
Hello, hi all welcome you to the next session on the embedded software testing method, unit 2.
(Refer Slide Time: 01:00)

Today we study about equivalence and partitioning, in the last session we had gone through
different types of testing just a recap, of whatever methods to have done.
(Refer Slide Time: 01:18)

Last session we went through any recap, of unit: 1.
 (Refer Slide Time: 01:26)

All the limitations we have gone through and also.
(Refer Slide Time: 01:29)

We defined about.
(Refer Slide Time: 01:30)

IV & V validation and verification
(Refer Slide Time: 01:35)

And need to study about or dynamic testing, we have to find subtle definition software. Like in
to any report and understand it is function of evaluating system. When system is executing, we
do the testing. When we execute the program, another method to compare the dynamic cutting
user static testing, this is without the need to execute the embedded software system so okay, we
studied about dynamic testing, with them with a couple of definitions also, we know the other
method of testing, using the static, which do not need the program to execute. So this could be a
software analysis walk through inspections that is all.
(Refer Slide Time: 02:40)

Also we have gone through, two types of dynamic testing in a broader level, explain the dynamic
testing, and were most of the systems tested. So, specifically for the purpose implement dynamic
testing, we do the testing games on, what we have done using existing to the dynamic testing, the
process that we have done for dynamic testing will help us in understanding or analyze and
support cases all are tested.
(Refer Slide Time: 03:23)

And structured basis for dynamic testing, we had already gone through in the uniform that is T-
emb methods we can define different aspects. So, similar approaches which we have defined in
the beginning of the principles.
(Refer Slide Time: 03:46)

Then, we also studied that, both are required because of dynamic testing alone, they are due to
completely test the system, the static means of testing also is important, so both are the technical
complement. Static analysis were explicitly used in those days have much tools were expected.
So, that is why static analysis more compared to dynamic testing, nowadays dynamic testing in a
more used in automated a lot. Wherever it is not possible or way in to complement with the
coverage and all that so, there we will do the static testing.
(Refer Slide Time: 04:38)

And also we know that, the techniques are always one two basic groups black box testing 1 white
box testing and the black box testing or to the techniques white box techniques.
(Refer Slide Time: 04:58)

So, we are going through, correctly three part of testing that, we need to understanding different
testing so, we detailed about we know that black box testing,
(Refer Slide Time: 05:11)

Is basically driven from the data or functionality, the white box, we study detail at the
implementation on a logic anything a bit of pair.
(Refer Slide Time: 05:26)

Leave the depiction of a black box and white box you can see the top a black box coming
through, functionality white box for a compound testing, see in between certain, embedded
systems so, they form a white box with a mix of both white box and black box.
(Refer Slide Time: 05:46)

And, coming to the coverage we had a CD formula how they do the code coverage, a total code
and a executed code both of them are used in coming up how much of the percentage, we are
covered so this, is simple a executed code, in terms of percentage is the code coverage, this for
the white box of similarly, for black box may be coverage with the requirement, total number of
requirements that we have listed, the total number of requirements that will give the coverage.
(Refer Slide Time: 06:27)

And also, we had an outlined as a difference between, black box testing and white box testing
also.
(Refer Slide Time: 06:35)

Black box testing advantages
(Refer Slide Time: 06:40)

Black box testing disadvantages
(Refer Slide Time: 06:43)

White box testing advantages
(Refer Slide Time: 06:47)

So
(Refer Slide Time: 06:48)

This are some of the testing aspect now, going to the today session , elaborating, different black
box testing methods, so we will detail on this selection the technique called equivalence
partitioning what it is called partitioning.
(Refer Slide Time: 07:16)

Okay.
(Refer Slide Time: 07:17)

To understand what is equivalence partitioning, we need to have some background we all know
that you do embed systems, certainly with the help of, we have started to study, test planning
defining the test cases in given a requirement, or the acceptations, typically the universe of all
possible test cases so larger the proposal, we had gone through, example, they want ten so, we
know that that system can take from one to ten we know that we can define the inputs, in terms
of 1 to 10, but in other systems may have 1 to 10,000 or may be 1000 or whatever so, it bound to
happen such that, it may become very larger,
(Refer Slide Time: 08:33)

