Embedded Software Testing
Unit 2: Testing Methods
Lecture 14
Seer Akademi-NPTEL MOU
Welcome you to the next session of embedded software testing unit 2 the testing methods lecture

14, this is the important unit because based on this the entire embedded software testing. A life is
so we will be doing a detailed understanding and we played examples through off different
testing methods. It is very important to understand the testing methods like what we spoke about

black box testing and different techniques or refreshed techniques of black box testing.
(Refer Slide Time 00:47)

Black Box Testing

» Test selection criteria (technique)
— Equivalence Partitioning
Boundary value analysis

— State or event transition

P

Today we will study the boundary value analysis of this is in different technique, criteria
technique again these are the platform is equivalence partitioning. What are the fundamental that
we had understood in equivalence partitioning that includes accession being some of the values
we consider differently. So before that we will just have a glance of what we studied in

equivalence partition.
(Refer Slide Time 01:29)

Equivalence Partitioning

» Background:

— Typically the universe of all possible test cases is
so large that you cannot try them all

* 110 10.. 1 to 10000, ..

— You have to select a relatively small number of
test cases to actually run

— Which test cases should you choose?

— Equivalence partitioning helps answer this
question '

Rl studens, e byu adw

2
Equivalence partition we know why we get because we cannot afford to have numeric test cases
simply because we have possibility of doing test to the different number of inputs because the
system can behave or either the normal way or an abnormal way for a typical requirement. We do
test only the sufficient levels of inputs how we can do that reduction is by having the partitioning

that is called equivalence portioning.
(Refer Slide Time 02:12)

Equivalence partitioning from
different views

— Equivalence partition theory as proposed by Glenford
Myers attempts to reduce the total number of test
cases necessary by partitioning the input conditions
into a finite number of equivalence classes.

— Ability to guide the tester using a sampling strategy to
reduce the combinatorial explosion of potentially
necessary tests

Ref
Z hitpi el ecipse, srgiwiisxpim/guidancesiguideines/equivalence_class_analy
- sl CATORATM hied

Also we understood that the basic purpose is to reduce the total number of test cases by

portioning the input conditions into finite number of equivalent classes.
(Refer Slide Time 02:24)

Equivalence Partitioning forms

+ First-level partitioning: Valid vs. Invalid test

cases
Valid Invalid
Usual behavior i
: other behavior than
What is expected . . . What is normally dol

-

So we also studied about the first level of valid and invalid test cases first we are going to define
all the test cases and then we are going to have a partition of one usual behavior what is expected
for testing those inputs. Those are called valid equivalence partitioning the other one which is
other than the normal behavior in term of outside the count are whatever it is those are called
equivalence partitioning.
(Refer Slide Time 03:03)

Equivalence Partitioning forms
contd.

+ Partition valid and invalid test cases into equivalence classes

~ Eq V1 (: : ‘ — \

q.i5("

B M2

s

« Create atest case for at least one value from each equivalence
_class
-

And we defined the numbers accordingly equivalent valid one, valid two, valid three, based on

the classes and each classes will have one test case selected from
(Refer Slide Time 03:18)

Equivalence Partitioning -

examples
Inpaut Valid Equivalence Classes Invalid Equivalence Classes
A integer W such that: [-99. -10] < 0%
-99 <= N =<9 [-%, -1] =99
L1} Malformed numbers
[1,9] {12, 1-2-3, ...}
10, %] Non-numeric sirings
{juank, 1E2, 513}
| | Empy value
Phone Number 555.555% Invalid format 555555,
Area code: [200, 999] {555)555-5555 (355)555)5555, ete.
Prefix; (200, 999] 5555855555 Area code < 200 or = 999
Suffix: Any 4 digits 200 <= Area code <= 999 Area code with non-numeric
200 < Prefix <= 599 characiers
Similar for Prefiv and Sigffiv

-

- Red. shadents os. yu ode'

And we also studied from example, of integer N, the engine from minus 99 to plus 99, so valid
equivalent classes. So like this we have equivalent classes, similarly we have about three to four
equivalents classes where we try the input the values such a way that it is testing, it is tested with

an invalid arrange of inputs.
(Refer Slide Time 03:58)

Equivalence Partitioning contd.

— Twotypes of equivalence classes are classified:

Valid equivalence class - the set of valid inputs to the program
Allother inputs are included in the Invalld equivalence class

- Guidelinas for identifying the equivalence classes:

1. If an input condition specifies a range of values (e.g., Count 1 to 100),
the equivalence classes are:

1. Onevalid equivalence class is count from 1 to 100,
2. Twoinvalidequivalence classes, count < 1 and count > 100,
2. If an input specifies a set of values which are handled differently, like

type of color should be (RED,BLUE,GREEN), then the equivalence
classes are:

1. One valid equivalence class for each value{i.e., RED, BLUE and
GREEN]).

2. Oneinvalid equivalence classes for any other valua (e.q.,

YELLOW).

3. Ifan input condition specifies a must be value (e.g., The character
must be a letter), the equivalence classes are:

1. One valid equivalence class consisting any letter.
2. Oneinvalid equivalence class consisting a non-letter.
ey Contd..

