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Lecture - 3 

MOSFET Fabrication for IC 
 

In the two previous lectures we have discussed the basic processing steps to realize a 

bipolar junction transistor and a MOSFET. You have seen so many steps go into that - 

oxidation, photolithography, diffusion, epitaxy, etc, etc. But, the starting point is always 

the same. That is in order to fabricate any device, you must first have a single crystal 

silicon wafer, right. So, that is the first unit step - how does one realize a single crystal 

silicon. Not only that, if you look at it more closely, for bipolar junction transistor we 

mentioned that the single crystal wafer is 1 1 1 oriented. On the other hand, if you are 

going for a MOSFET fabrication, universally the starting wafer will be 1 0 0 oriented. 

  

Why is this difference? Is it just an arbitrary choice? No, let me assure that this is not an 

arbitrary choice. The properties of the material are influenced by the crystal orientation 

that is to say different crystal planes have, may have different properties and which will 

influence the device performance. That is why, while bipolar junction transistors can be 

fabricated on 1 1 1 substrate, for MOSFET fabrication you would prefer a 1 0 0 wafer. 

So, in today’s class, let us take a look at the silicon crystal. 

 

Now, the simplest crystal structure  that you can think of is called a cubic lattice. 
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If you look at the card we have here, where the picture of a simple cubic lattice is there, 

to the left of the picture you can see the simple cubic lattice. What is it? It is nothing but a 

simple cube with atoms placed at each corner of the cube and if I think of a three 

dimensional co-ordinate system, three axis x, y and z and if I consider that the 

dimensions of this cube is unity that is it is an unit cell, then the co-ordinates of each of 

this corner atoms will be given like 0 0 0, 0 1 0, 0 0 1, etc, etc. So, this is the simplest 

structure that one can think of - a simple cubic lattice.  

 

Let us take it one step further in complexity. You know, a cube will have 6 faces - front 

and back, top and bottom, left and right. Now, in addition to the corner atoms, 8 corner 

atoms placed in the corners of the cube, if we think of atoms in the middle, in the center 

of each of the faces, then what we get is a face centered cubic lattice and that is the 

picture you can see towards the right of the card. In addition to the 8 corner atoms, you 

also see 6 extra atoms placed in the center of each face and their co-ordinates are given 

by half half 0, half half 1, 0 half half, 1 half half, half 0 half and half 1 half. Right, very 

simple, is it not? 

 



Silicon however is neither a cubic lattice nor a face centered cubic lattice. We have to 

take one further step in complexity. You have seen the face centered cubic lattice, fcc 

lattice. Now, think of two fcc lattice, two fcc sub lattice rather, one pushed inside the 

other along a major diagonal by a distance of one fourth. That is we have two face 

centered cubic sub lattice; two interpenetrating f centered cubic sub lattice, one is pushed 

inside the other along a major diagonal and displaced by one fourth in all the direction. 

What we have is this model here. 
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This is called a zinc blende structure, two interpenetrating fcc sub lattice. Look carefully 

at this model.  
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For the time being, forget about the blue balls and concentrate only on the yellow balls or 

part of the balls. What do you see? This is nothing but an fcc lattice. I have atoms at the 

corner of the cube and also at the center of the each of the face. In addition to this, now 

see that I have 4 blue balls, the blue balls, to distinguish between the first sub lattice and 

the second sub lattice and what are the co- ordinates of these blue balls? Let us consider 

that this point is the origin. This is the x- axis, this is the y-axis, this is the z-axis. Then, 

this blue ball here, it has the co-ordinates of one fourth one fourth one fourth. It is 

displaced from the origin in all directions by one fourth. 

  

What about this one? It is displaced in x and in z direction by three fourth and in y 

direction by one fourth. That means its co-ordinate is three fourth one fourth three fourth. 

What about this one? This is displaced by three fourth in x and y direction and one fourth 

in z direction. Accordingly you have three fourth one fourth three fourth, three fourth 

three fourth one fourth and one fourth three fourth three fourth. So, the coordinates of this 

4 blue balls are actually they belong to the second fcc sub lattice and it has been pushed 

inside the first fcc sub lattice and it is, it has these following co-ordinates. That is the co-

ordinates will be ...... 
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Now, when I say it is a zinc blende structure, what I mean is that the two sub lattices they 

are made of different atoms. For example, gallium arsenide. Gallium arsenide is a zinc 

blende crystal.  
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That is in this model you can consider that this yellow balls refer to gallium atoms and 

blue balls refer to arsenic atoms. Inside the gallium sub lattice you have pushed an 

arsenic sub lattice or the other way round. You could also think that the yellow atoms are 

arsenic atoms and the blue atoms are gallium atoms, makes no difference. All I am trying 

to say is that each zinc blende lattice is comprised of two interpenetrating fcc lattice; one 

lattice, two interpenetrating fcc sub lattice, let us say. One sub lattice is comprised of 

gallium atoms, the other sub lattice is comprised of arsenic atoms. Now silicon is a 

degenerate form of zinc blende structure. This is called  a diamond lattice.  