so, it is possible to test all the need so, need to select only relatively small number of test cases,
because, we know that it is going to work for one is one two one four one two three ten and have
some cases require, so we need to understand what our inputs that basically take, so we need to
get them in small number of test cases, in order to be required, so that is what the two-
partitioning a number of test cases.
Is whatever defines so it is called impacts, equivalence classes? So, the next comes a question
which test cases, we should choose on, which the test case select so for all copies we come
across a concept called equivalence partitioning, this will help beginning this test case selection
okay, some more details of two test cases are, considered to be equivalent expect the program to
process them that means, do you know for a system.
If you feed 1 or 2 or 3, whatever it is, and we get the same result and we do not need to repeat
them, we call that as equivalent, similarly we group different equivalence test cases, they all can
be grouped how they can be grouped, we will study in the next session.
(Refer Slide Time: 10:21)

 Identifying the sets of a inputs and under the assumption that, all when losing are treated exactly
the same by the system under test, when you set, feed all these values the behavior is same, the
output is same, we are the table test with these facts, so equivalence partitioning of, the most
fundamental respect of, whatever mandatory testing technique, they adapt okay, so we are hitting
the, terms of inputs and result that.
All values or related to the behavior is same, the next one is make 1 test case for each identifiers,
that means we are indentify sets of inputs, out of that, you identify one testing, partition of the
input domain of a program that, is the test of input, the value of the class equivalent test of other
values of the classes it is said in detail, saying that the testing of 1, then, the class equal to the
other 1. This technique involves design of test cases.
For the testing classes of errors, in to the levels that means, technique basically identify, the
design of most appropriate test case, for a test classes which will build in pages or errors, in a
group a bit, system under the test, then of in to the errors, that means, if I feed 1, system is
behaving faulty way and they putting 2, 3, 4 different way, we are identify a appropriate failures
or errors, between 1 to 10.
Suppose, I know that it is going to say, then the most appropriate 1, so we give detail for them, if
1 test case in equivalence class, all other test case in the equivalence class, with that type of error
that it finds. Conversely if one test case did not detect an error, all the other tests case are not
expected, that means that group will not finding, other test case also, are not find any other, so
other definition that, equivalence partitioning helps to reduce.
The number of test cases, and ensures that software performs the way it is supposed to do for
different numbers of input, we can have but it is not realistic to have all the inputs. Especially the
larger systems where we found number of inputs, in thousands of values so this equivalence
partitioning will help, it is easy so equivalence partitioning is one of the black box testing
technique, they identify the idea is the input domain.
Can be divided in two number of equivalence, the characteristics of an equivalence class, that all
value belonging to the class or directly same in a program, it assume to select only 1, for each
equivalence classes because multiple test cases, of the same equivalence class would repeat right,

so this is initially repeated as well the coverage, measured by dividing the number of inputs, we
know how much is left that impossible,
So this basically, to the equivalence classes, the workflow when using equivalence partitioning
and, try to identify all lately equivalence classes like we do is we analyze the specification and
try to identify all likely equivalent classes, so, when doing this it is important to remember that
there may be dependencies between different input value, we feed variables, a, b, c that could be
dependencies between B and C, etc, so, very possible input values belongs to that variation is
there, t we can divide them in to different class.
So the final next step is to check to choose a good representative out of all these equivalence
classes to form this case for that equal so that, is a aim of the equivalence partitioning
identification okay, in elaboration of that we probably go through a different example, you may
understand better.
(Refer Slide Time: 16:34)

Okay, so different views up there, based on the differences that we have and put it in the bottom
also to have a clear understanding equivalence partition theory and proposed by older is attached
to reduce the total number of this test cases density by partitioning being independent entity
finite number of equivalence class which we know to reduce the combination.
Or combinatorial explosion of potentially respirators, that means as part of the strategy the next
thing is we do a sampling that means, there are 100 possible way to point a book test case or
finite so, what we do is? We may sampling like 10 percent 20 percent of that, which is nothing
might be atoms or the fables of the particular system, so that we will be done with the help of
equivalence partitioning, that is what it means okay.
(Refer Slide Time: 18:02)