Similarly other example of phone numbers we had studied and we also understood about guide
lines there five guide lines that are important in terms of time in memory, sizes, range, count,

ete...
(Refer Slide Time 04:13)

Equivalence Partitioning contd.

Another example:
= system behavior is subjected to the following condition

regarding the input temperature:

15 == femperalure =< 40
The number of possible values for the temperature is huge (in
fact it is infinite).
However, this input domain can be partitioned into three
equivalence classes:

— temperature is lower than 15;

— temperature has a value in the range 15 through 40;

— temperature is higher than 40.

Three test cases are sufficient to cover the equivalence classes.
Imvalid : 10, 50

“alid © 35

#

oy

We took few more examples in terms of temperature from 15 to 40,
(Refer Slide Time 04:18)

Equivalence Partitioning contd.

» Another example

— Fuel level sensor shall set the indicator as per
below conditions:

+ 1. If the level goes below 10ltrs it shall set the
indicator to

+ 2. If the level goes above 100ltrs or below 1ltrs it
shall set the indicator to Red

= 3. Otherwise it shall set the indicator to green

l:lmliid l l valid l frvalid
i : } Alarm to be set

0 1) 10 100 100

Then we have fuel level sensors having three types of indicators yellow, red, and green. So we

know that what is invalid? What is valid?
(Refer Slide Time 04:42)

Equivalence Partitioning example
contd.

* Output equivalence:

» Equivalence partitioning can also be
applied to the output domain of the
system. (output based testing)

]
-1

10 101
11 102
12
13

e

9 100
So basically we are going to draw a range of all the test cases and again in the range we are
going to create a table, it is called the trip table having all the possible completions defined for
each of the inputs with the help of different columns. In further we are going to have the

equivalence classes divided as valid, invalid test of the below table.
(Refer Slide Time 05:01)

Equivalence Partitioning contd.

* Output equivalence:

+ Equivalence partitioning can also be
applied to the output domain of the
system. (output based testing)

» Test cases are then derived that cover all
equivalent output classes.

We also know that we can have the output equivalents classes defined as well not only the input

dependence, so that is about equivalence partition.
(Refer Slide Time 05:29)

Equivalence Partitioning forms

* First-level partitioning: Valid vs. Invalid test
cases

T

Today we will go through the black box testing technique called boundary value analysis. So
what is the boundary value analysis? First we understood that the equivalence partitioning forms

with the help of valid and invalid functions.
Here the valid will have the numeric numbers of test cases you can see that black dots within the

first five, and the second five as invalid test cases and the further we are going to group them in
terms of, say this is one set, and this is another set, this is another set, so like this we have, say
for valid some four are there for invalid there are equivalents valid one, and we have equivalents

valid two and equivalents valid three, etc...
So we have equivalents invalid data, one we have equivalents invalid two, so this is invalid, we

will have equivalence valid four. There are four valid equivalents in this and three invalid classes
on this. So out of this group of invalid classes select any one which is appropriate for that
particular system which is in the test or the particular requirement which on the test. Now again

we might have one or more covering we can be equivalence class.
It is very important for us to understand that typical requirement behavior also, because we need

to see most of the requirements lie with the abound values, right A and B, so surrounding A and
surrounding B, how we are going to test it that also we need to consider, which is nothing but the

boundary value which is visible to test.
(Refer Slide Time 07:53)

Equivalence or Boundary Value
Analysis

» Test cases made by BVA will catch more types of
errors, but on the other hand there will be more test
caes, which is more time consuming.

* |f you do boundaries only, you have covered all the
partitions as well:

» Technically correct and may be OK if everything works
correctly

= If the test fails, is the whole partition wrong, or is a
boundary in the wrong place — have to test mid-
partition anyway

« Testing only extremes may not give confidence for
typical use scenarios (especially for users)

* Boundaries may be harder (more costly) to set up

So continuation of the same equivalence partitioning here we have the boundary values analysis
so we choose a selection that is what we have done of each group of equivalence classes’ valid or
invalid one test case we have selected. We can see that round mark once as the chosen test cases.
so if an input condition specifies a range bounded by the, test cases should be designed with
value A and B and also just above A, and just below B, like this we are going to have it so the
next slide you can see there is a boundary of A just above A and just above B, suppose that is

lying on the boundary.
We need to test with the value which is just above A, below A, this is what the first equivalent

class, similarly for other equivalence class we need to have it similarly for invalid class also you
need to have it in the same way. So which is nothing but the boundary value analysis so the first
stub is creating a test cases test boundaries of equivalence classes? For each identified boundary
the input and output create two test cases that mean we know that two dots are here for the

boundary conditions.
Two test cases definitely are going to be there, one test case on each side of the boundary but

both as close as possible to the actual boundary line. That is how the system behave is for the
boundary inputs one for the low, one for the high. Or it could be one for the negative the other
one could be positive other one for the above and other one for the below, so likewise we are
going to have boundary values defined so I will read it again, we have a valid and invalid cases

in the partitions and we are going to define them as equivalent cases valid and invalid.
We have that criteria using that each one good selection we are going to have it using the valid

and invalid cases, and once we have that we need to add further for the requirement which are
lined with the boundary values, because of the boundary inputs and outputs, so you can see for
the each of the equitant cases and we have a boundary conditions defined. Okay, the next one is