 

(Refer Slide Time: 11:32) 

 
  

When I say it is a diamond lattice, what I mean is that there is no difference between the 

two sub lattices. They are made of identical elements. In this particular case, both the sub 

lattices are comprised of silicon. So, silicon is a degenerate form of zinc blende structure 

which is called the diamond crystal structure. Now that you know what the crystal 

structure of silicon look like, let us look a bit closer to the zinc blende or the diamond 

structure and see what information we get from here. First of all, let me tell you that in 

the unit cell we have considered that the cube is of unit dimensions. Now, if the unit of 

this dimension is called a, a is called the lattice constant of the particular material. That is 

each side of the cube is a, it has a length a. So, a is called the lattice constant. 



For a zinc blende structure, what is the distance between two neighboring atoms? That is 

can you think what is going to be the distance between the two neighboring atoms in a 

zinc blende structure like this? Let us take the case of the atom which is placed at one 

fourth one fourth one fourth.  
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That is here, the blue ball, one fourth one fourth one fourth shifted in all directions from 

the origin. What are its nearest neighbour? One nearest neighbour is of course the atom at 

the origin 0 0 0. What are the other nearest neighbours? One is this face centered atom, 

the other one is this face centered  atom and the other one is the bottom faced centered 

atom. Is it not? So, the distance between two nearest neighbors can be calculated by 

simply calculating the distance of this one fourth one fourth one fourth atom from the 

origin and what is that distance?  
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That distance is going to be and if I consider that this cell, it has a lattice constant of a, 

then this distance will be root 3 by 4 times a. Is it not? So, each atom of the second sub 

lattice, it forms a tetrahedron with the atoms of the first sub lattice that is with its four 

nearest neighbour. If you look at this blue ball, it has these 4 nearest neighbours and it 

forms a tetrahedral structure. What is a tetrahedral structure? It is like this.  
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You have this blue ball here and the other one going inside the board. Yes? Now, if I 

consider that this atoms are nothing but hard spheres that is called the hard sphere model; 

just as you are seeing here, hard sphere model, then what can be their maximum radius? 

How close can they be spaced when they are touching each other? Is it not? Very like in 

this model; you can see here that the blue ball is touching its nearest neighbours on all 

four sides and you know that the distance between them is root 3 by 4 a. 

  

Essentially I have a situation, this is my blue ball, this is one of the nearest neighbours. 

How close can we place them when they are touching each other? Right, maximum 

closest possible positioning will be when they are touching each other. So, when they are 

touching each other, let us forget about all the other neighboring atoms and concentrate 

on only one.  
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So, then it is like this and the distance between them is this and this is root 3 by 4 a. 

Therefore, each atom can have a radius maximum half of this distance that is root 3 by 8 

a. This is called the tetrahedral radius. 
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This is,  if we assume hard sphere models and each atom its sphere is touching the other, 

then the tetrahedral radius is root 3 by 8 a.  
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For example, silicon has a lattice constant that is a for silicon is 5.43 angstrom and 

therefore its tetrahedral radius root 3 by 8 a that is 1.18 angstrom.  
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Tetrahedral radius is, usually the symbol that is used is r 0. Now, let us look at the 

packing density of this zinc blende structure.  
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You can see in this model itself that not the entire space is taken up by the atoms. It 

cannot be, right? How does one calculate the packing density of a particular crystal 

structure? First of all we must see how many atoms are there in a particular unit cell. So, 



this is my zinc blende unit cell. How many atoms are there? Let us look at the corner 

atoms first. Take this corner for example. This corner atom does not belong exclusively 

to this unit cell. Yes, it is shared by many others. How many others? That is I can think of 

placing another unit cell here, another unit cell here, another unit cell here, that makes it 4 

and then I can place another set of 4 such unit cells on top of this. See, this is the top 

corner. I can think of another set of 4 unit cell for which this atom will be the, at the 

bottom corner. Each corner atom is shared by 8 unit cells, so each of their contribution to 

one unit cell is actually one eighth.  
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One eighth for each corner atom and how many corner atoms I have? 8. Therefore, the 

total contribution is one eighth into eight that is equal to 1. Next, let us consider the face 

centered atoms. So, the contribution of each face centered atom to 1 unit cell is half. It is 

shared by two, one here and the other on top of this. 2310So, contribution of face 

centered atoms and how many such face centered atoms I have? 6, because there are 6 

faces. So, half into 6 that is 3 and now, for the zinc blende structure, I have 4 atoms of the 

second sub lattice and they are not shared by anybody, they are present there in full.  
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Therefore the contribution of the second sub lattice atom is actually 1 into 4. So, I have a 

total of 8 atoms in the unit cell. Agreed? I have a total of 8 atoms that is 8 full spheres. 