Continuation of the equivalence partitioning, it is a principle of deriving the test cases, the input
domain all possible input values is partially equivalence class, for all input values in a
particularly that, shows the process is the same, output that expected of that, or the functionality
that execute that most set of equivalence classic input, the idea behind this principle is that all
inputs from same equivalent classes, having an equal chance of finding a detector and that testing
with more inputs not the same classes increase the chance of finding defects.
It would not defect any more design, finding a different effect, instead of testing every possible
input value, it is sufficient to choose one input from each equivalence class, this greatly reduces
the number of test cases, while still achieving a good coverage , so, what we understand from the
equivalence partitioning we divide the entire bunch of all test cases, based on the behaviors, that
inputs could provide will result and output will failed in out passes so we divide all of them in
equivalent classes.
(Refer Slide Time: 19:39)

So, the equivalence partitioning feels basically on, it is called a two-level of, two partitioning one
is called valid other is invalid that means the one that are going to be tested with the help of the
team you can say normally or respectively, you will behavioral that is called valid test cases, or
very different class usually behavior or what is expected from the customer under the test, all this
comes under valid class.
The one that is not so usual or what is not expected, when the system is running normally it
should have each will be very ready other behavior, landmark what is normally done. So, it can
be classified as, so two groups of relevant , these are all coming under an equivalence
partitioning and the equivalence partitioning, we are going to have two types of partitioning valid
and invalid probably okay.
so let us see the equivalence partitioning or, what are the types of that we have equivalence
partitioning, so there are two basic methods top two basic curve partitioning that we have for
equal partitioning, that is why is called as partitioning one is valid partitioning and another is
multi-partitioning, so, what is valid partitioning when we have all the system learning normally.
That means executing normally here occurred in the field working as expected the test. That will
resulting normal behavior or usual those are all coming under the test cases, the inputs that with
the help of test cases will result as usual behavior, or the normal, suppose 1 to 10 is what is
system accepted in the, or 1 to 10, is what type? the system is expected to taking both and give us
a no concern will come at all valid term equivalence, so the other way of testing with the help of
negative values or outside the boundary.
We choose result in some sort of an, what is called? other behavior of the normal system, so
those all coming under invalid test case, so basically what we have trying to say, we may have,
see left side you can keep number of test cases, dots land dots are all in this test cases we can
group them something like one group is parties, other group could be for this, and one more
group can comprising, more 3, I will repeat.
So we have this rectangle box identified, the entire group that is what we do? In that we are
going to have a two-partition valid, valid, what we do all the valid inputs which you behaving the
same output, we are going to define 1 equivalence class, this 1equivalence class, the first one this

could be, this one the next could be this one, 3 test case so we have four equivalent valid
equivalent class, similarly for invalid also.
We are going to have something similar this, something to this, we are having 4 invalid test
cases, we are having more actually, but what we do? It would be the behavior is that is why? The
equivalent comes under the picture. Equivalent have two things one is valid another one is
invalid so, these are the primary first level of partitioning.
(Refer Slide Time: 25:03)

The same diagram, that we have seen in the previous slide here, what we have is we define or we
name each of them with a number equivalent 1, equivalent 2, equivalent 3, etc. so further maybe
you can change it as something like, equivalence valid 1, equivalence valid 2, equivalent valid 3,
similarly equivalent invalid 5, equivalent invalid 6, so we have three valid classes and three
invalid classes and we saw in the previous slide
 we again we get the group, each of this we do not have it, which are resulting in same behavior,
so we have, we are to cover this, the program could be so we have valid 3 test cases, similarly we
have invalid test cases, all this test case can be valid or primary valid so, identify all the test
cases, and divide the test case in to two, lower level partitioning, what is valid and invalid? So,
then we group valid such way that.
The behavior is usual and similar bas going to come all, of these are grouped so there are four
here, the test case is 3, so we made it as equivalence valid to work, equivalent 2, equivalent 3,
similarly we can name it invalid it also with any kind to different so that is what high light here,
partitioning valid people created a test case, for at least 1 valid for each equivalence class, we
have to be 3, probably select an appropriate one.
Which is good enough to have the absolutely form, that particulars valid or in valid class. So,
valid and in valid test cases, equivalence class first and then create the test case but at least one
value of each equivalence class, check what is it?
 (Refer Slide Time: 28:15)

Let us take an example with the help of or the help of that, probably we are here okay, this is a
rectangular box identifies three columns.
(Refer Slide Time: 28:37)

The first one is being a input, suppose you take this an input that means, this an requirement 2 or
there, EP here N, that N takes from - 99, so that is what the input it goes for a requirement , so
what are the valid equivalence classes, that we can arrive it, like what are the invalid equivalence
classes that.
We can arrive it for this particular input sector typically one more, will defer a phone number,
phone number will have area code 200 and the prefix is 200, 999, 1846 2014 can be there, test
case for the input and what are the valid equivalence classes, and what are the in valid
implements classes for this okay, first one we will take, we know that the N is not –the system
that respected to take the input – of 99 to +99).