the next cases made by the boundary value analysis will catch more types of error.
You know why, because the system behavior of the boundary could change, suppose to take the

variable of 1.0 to 5.0 and we are trying to test 4.9 or 5.1 the system should be held exactly, so we
should be predictable with that spellings the chance of catching the errors are issued at the

boundary are more actually, so it can have boundary value analysis, but there is a disadvantage
that we will have more aspects on the other hand, there will be more test cases, which is more
time consuming, because we need to rectify it, but it is equally important the boundary value
analysis test cases, if you do boundaries only, all the partitions which it’s definitely going to
cover all the partitions but, there is to have a intermediate value for all the partitions but, what is
insisted here is you can correct the all partitions of the boundary value analysis is selected, so
whether to have 1 to 10 as the requirements for the input, it is good to have a boundary value for

1 and 10 and then intermediate value such as 5 so, how the test cases we will have.
(Refer Slide Time: 13:05)

Equivalence or Boundary Value
Analysis

= Test cases made by BVA will catch more types of emors, but
an the other hand there will be more test caes, which is more
time consuming.

= Ifyou ||||:|+:: boundaries only, you have covered all the partitions
as well:

» Technically correct and may be OK if everything works
correctly boundary <, =, = (rpm 8000 to 7200) if, case
stmnts..

= [fthe test fails, is the whole partition wrong, or is a boundary
in the wrong place — have to test mid-partition anyway

= Testing only extremes may not give confidence for typical use
scenarios (especially for users)

» Boundaries may be harder (more costly) to set up

o 3
For 1 we have a upper boundary and lower boundary as 9 and 11 it will become 4 and then the
intermediate value that is nothing but the things to move on, totally there are test cases from 1 to
10, if the test fails then the whole partition is wrong, or is a boundary in the wrong place, the test
outcome or the test results that, what we are trying to do is to put back the party, that helps to test
mid partition anyway, and the testing only extremes may not give confidence for typical use
scenarios, which is for the users, ensure that the average intermediate value like 5 when you
considered as the range as 1 to 10 usually the system from 1 to 10, it could be 2 or 3 whatever it

is so better to identify what is the value.
A good example is the cars sped between 0 to 120, but there is less chances to get, the driver

always at the 0 speed and at very few seconds that the driver drives more than 150 or 200
kilometer speed, so trying it or testing it once that the boundary conditions are good, it is very
important that the car is stable, and driving in the range around 40 to 60, so that is called as the

normal test scenarios, that really gives the input components to the particular distance.
Sometimes it may be difficult to get the stable, because we know that the car speed is 0 to 120

but going by the theory we may not be able to restrict that right, so how will you going to fix it,
are you going to take it in reverse, it is definitely not going to be -5 or -10 for sure, but we should

have some simulation or some mechanism which is going to be cost deliver.
Then why we need it is low in the terms of cost, theoretically if the speed is less than 0, are

likewise the RPM it could be the engine RPM, which goes beyond certain level, and what is the

behavior of that, so likewise we has to have this thing, to test that it may be little challenging in
terms of selecting the environment, so we have to plan it accordingly, so basically boundary
value analysis is the requirement of equal transaction instead of choosing any resident of the

equivalent stuffs, mainly it is focused on the boundaries for each of the clamps.
So, the idea is to select the one test case for each boundary equivalent stuff, the properties of the

test case is belongs to the defined equivalent parts, it has the value, which is preferable on one
good value we need to select on the clamp, which is close to the boundary of that particular
equivalent stuffs.

So the main reason why the boundaries are important is that, they are generally used by program
also, and also the execution of the program, so program also implemented the boundary values
has a boundary conditions less than greater than equal to so, if that is say the RPM is 6000 to
7200 definitely he has considered the lowest value as well as the highest value, while
implementing the code, so that is we need to have the boundary value analysis, so to control the
code which are implemented, could have the control of execution is under bandwidth.

So, definitely he will have for implementing this, if the case statement all is implemented I the
boundary value analysis, so while doing this, it is bound to happen that he could may be met
some mistake while implementing so we will study that what are those.

There are the two sets of the border and while we test the boundary in the both this equivalent

facts, so all this aspects is to be considered.
(Refer Slide Time: 19:26)

Equivalence or Boundary Value
Analysis contd.

» Test cases made by BVA will catch more types of emaors, but
on the other hand there will be more test cass, which is more
time consuming.

« |If you do boundaries only, you have covered all the partitions
as well:

» Technically correct and may be OK if everything works
correctly boundary <, =, = (rpm 6000 to 7200) if, case
stmnts..

* |fthe test fails, is the whole parition wrong, or is a boundary
in the wrong place — have to test mid-partition anyway

= Testing only extremes may not give confidence for typical use
SCEnanos éspemally for users)
» Boundaries may be harder (more costly) to set up

i

Okay, so in other terms we will detail out the equivalence or boundary value analysis, the idea
behind this principle is, that defects can be caused by the simple program error which is related
to erroneous use of boundaries, and so typically the programmer has coded less than or equal is

to be coded.
When determining the test cases, values around these boundaries are chosen so that each

boundary is tested with a minimum of two test cases, that means the lower on and the upper one,
one which the input value is equal to the boundary, and the one that is just beyond it.

