.
Then the state has constitutes the basis or dynamic testing using state base testing analysis. So
after the static testing this will be used for doing the state based testing the third cause is the
transition sorry the translation from the state charts to code that means how the code is
implemented from the state chart whether it is implemented exactly what is transition that is
where the fault category lies.
It will becoming increasing the common that translation is performed automatically that means
we have a generator holds generator from the models such as antics under doll net model based
design they do they have a auto core feature where they generate the code from the model itself
with the help of that they integrate and execute the code but it is not 100% that the code that is
developed from the model isn’t auto code.
Still within to heighten it to make it exactly what it is there, the code generated this way and
exact representation of state charts within that the use of the state charts as which is used for the
design it therefore not useful and the application of the state based design in super close,
however the coding based on state charts is applied without the use of generator when a state
based is tested and techniques will be used.
Auto code generator we have later we are not able to use then we should be stick to the testing
with the state based testing and the technique what we have seen with the help of transitioning
state based testing. The next we will study in detail about,
(Refer Slide Time: 40:05)

The faults different faults can occur for doing the state charts and a software having implemented
the state techniques state analysis step, states can have issue states without incoming transitions
that means without inputs specification and our implementation faults that means states are
happening without any transitions. Second type of faults can occur missing initial states that
means the inputs are not there all passed in the state chart must be prepared.
In the case of the transition the super state in which the result is substitute E is not indicated the
super state must contain an initial state that means where we don’t have a resulting sub style
there should be a initial state at least to switch on if the easy state is not indicated the state at
which that the ambition cannot be addicted we don’t know where it is going to be terminated the
states specification are implementation fault.
Specification could be wrong or the implementation could be wrong so this is one of the faults
missing in each state third one is an additional state that means an extra state something like the
system turns out to have a worst stage than it is represented in the statement which something
like a dead line or a dead state, so it is again a problem with a implementation. So it implements
it and it more states sop that those part cannot be covered.
Or that is a fault so fourth one is the missing state that is one state is missing suppose to be it
support sot have four states which for that each states are the one file with the help of the code
then that is a fault. The state that is shown on the state chart but it is not presented in the system,
the other one is states are there when particular state is complete the transition takes place to non
valid states or the state is going to be not existing.
But the code is done which is going to go somewhere but it may crash or it may be predictable
behavior will difficult to test sometimes so you say issue basically so we have specification or
implementation issue where we will not going to have inconvenience state or some of the initial
states are missed and implementation wise we have states function state we have missing states
where there is no state at all and the states are there.
But it is corrupted so that system will not behave properly or it may crash so this some of the
faults that can occur for th4e state charts. The second categories is on guards so guards be issue
point to a vision and not to a state so guards are something like what is said in relating the way

event where continuously it is happening in terms of one example we can say by take is
switching to easy that means present, so it is in guarded transition. So what are the faults that we
can have in guarded or in guards?
(Refer Slide Time: 44:01)

So called must point to a transition that not in a state always guard should be identified in
transition what transitions are used? Transitions,
(Refer Slide Time: 44:22)

So transition must have accepting and a resultant state conflicting the transitions have to be there
and even triggers a change from one sub state to another sub state and at the same time triggers
the transition out of the super state that means the main state itself is not able to achieve there is a
conflict between different transitions it may happen to that state or this state while happening that
we pick you out of the main state itself.
So this results in the fact that a certain sub state that no longer within reach that means it will
never go to that sub state because in a complex system we ask in many states and many sub

states so without coming to the main states it is not possible to go for a sub states so I will take
with raw as whichever is possible hear so that is a main straight to many states are been there and
there are small sub states but into that next state suppose then we have a transition between these
we know transition between these two we know and transitions from this we know.
This we know etc this is measure main state to this is called super state these are all sub states
and we should have mechanism to this sub state through this main state similarly the other way
also through so it cannot be conflicting for state transition between the sub states to main states
to sub states instead all this will be predictable such a way that the state transition is executed.
This is what the meaning of the reachable sub states should be reachable.
So confliction should not be there for the state transition. Next one is missing or incorrect
transitions that means the answer I told you in the previous state itself the states are not there but
transition is there sorry whereas the states are there but transitions are not proper all this is the
result in state is a neither correct or nor correct in terms of switching there transition, so other
one is the missing or incorrect actions.
So we know that different actions are there due to which the transition occur so that has to be
action that could be missing or the actions are improper so incorrect actions are performed as a
result of an executing a transition, specification issue and implementation issues all this could be
of specification also or it is a implementation process, so transition and states these two are very
much important in terms of testing the embedded systems where states are implemented.
(Refer Slide Time: 47:56)

So fourth one the last one is and of course we have a miscellaneous and we will go through that
also. Events so we know that the events due to which the state will target we have a missing
event a fault could be there in the missing event and event is ignored that means the events are
not happening specification and or implementation fault that means events are happening but we
don’t know that why the vent is happening,
The reaction to a defined event explains how the reaction is not defined in this example that
means the safe path it is also called as the safe path say implementation fault so some events are
happening but there is no reason for that actions or something like that events are happening that

is but hidden oath event. The third one is a reaction takes place to a UN identified event that
means a reaction is happening there is no event.
This is also known as the trap door that means it is a implementation called so reaction is the due
to something but there is no event, this is the fourth type of faults in the category of states of
embedded system.
(Refer Slide Time: 49:34)

The last one is miscellaneous this we will talk about synchronization in an orthogonal region a
synchronization sub state is situated in one orthogonal region without a connection to an event in
another orthogonal region that means we have an two spheres having different states within but
there is no proper sequensation with the two regions. A wrong implementation of the
synchronization at all can lead to rarely or not at all regions of states.
No synchronization at all or to a barely detectable deviation from the required system behavior,
so this is basically talking about the synchronization between the say sub systems where both the
sub systems lets us take a two sub systems and both sub systems have implemented the states
technician so in this case, so the events that are happening within the sub systems and in between
these sub systems for interaction between these two sub systems.
Or based on the synchronization, this has to be in that in order to work it properly so this is what
is the fault could occur then in this region of the synchronization.
(Refer Slide Time: 51:19)

And we will try to have a small table state transition fault category coverage how it is defined
this is the last slide so coverage of the fault categories we will define the different faults in 1.1,
1.2, 1.3 so this is check list straight on transition technique we can apply or not. So based on this
fault categories are applied this different fault categories are all what we have about discussed
here 4.1, 4.2, 4.3 then 3.1 to 3.4, 2.1 guards.
States have 1 to 5 likewise we have different faults. So we have a check list, check list in the
sense whether it is a right or it is wrong base on that we are going to have it while defining the
state transition techniques so very important so that the coverage’s so that is what the meaning of
this you can have this, this, this have not covered embedded software testing, so we know that
this check list with the help of this we have the state transition techniques.
So this point category can be tested by both the check list and the test design technique that
means we are going to have a coverage for all that is 2.4 can be covered with the help of the test
design technique and with the help of check lit also, category 4.3 is not covered by the test
design technique arrow based technique is probably touch wise so at on this something like we
identify an error or a fault this is just see what could be the problem.
So this will happen during the dynamic exhibition only because the tester will have an test
driving or the system of how to executing only when he is doing some other tests he will guess
some errors while doing some other tests so 4.3 is what type of sink it is an reaction takes place
to an undefined event so we know that as per specification we will have tested but what will
happen that test is that some reaction is happening.
But that is no event for that so trap door it is also called so that is what the category is about so
this can be done with the help of errors based, so basically it will help in terms of coverage of
state transition this is the elaboration of this so you will continue this transition with some
exercise and other testing mechanisms and methods I the next class so that is for this session.