So we can have number of test cases, -99, -98, -97 etc., -99,-98,-97, but all are within the range ,
then we can have 0, 1,2, 3 10 20 30 50 60 90,99, right so these are all it can take this, what we
have but do we need to have all this we know that this are all valid because the first thing is,
these are all valid, valid equivalence class, still is not equivalence class, it just a valid, that they
can take, -99 take -98 can take etc., up to 99.
So these are all test cases but we do not get to have, probably he can group, this again based on
the system what is going to be tested, it could be a unlock or system having a sensor or input,
taking different values, we need to understand the system and probably system perspective
probably to use that, in general we can choose a group of test cases whether it makes emphasis,
here we have 1,2,3,4,5, so all that need to have to be tested.
So this will comes under the equivalence class, this will also became a valid equivalence class,
so here about 5 are there -99 -10, so two negative set we want to have with the two digit number,
at some more we want to be feed because, the implementation could have the issues that difficult
to feed it, so that way we can divide it, second equivalent class -9,-1, where two digit negative
number, then that is a value is 0 so here also we should accept. Then similarly we have 1 to 9, 1
and 9 on the single digit set, and have to be 10 and 99, so this is the good example of equivalent
class.
Okay, the next one in valid equivalent class, so what could be the in valid equivalent class, we
know that valid equivalence class, we have define from test case 99, it is invalid for N, but
invalid test cases, but invalid test case could be anything, it can be -99, -98, it could be -100-
101,102 etc..It can grow, but better to identify few of them. Similarly, that side we have 99, it can
take 100, 101,200, 210, randomly we have to wait.
Those are all will be coming principle equivalence class test cases, but under the category of
invalid, why? Because as a normal case, this is not expect to take that, so this is will be coming
under invalid test cases, means, it falls on that side, not in usual manner that is why is called as
invalid test case, so what are the few example in invalid equivalence classes, -99, > 99, we can
test the values -100, < 99, then numbers are all equivalent.
Let us the system will accept the negative, at the usual value, instead of -12, similarly we are
giving the input as 12-2, so this required as a value, instead of numbers, so the system which
accepts the input, that we should provide this, 12-, similarly 1-2-3, likewise we can add, in terms
of numbers are normally but, similarly numeric sign that means instead of number, we are trying
to give a characters.
Like, which it should not except, alpha numeric is here, many characters so, maybe you would
have see in this, software all need a password right, so password it suppose to expect define input
on the, cannot change, so that is the few example of providing input, the input act as same
manner, what is specified requirement? It is the lengthy value it is a blank, so the blank has a
specific problem, so these are the two valid and invalid equivalent classes.
Similarly a phone number valid equivalent class, we know that area code 200,299, so we can
have (555), (555), then 55, 5555, with 5555, we have 55555, 55555, this is a another value phone
number, then we have 200, = area code, these are =96, between the value and identify 200 to 99

this is the last one suffixes, identify as 200 to 99, so this is similar to days for the end. Here we
have the phone number, which is specified?
So what are the invalid equivalent classes, invalid format is 555, 5555, together, so similarly the
next one two prefix all there, suppose if we want one prefix, area code >200, so the 100- value,
similarly it could be 999, then other invalid classes is, one itself invalid classes, so the entire
group has one invalid class, so we have four invalid classes. So area code with normal
characters, such as landline, all this can be invalid equivalent classes, so this is the example of
equivalent classes, so we will study more examples in a next class okay.
Now, having this is an example definitions we will again study the equivalence classes, two
types of equivalent classes, valid equivalent classes, such as valid inputs with the program, all
other inputs, which are not include that, valid class are called invalid equivalent class okay, a few
guide lines for identifying the equivalent classes, first if where input condition specifies the
values, 1 to 100.
The equivalent classes are, one valid equivalence class is count from 1 to 100, two invalid
equivalent class count<1 and count> 100, okay, so the next guide lines, it explains the different
sort of techniques that is what is guidelines talks about if an inputs specifics set of values which
are handled differently like type of color like red, blue, green it is an input a set of input then the
equivalence class what are they valid equality class for each values. That means red and then we
have blue then we have green this is on valid equivalence.
(Refer Slide Time: 38:59)