So this way we are going to design the test cases under the use of implementation, if a
requirement says A < B and in code its implanted as A <= B then the defection possibility is more

with BVA than EP, BVA means boundary value analysis, EP is equivalent partition.
So, it will bring out the issue of the boundary values when that implementer has implemented

wrong, another example, if A < B is implemented wrongly as A > B then both the EP and BVA

could defect the error.
So, this is because the whole purpose of the implementation will collapse here, so definitely in

any of the test, definitely it going to be caught, the above one is still we say valid but, equal to

condition is considered has the wrong one, we caught in the BVA and EP.
So going by the earlier example what we discussed in few session , where 15 =< temperature =<

40 and assuming a tolerance of 0.1 in the temperature values, the boundary values to be selected

are 14.9 (invalid), and 15 which is valid and 40also valid but 40.1 is invalid.
So these are the equivalent values along with the boundary values, so what are those invalid

values are noted, 40.1 and 15 is normal, 40 is valid, then we would have the temperature which is

equal, so suppose there is no equal to n some 15 so we may have 14 has an valid value.
So there is no equivalent for the boundary value, then 40 would have been an invalid boundary

stuffs, and of course we have some 0.1 definitely then we need to have the point only considered

the lower side, of applying which, the 25 you can have as well 15.1 here 39.9.
So we saw the valid and invalid values for the boundary value analysis, so these two techniques

are very important, then the requirements of the equivalent boundary value we know that, instead
of choosing and representing form like the boundary, so that is the main thing in it, okay so it is

all about the equivalent and boundary value analysis for the temperature.
(Refer Slide Time: 24:28)

Boundary Value Analysis - examples

Input Boundary Cases
A nember B such that =104, 9%, 93
A =N ==099 =10, -

1.0, 1
o, 10
L L]

Phone Number

Area code: [200, 959] ‘?
Prefix: (200, 999] -
Suffix: Any 4 digits

-
So let us look into some more example, this time example what we have is the N digit can take it
and put from -99 to +99, one of the boundary values, here there is no question of the valid or
invalid, so all will have it, but out of which in this cases we have to select it whether it is valid or
invalid, so what is the boundary case that is -99 <= N and N if <= +99.

So here are the four cases that we have -100, -99, - 98, of course -99 is the actual boundary case,
because it is o the exact edge of the input, similarly we have -10, -9, -1, 0, 1 and 9, 10, 98, 99,

100.
So these intermediate values also considered because these are the valid equivalence of the

range, so we need to have this along with the code, and the next example is about phone number.
So, we will have boundary cases features area code with 199, 200, 201 at lower boundary and
higher boundary 9138, 999 and 1000. The prefix we know that, 200, 199, 198 is the boundary
and prefix of higher boundary is with 998, 999, 1000 and we have suffix with we should have

3digits, 5digit test and inputs of suffix.
So, these are all some of the valid equivalent classes with boundary conditions which are allowed

to present it. So it is very important aspect of boundary value analysis. So, we have gone through

the example,
(Refer Slide Time 27:09)

Applying Boundary Value
Analysis

= In general, application of Boundary Value Analysis can be
done in a uniform manner.

= The basic form of implementation is to maintain all but one
of the variables at their nominal (normal or average) values
and allowing the remaining variable to take on its extreme
values. The values used to test the extremities are:

— Min —— - Mirimal

— Min+ - - Just above Minimal
— NOM - e~ - AVErage

= MAXe s e = JUSE Below Maximum
L T | e ¥ 15 Ty W

F Tl Wi i . sman ag ok
= 7

In general, application of boundary value analysis can be done in a uniform manner. That means
uniformly we can select based on the input, what the requirement is, suppose which requirement
is bit complicated and some inputs and outputs then better to have a defined truth table, expected
to have a truth table identifying all the combinations first tried to all the combinations then, the
first step, the next step is to go for identifying the boundary value analysis along with the
equivalent portioning or equivalent portioning it defined or add compliment to the equivalent

portioning to be found.
That is what gently behind it. You must give importance for complex requirements. So, that we

know that we are going to address the first requirements, each requirements of how it can be
treated? The requirement based on requirement to report. We know that how grouping can be
done that we have seen in our edit ones. So, basic form of implementation is to maintain all but
one of the variables at their normal values and allowing the remaining variable to take on its
extreme values. That means normal or average value first we have to see, then we are allowing
the remaining variable to take as extreme values the values used to take the values the below,

first is complex requirements which is a type of extreme. So we are going to have a minimal

little more than that just above minimum, then nominal that is average or normal.
Then we have a max, maximum value then a maximum value little less than that just below

maximum so this is an extremity is limited considered for arriving at forming the boundary value
analysis, so this is very important to have it. In one of the terminal you will have this difference

from one of the equation in 96.
Boundary value analysis has very important aspects,
(Refer Slide Time 30:20)

BVA important aspects with ex.