This is one valid equivalence class one more valid equivalence of this aspects may be it could be
white, or yellow it could be, if an input conditions specifies a must be value the character must
be a letter suppose the equivalence class are here basically depends on the type of implanting
requirements, the requirements talks about the count.
The count well have terms of number here is a character so we need to add with that invalid
character, invalid group of characters so that blue, green is a valid group other one is a invalid
equivalence class similarly we have must be a value in short of that in conduction in available
then what are the invalid equivalence classes talks about is any letter should conceder the ere

letter it has is nothing but a valid equivalence class other then ere litters or it is called a non-litter
it could be number that is nothing but invalid equivalence class.
So all this are charted here it very simple you can see where we have taken only the numbers as
an input and what are the non-numbers all this are part of the non-valid equivalence class and
valid numbers all is in the range are called valid equivalence class the fourth guideline.
(Refer Slide Time: 42:12)

Everything finished the long before the task is done an equivalence class. Everything done
within a short time interval before the program is finished is another class everything done just
before the program starts another operation is another class that means we have a time based
requirements suppose in those cases how can define the equivalence class what is talks about so
everything finished long before task is done is a valid equivalence class.
Everything is done in some short time interval before the program is finished is anther valid class
we can say everything is done just before the program starts another way operation is another
class this three equivalence class has ante defined for the time that is one guideline that is the
first guideline fifth one it talks about the memory if a program is specified to work with memory
size suppose.
The memory can take from 64mp to 265mp so what is going take for equivalence then the size
range is an equivalence class because we know the size what is low size and what is the higher
size any other memory size is greater than or any other size is greater than 64m it can be
accepted those are called invalid equivalence class like ways we can define the equivalence
partitioning for this short of a requirements.
The last short of a guideline is the partition of output event lies in the inputs of the program. This
is very important so it is not just the input based equivalence partitioning there are output based
partitioning also that is possible due the sudden state of inputs the outputs can be derived so
based on the outputs also we need to defined that is what it is means even though different
equivalence input class could be could have same type of output event,
We should still treat the input equivalence class distinctly what it means is we have two
equivalence class but it still it is result in the same output but it is based on the type of

equivalences class we need to categorized that. For example it may show an error for all this as a
one error so that means we have one output but still we want to test it because we know what
input it can take so that what it means?
So output event is based on that so one example we will take here if an un-log variable were we
to operate between the range 1.02 or 6.0 so is an un-log input which can take or it will operate in
the range of 1.02,6.0 so what are the equivalence class that can be performed first type of
equivalence class input value was variable =.9 that is 1.0 has an input value as a variable = 4.0
this is normal range this 4.0 is greater than 1 and less than 6.
Wrongly put here it is this way so 4.0 is grater then 1.0 and less than 6.0. So that way we can
have the second set of equivalence the third one will be input value for the variable = 6.1 which
is just outside the range this is also an invalid class so in the help of this guidelines we are
defining the invalid and valid class partitioning class okay one more example.
(Refer Slide Time: 46:37)

System behavior is subjected to the following condition regarding the input temperature close
temperate lays within 15 to 40 here is very important is = in here it is including 15 and including
the 40 out of mothering so sometimes we have to be careful in doing it for test case selection
because the phase less than those are all prevail that it is not a good practice to have a
recruitment then it is less than so what will happen with equal.
So we just do not get confused so it is better to emanation is less or = similarly as a outer
boundary as greater then = or lesser then = whatever the way the = do have the greater then less
than operates are used the number of possible values for the temperature is huge this we can have
15.01.16.02, 15.1, 15.215.3 like this tell 39.999subject to the expect blitz of the embedded
system so it is in fainéant the value could be different.
We know that we are going to have equivalence protestation shake of producing all this so that is
what is that it means here three equivalence class can be defined for this temp0ructure is lower
the 15 lower then or =40 temperature has a value sorry temperature is lower than 15 because = it
is also valid class temperature is only the range of 15 to 40 temperature is higher than 40 so three
equivalence class can be defined.