= The Next Date problem:

= The MextDate problem is a function of three varables: day, month and
year. Upon the input of a certain dam.d.iﬁ‘u ms the date of the day
after thal of the input, The inpul variables Rave the obvious

conditions
-~ 1sDay =31, system requiremants/user req. realistic inputs
— 1smonth = 12, we can't have day as 31 in case of Feb, Apil.etc.
= 1812 = Year 5 2012. zalection shauld be depandent

. FHere the year has been restricted so that test cases are not too
arge). There are more complicated issues to consider due to the
degenﬂenmer_-_ between variables. For example there is never a 31st
of April no matter what year we are in. The nature of these
dependencies is the reason this example is so useful to us. All errors
inthe NextDate problemare denoted by “Invalid Input Date.”

hourminube secs B0, 24,00

T

The next date problem is a function of three variables: day, month and year upon the input of a
certain date of the day after that of the input. The input variables have the obvious conditions like
day, it should be 1 to 31, month should be 1 to 12, and year 1812 to 2012. So this is the definition
of three variables you know these are some of the realistic. Basically if you have clock also we
can derive. So what is the next problem we are going to have? Here the year has been restricted,
so that test cases are not too large. Why because? We know that, system can take up to 2012. So,
there are more complicated issues due to the dependencies between variables. That means these

variables are very important. So that dependencies have to be considered.
For example there is never a 31* of April. That means if we define these dependencies of the date

there is only month correct know? If you have a February or if you have a month, so we are not
going to have the 31 as an input right? So you cannot have this identifying 31 for the month of
April or the month of February or any of the given months. So, no matter what year we are in.
The nature of these dependencies is the reason this example is so useful to us. All errors in the
next date problem are denoted by “Invalid Input Date” very important thing also we need to
understand in that is, we should be aware of the system requirements or user requirements or any
what it is called realistic inputs. Why they are important is one value is depending on the

dependent on the other one.
Here, we know the month is dependent on the day. So, system which takes the input it is not

what you feed, if you feed a month as April, it can have a day of 31. So, we cannot have a day of
31 in case of February or April etc...

So, we need to have a selection in such a way that, selection should be dependent. That means
we need to understand what are the circumstances that we came, that we seek obstruct. So that is
very important. Not just enough to have those two values just because the pay field takes 31so it

also important to understand.
The sub step of dependencies in terms of the variables, similarly let us define a clock so, we have

hour, minute and seconds. So this will have dependencies in hour, we cannot go beyond 60, it
will go for the next one, similarly we have got 24, that is 24 hours we will have the follower of
01 or 0. Likewise we are going to have the issue of next data column, It is important to have a
understanding of the realistic inputs however to feed for the boundary value analysis so you

should not get stuck with the column such as next date problem,
(Refers Slide Time 34:58)

BVA important aspects with ex.
contd.

In] e Tirsd infroduchon of the Trisngle problem & B 1973 Greenturger. These hew bees maimy mene
releiences jo Fis moblem snoe making thes one of e most pooular exsmple 10 be used in conunction
i Vb Kb

The Trisngle profdem:

he \l:\ngr\- probiem AcCepls Mise Blegact (4, D &nd Gl 8 roul, aach ol which &e laken 10 b8 Sddes ol a
riange, The waliss O TaEa NpUME ar0 USSd b JErming M D of ha wiangh (Equililal, Bosieks
Scaone or not a inangie)

For fhe inpuis 4o ba dackared as baing a tnangle they must sabsty tha s condions
CLEZazNN
- G2 i5ps5200
- CA 1€¢g2 0

Otterwiza his = declared not fo be & nangle
The hype of the nangle, provided the condlom s mel, & dalemmned &< lolows

1. If o hree sides are equel, e culpat i= Equisies
2 Nocty ong pair of sides s aqual, the cutpat (s losoakes
3. I o geid ol S 4 el |-|:. anslpud. 1% S

e

One more is there it is a bit tricky. It is called a triangle problem; I will just go through
simplistically, so that it also can be considered so the first introduction of the triangle problem in
73 by Gruenburger. There have been references to this problem since making one of the most

popular examples to be used in conjunction with testing literature.
The triangle problem accepts three integers a b ¢ as an input, each of these which are taken to be

sides of a triangle that means we have three side’s isosolous, equilateral and scalomes whatever

you want to call.
So these three inputs are sides of triangle, the values of these inputs are used between the types

of the triangle, so what type of a triangle these three inputs are going to decide. So, the triangle
could be one of this like equilateral or it could be isolate scalene or it is not at all a triangle so

one of this is all factored based on the a, b, c.
So, for the inputs to be declared as being a triangle these must satisfy the various conditions so,

cl, c2, c3, c4, c5, c6. So, we have six conditions well before we start the test why because first of
all we need to define its being a triangle or not. So, to define that we need to have a triangle
defined with condition 1 as a<= 1 >= 200, b<= 1 >= 200, similarly ¢ between 1 and 200.

Then we have other binding conditions (a) should be a< b +c and b< a +c, c< a + b, so these
conditions basically should satisfy in order to form the triangle. So otherwise this is never called
as a triangle.

So, the type of the triangle provided the conditions or mat is determined as follows:

If all three sides are equal, the output is equilateral.

If exactly one pair of sides is equal the output is isolate.

If no pair of sides is equal, the output is scalent, after we define this triangle we are going to have
what type of triangle. So, we need to be very careful in choosing the tests also, we should be

realistic in terms of the inputs.
First of all we need to define the criteria how the requirement has been laid out, first you need to

understand, and that is what I am always emphasizing that the tester has to have a good
knowledge of the system under test. You should not get stuck within the testing and the testing
aspects are not good in terms of test selection techniques or test design techniques all that is not
good. First having understood the system, we should define testing, the test is when behave in

terms of output of the underneath embedded system.
(Refer Slide Time 38:33)

Conclusion on EP & BVA

* Two very important and effective test design techniques.

« We can find that Boundary Value Analysis “if practiced comectly,
is one of the most useful test-case-design methods™

« But as per the practices seen in the industry, it is often used
ineffectively as the testers often see it a8 so simple they misuse
it, or don't use it to its full potential. This is a very true
interpretation of the use of Boundary Walue Analysis.

* BVYA can provide a relatively simpla and formal testing
technigque that can be very poweriul when used comectly

« When issues arise such as dependencies between variables or
a need for foresight into the system's functionality, we can find
Boundary Value Analysis restrictive (as shown by the NextDate
problem).

o
So, to conclude on the equivalent and boundary value analysis, there are some important points
that we need to see is, these two are very effective test design techniques, we have to have a
mandatorily includes portioning and boundary values of analysis, we can find that boundary

value analysis have to be correctly,
(Refer Slide Time: 39:09)

BVA important aspects with ex.
contd.

In fésL e Tirst introdection of the Trianghe problem is m 1970, Grossbarger. Thané hawe been mamy mong
redomnens o this problem . since makng this one of the: most popalar cammple T B used in conmincion
‘with iesting Mensture

The Triangle probdem:

The Friangie problem accepls three infegers (o, b and clas its inpat, each of which are token 1o be sides of a
frangie. The vales of thasa inputs are used 1o delomine tha type of the trangle (Equisteral, |scsooios.
Scaene or not a manglo)

For the mputs o b declared as bong & inengle they must sabsty the sm conddions
[ARETEF]

- C21fp=20

- CIifecszn

- Cda<h+g

= Chb<a+c

- CAe=as=h

ermrs Bes % declansd nol bi B 8 Indngk
The type of T tnangle, proraded Be condbions are met, s determined as follows:

1. 1f ol thres =des are squal, the ouput s Equisters

2. INazacly one pir of Sifes is edqual, e oulpall @& IS050aks.
3. Ifno pair of sdes is equel, T oupt & Soalkne.

-

-

Practiced or implemented,
(Refer Slide Time: 39:11)

Applying Boundary Value
Analysis

= In general, application of Boundary Value Analysis can be
done in a uniform manner.

* The basic form of implementation is to maintain all but one
of the variables at their nominal (normal or average) values
and allowing the remaining variable to take on its extreme
values. The values used to test the extremities are:

= Min - Minimal

. = Min+ = Just above Minimal
— MNom - - - Average
— Max- - - Just below Maximum
— Max - - Maximum

é Foal. Nbpc/ew.c 5 SWan 8o uk!
That’s why all this issues,
(Refer Slide Time: 39:13)

Boundary Value Analysis - examples

Tnput H0|1||L|'.||}- Cases
A number N such that: =104, 98, 98
59 <= N <=99 -10, -9

=101

9. 10

98, 99, 100
Phone Mumber
Aren code: [200, %59] ‘7
Prefix: (200, 999] .

Suffic: Any 4 digits

SAgh ol SIOMS 6 By odu

Considering all the ranges considering the different examples,
(Refer Slide Time: 39:15)

Equivalence or Boundary Value
Analysis contd.

« The idea behind this principle is, that defects can be caused by
‘simple” programming erors related to efroneous use of boundaries.

« Typically the programmer has coded “less than” when “less than or
equal” should have been coded

+ When determining the test cases, values around these boundaries
are chosen so thal each boundary is tesled with a minimum of two
test cases — one in which the input value is equal to the boundary,
and one that is just beyond it.

« Ex if a requirement says A < B and in code its implemented as A ==
B then detection possibility is more with BVA than EP.

+ Ex. f A<E is implemented wrongly as A=E then both EF and BVA
could detect the error.

+ Using the earlier example (15 =< temperature =< 40) and assuming
a tolerance of 0.1 in the temperature values, the boundary values to
be selected are 14 9 (invalid), 15 (valid), 40 (valid) and 40.1
(invalid).

-

Mg Fel smdents oo by sdui

That you have seen, and kept in is how the boundary conditions it is rare,
(Refer Slide Time: 39:22)

Conclusion on EP & BVA

« Two very important and effective test design technigues.

« We can find that Boundary Value Analysis “if practiced correctly,
is one of the most useful test-case-design methods”

» But as per the practices seen in the industry, it is often used
ineffectively as the teslers often see it as so simple they misuse
it, or don't use it to its full potential. This is a very true
interpretation of the use of Boundary Value Analysis.

BWA can provide a relatively simple and formal testing
technique that can be very powerful when used comectly

+ When issues anise such as dependencies between vanables or
a need for I'mes.i%:ll into the system's functionality, we can find
Boundary Value Analysis restrictive (as shown by the NextDate
problem).