So three test cases can be sufficient to cover the equivalence classes we do not have divisions
because it is enough to test it is conduction so invalid two are there 10 and 50 valid we have one
it could be anything it could 15 to 40 that is 35 the processor of the particular value depending on
the volt exactly we are trying to testing if it temperature of the requirement it is 35 if you think
that the system could fail 35 point of a 39.5.
You can have study it. We will study about that go through value and other value in next slide
because that will come. Compliment further equal portioning that is also the important technique.
We will study about what value on this will be okay, equivalence partitioning continued one
more good example I will take it here let us considered the level for which I set an indicator as
per the below conditions.
So fuel level definition is the level of the fuel, fuel of the level it will indicate that is the
requirements the three requirements it the level goes below 10liters it will set the indicator to
yellow. If the level goes above 100 liters or below 1 liters it shall set indicator to red otherwise it
shall set the indicator to green so what it means from 10 to 100 liters we have the indicator set S
and the above the 100 or below 1 liters it shall set as 1 below 10.
And above red it will set as yellow so it is have the understanding of different values and this
should be see the requirement of the as follow itself. The one requirement for the which talks
about 10 to 100 liters the 1 talks about that which is less than 1 liters or above 100 liters the
indicator will ensure it the 1 that is showing will indicate an yellow so what are valued and what
are divided with the help of this below one.
We can identify invalid 0 and 1 the value which is in between or invalid who is indicate the value
between 9 and 10 are valid yellow indicator because that requirement talks about yellow. So it is
valid the next one the value between 100 or less than that is green because requirement tells that
between 10 and 100 should be green and 1 and 10 should be yellow and before 1 it is invalid
similarly the last one is select the indicator as the red defining the invalid input is there invalid
input could be greater than 100 it is 101 to 10 etc., so that is what it interrupt with the help of this
examples.
(Refer slide Time: 52:23)

So this is a table his is a good sort of input table which we called the truth table why because it in
defines all the combinations of input and which is good enough to identify and differentiate
between invalid and valid class so what we have see here truth table identifying on the left hand
side you see as I said yellow, green and indicator and it dependences is the different sort of class
so what are those class we have, we have class A, class B, class C class D.
Identifying for different indicators less than we have the indicator which is said to be truth table
as ticked similarly we have yellow indicated less than 10 may be we can add 1 also it is up to
you how you want to design the truth table similarly w have the end indicator coming in green
similarly we have greater 100 coming under red we can also add less than 100 greater than 10
some more we can take it as a 10.
So out of all this what are the valid equivalence what are the invalid differences so we have four
about groups here invalid 0 and -1 because the requirement dos not often 0 and 1-1 embedded
design it is a invalid. Similarly other extreme of the requirement is 101 to that terms are invalid
equivalence partition, so we have to write one volume 2 equivalence partitioning 1234 up to 9 10
11 12 13 up to 100. So in this valid equivalence we can choose something like158 and 9 or it
could be 1 is not similarly for the valid group of equivalence class you can have a 20, 100
likewise.
(Refer Slide Time: 55:39)

So in this output equivalence also can be done this equivalence partition with done with the help
of that means out of this is at partitioning where outputs can be ready for different inputs and
signal inputs also then group testing which will come for equivalence partitioning test cases are
then derived that cover all equivalent output classes that means it derives all which will take care
of all the output classes also.
Similarly we will define like the two tables we have for input for the output also, so with that we
come to that the equivalence partitioning so we have gone through some of the type of examples
the defined valid and invalid process. And guidelines so that count can us thus could be value
and the size time because majority of all the requirements that are come in to this guide lines.
Also we went through the input examples.

Then we had defined two partitions valid and invalid they are going to identify and in this state
call this as test case transition partitioning and we identified couple of inputs for equivalence
partitioning we also know that output into partitioning.
(Refer Slide Time: 57:25)

In the end of the class we have added more words deriving as the embedded software testing
warrants, I think we have everything so in that step what we had added is IV/V, robustness,
equivalence classes, we have today valid and invalid classes of course boundary analysis we do
in the next class.
(Refer Slide Time: 58:16)

And we have couple of exercise questions what are the main test selection criteria for black box
testing? So we have this, write equivalence class for this requirement? When the sensor
temperature reaches <100 C or > 1000 C, it sets the value alert else it sets the value normal, so we
have a temperature sensor and alert which goes below 100 or goes above 1000 or else it sets the
value which says the indicator is normal. Write boundary class values for the above with

tolerance of + or – 10 C applied that is about the class in next session. So that is for end of the
session.