S
So if it is correctly practiced, it will be very useful in terms of effective, but it will be underneath
embedded software, but as per the practice staying in the address field, it is often used the in
effectively as the testers often see it as so simple they misuse it, that means I believe that it is
going to one, because when I plug it I apply power and it is behaving good and I do the little

changes and see if it is good.
As a black box I feel that the system is good and it is contrast, that is not the case, we should not

consider data is there primary input. The other we should thing in terms of having a bug and I am
going to challenge it in the terms of bringing out all the pieces. Or the test would not have used it
full potential, if you get a mobile or handset any telephone instrument, what basically you will do
as a user? You will plug it, you will eject on, and you will type to dial, so this is the normal

behavior.
So he gets the confident that’s fine, but instead of using it at full potential definitely we also

think out of the box types of testing it effectively, so for testing it effectively, he needs to
understand what it is capable of and whatever the specification, whatever the condition that it can
off plug, whatever the technique that he can apply effectively and importantly. So that will bring
out all the test defects which are having the issues in the term of implementation, and this more
vital are important, why, because the boundary values analysis will bring the effective way of

bringing out the bugs.
So BVA can provide relative equivalent formal testing that can be very powerful when used

correctly, that means we start formally with the simple technique of the identifying equivalent
flashes, and identifying the boundaries of each of the inputs that requirement or the requirements
identify, then select the test based on the inputs, select the criteria apply the test and find the
errors. When issues are raises such as dependence between variables or a need for foresight in to
the systems functionality, we can find boundary value analysis restrictive, that means example

take it as next date problem.
(Refer Slide Time: 42:05)

BVA important aspects with ex.
contd.

The Triangle problem:

In fat the firsl intracaction of the Triangke peoblem is in 1570, Grussburger. Thare have bien manmy mane
nedemmnees o this probiem since makng ths one of the most popular waepke o be used n conuncion
wih lesting Femdune

The Tiange probiem accepts three infegers (o, b and clas is input sach of which are taken 1o be sides of @
triangic. The vaues of these inputs are used 10 defoming the typo of e rangle (Equisioral, |sosooies.
Sralenc or not & mangie
For the mputs in be declsred s beng 2 insngle they must sssty the sis condtions
& Sas52
L2 120220
— 03 15e%200
Cd psh+r
CS b<a+c
Che=as+h

Oitrmrse Bes is declaied nol bi B & Inangks
The type of Fe nangie, proaded B conddions are mel i3 debermined a3 Soliows.

1. 1f o thres sides are squal, the owput is Equistersl.

2 IWezacly one pair of sides is equal e oulpel i Isiacaks
3. It ng pairof 5005 15 squRl, T UL IS SCalang

-

Realistic boundary value,
(Refer Slide Time: 42:06)

BVA important aspects with ex.

* The Next Date problem:

= The NextDate problem is a function of three variables: day, manth and
year. Upon the input of a certain date it refumns the date of the day
after that of the input. The input vanables have the obvious
conditions:
— 1=Day =31,
- 1 5month £12,
- 1812 5 Year 5 2012,

FHere the year has been restricted so thal test cases are not too
arge). There are more complicated issues to consider due to the
deg-en_dencles between vanables. For example there is never a 31st
of April no matter what year we are in. The nature of these
dependencies is the reason this example is so useful to us. All errors
in the MextDate problem are denoted by “Invalid Input Date.”

-

.
Should allow for the user to give, once if they free and they help the 31, but this is not a realistic
input for an embedded system having a day and the implemented functionality, so we cannot
expect that, so there is a restriction for boundary area. We should take a call in the terms of
boundary value or taking out such case for such issues, so that is the conclusion of equivalence

partitioning the boundary value of his,
(Refer Slide Time: 42:43)

ES/T glossary

{Ref. Dveloped by BCS BIGIST (BSTE25-10

Acceplance testing - Formal testing conducted 1o enabde a user, cusbamer. of authorized entity 10 decide
whethier to accepl 8 sysham ar componant

Actual rasulf ' The obsarved behavier of a systam a5 a rasult of processing 1esl inpuls.

. Baehawior ; The cambination of input valugs and FH?EI'.\"L'!I‘IEI'B. and tha rl:qllll"ﬁ.“ TASpanse for atunction of 3
aystem. The il specilization of 8 Tunction would Romally comprise o of mong benav o,

Bisch-bow : fesling Teat case selection based on an anelysis of the specification of the component withaut
refarence by its intemal workings.

+ Boondsry valne AR inpul valie of oulput value which is on the bouncary balwesn equivalencs classes, o
&N incremental cislance ether side of the baundary

« Boondary vakine snalysis ;A et design 1echnigue for & componant in which 184l cases ane detigned
which include representatives of boundary wvalues.

Certification © A proceas of confirming Usal @ sydtem of component complias wilh its spacified requinements
and is accepiable for operaional use

Checkiigl A ligl of questions thal can e ardwered only By pes oF io,

L

I will have some of the glossary in the embedded software testing add it to each slide in different
sessions. So just go through that, acceptance testing. We know that the formal testing from the
user perspective actual result, the result behavior of the system as a result of pursuing inputs, you
know what is the behavior, the combination of input values are conditions and required response

for a function in the system.
So that is what the behavior. The full specification of the function would normally comprise one

or more behaviors. You know what the black box is, testing the test case selection based on the
analysis of the specification of the components without the reference to its internal knowledge
for internal implementation details with all the requirements in the black box. And white box we
know about the logic and program work, it is the alphabetical order so that’s why it is not

interested all that it will use the empty one value futuristic.
So boundary value and input value or output value which is on the boundary between

equivalence process or an incremental distance either side of the boundary, it could be upper,
below, high, or low etc. boundary value analysis is another testing technique and equivalence
class, for a component which the test case are designed includes representatives of boundary

values.
Certification, a process of confirming that a system or component compiles with its specific

requirements and is acceptable for operational use, so this is the [VM , resources complementary,
so we will talk about the certification different process. Checklist, is a list of question is that can
be answered only by yes or no. this is basically used by the support of people for the doing the
IVNYV, it depend validation , verification, mostly this could be done as a tollgate before the

product is tested and released, mostly it will be done by the department of test QA.
(Refer Slide Time: 44:59)

Exercise questions

» Define the EP and BVA test cases for the
below example:

— “Arefrigerator has a red and a green indicator.
The optimal temperature in the refrigerator is
between +3 an +8 degrees. If the temperature
is within this interval, the green indicator is lit,
otherwise the red indicator is lit.”

-
-

Okay, so we have an exercise question. Define the EP and BVA test cases for the below example:
the below examples says, a refrigerator has a red and green indicator. The optimal temperature in
the refrigerator is between +3 a +8 degrees. If the temperature is within this interval, the green
indicator is lit otherwise the red indicator is lit. that means, the indicator in the refrigerator will
indicate a green if the temperature is between 3 and 8, if it is beyond that it will show it as red, so

we need to draw a equivalence partition as well as specification of the below.
(Refer Slide Time: 45:54)

Exercise questions

» Develop BVA for the Example: “A refrigerator
has a red and a green indicator. The optimal
temperature in the refrigerator is between +3
and +8 degrees. If the temperature is within this
interval, the green indicator is lit, otherwise the
red indicator is lit."

» The temperature range can be divided into three 2
intervals (equivalence classes).

1.From —infinity (-2737) to but not including +3
resulting in a red light 3k

2.From +3 to +8 resulting in green light
3.From but not including +8 to + infinity

-
—

This is an exercise, so one more exercise, | think it is the continuation of the previous exercise,
you can see the diagram of the temperature indicator. Develop BVA for the example. A
refrigerator has a red and a green indicator. The optimal temperature in the refrigerator is
between 3 and 8 degrees. If the temperature is within this interval, the green indicator is lit, same

thing; the temperature range can be divided into three intervals.
So I just give few inputs accordingly you can define the boundary value analysis and the

equivalence partition. So from the infinity it could be minus any value but without including this

3 which will result in a red, here down can see 3 and below are red, and 3 above red, between 3
and 8 it is green. It is the promoter or refrigerator temperature indicator. From 3 to 8 is green, but

not including 8 to the higher value is,
(Refer Slide Time: 47:00)

EXxercise question

» Write equivalence class for the below:

+ When the sensor temperature reaches <10°C or
=100°C, it sets the value ALERT else it sets the value
NORMAL.

« Write boundary class values for the above

with tolerance of +/- 1°C applied. (i.e.

10+/-1to 100+/-1)

2
So one more exercise, I think x rays is sets given in the equivalence partition. I will give
extension for this, for write equivalence class for the below: the sensor temperature reaches less
than 10 degree or greater than 100 degree it sets the value ALERT else it sets the value normal.
So write boundary class values for the above with the tolerance, with the tolerance of plus or
minus 1 degree, that means, less than 10 degree plus or minus one greater than 100 degree plus

or minus 1 it should be applied for doing the boundary value.
(Refer Slide Time: 47:42)

ES/T words

= Tasl Hamsss » Dynamic analysis
= Tt Bad - HEX
Tt Boneh + Disassambly
- Auggmated Tasth Ecuapmment . Reverse Enginesring
= Mlodel Basod desting + Lifecycle
Tessi b;l_u'n < Entry ard esil criteria
:_c-sl1l_I Tenr Basalna
L aul Ieyecnon i
==t Prm.u;r"[.lull_‘k
= Tl hook ﬁtal-n panud
Boct SW C W hoded
Bocl Londer * Canbrol Row
" = Dala Now
Ico # Auoit
Breakpoand + Behedule
Sirmifiar = Sirakagy (lest strategy)
Emulsln = Masier tes! plan
. Time + ML (Modsl In Leop)
Frofik +« S8IT
Dateshest (RA from micmoconircler ARMT) i HEIT
:I:Im': s, o) &Y (independent Valdation and Verification)
Forsl Equpmani Rebusinesn
Code Checker Erquivalence clags
Siglic anaks = Vale and Invaild classes
+ Boundary anabysis
-
o

Okay, some of the embedded system words are, we will go through, we have defined all this in
the previous session, we are going to have hamates, equivalence class, word analysis, in your
words we have learned today, see in the problem next it tell problem is okay, nominal average

normal will add it. Okay, so we will add nominal, normal average all these meaning are same, it

is in the type of input that is there in the system.
So that is about word way analysis, so it is very important to learner, the boundary value analysis

and equivalence partition, because entire test is technique, it is founded with the help of these
tool techniques, and we could have this for the embedded software testing.