Considering hard sphere model, I have 8 full spheres inside the unit cell and each atom 

can have a maximum radius of root 3 by 8 a. So, what is the total volume occupied by 

these atoms inside the sub lattice? What is the volume of a sphere?  
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You know, it is 4 by 3 pi r cube. r is actually root 3 by 8 a and there are eight such 

spheres.  
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So, it works out to be root 3 pi by 16 a cube. This is the volume occupied by the atoms 

inside the unit cell and what is the volume of unit cell? a cube.   
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So, the area, the volume that is occupied by the atoms inside the crystal with respect to 

the total crystal volume is simply root 3 pi by 16, which is about 34%; root 3 pi by 16 

works out to be about 34%. Let us for a  moment think about a simple fcc lattice, face 

centered cubic lattice. We have seen that for a zinc blende structure, the packing density 

is 34%. That is 34% of the total unit cell volume  is occupied by the atoms. Now, if you 

compare it with a face centered cubic lattice, is this packing density more or less? Think 

about a face centered cubic lattice. You can have it here, just ignore the blue balls.  
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We will have a face centered lattice. So, the nearest neighbour is this with this.  
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So, the distance between the nearest neighbours can be calculated to be .... It is actually 

.... Right? So, this works out to be and if I consider the crystal lattice to be a, then this is 

actually a by root 2 and in the fcc lattice, you do not have this interpenetrating second sub 

lattice atoms. Therefore the total number of atoms present inside is only 4. So, the 

volume that is occupied will be ..... 
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The distance between the nearest neighbors is a by root 2. Therefore the tetrahedral 

radius can be a by 2 root 2 and I have only 4 spheres, 4 such spheres. Therefore, the total 

volume that is occupied is only this much; 4 into 4 by 3 into pi into a by 2 root 2 cube.  
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So, this works out to be or the percentage of volume that is occupied that is going to be 

simply pi by 3 root 2.  
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This actually works out to be more than 70%. So, you see, compared to a zinc blende 

structure, an fcc lattice is much more densely packed. The packing density is much higher 

for a face centered cubic lattice compared to a zinc blende structure. Now, when you try 

to dope silicon that is we would like to introduce impurity atoms inside the silicon crystal 

and these impurity atoms, you know, should replace the silicon atoms. So, one of this 

positions, one or many of this positions should be taken off by the impurity atoms. It 

should push the silicon atoms out and take that position instead, right. Incidentally, this is 

called a substitutional kind of introduction, that one impurity atom it goes and substitutes 

one silicon atom. 

  

Now, silicon has a particular tetrahedral radius. Just now we have said that it has a lattice 

constant of 5.43 and therefore its tetrahedral radius works out to be 1.18 angstrom. The 

impurity atom may or may not have the same tetrahedral radius. Yes? So, what will 

happen? If it does not have the same tetrahedral radius, then you can introduce strain in 

the lattice. The lattice will be strained. This is a very important consideration. If the 

tetrahedral radius of the impurity atom differs considerably from that of silicon, then the 

lattice will be under a lot of strain and this will eventually dictate the amount of 

electronic activity. 

  

Now, what do I mean by electronic activity? Suppose you are introducing impurity atoms 

inside silicon. They will be electronically active only when they have occupied the proper 

positions in the lattice that is when they have substituted for silicon. Otherwise most 

likely they will not be electronically active. They might be precipitated, they might stay 

in the interstitial points. So, they will not be electronically active. So, you can keep on 

putting a lot of impurity. You can try to put a lot of impurity inside the silicon, but finally 

the carrier concentration that will not be at par with the amount of impurity that you have 

introduced. This is what we mean by electronic activity. All the impurity atoms you have 

put inside the silicon may not be electronically active and the difference in the tetrahedral 

radius will dictate to a large extent as to how much electronically active a dopant material 

is going to be. I have the tetrahedral radii of a few common dopant impurities in silicon.  
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So, silicon, phosphorus, arsenic, antimony and boron. For silicon it is 1.18. For arsenic 

also this is 1.18. For phosphorus this is 1.1,  for antimony this is 1.36 and for boron this is 

only 0.888. In this context, we also define a term called the misfit factor, which is 

denoted usually by the symbol epsilon. We define the radius, the tetrahedral radius of the 

impurity atom as r 0 into 1 plus epsilon.  
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r 0 is the tetrahedral radius of silicon, epsilon is the misfit factor and r impurity is the 

tetrahedral radius of the impurity atom. So, we co-relate the two tetrahedral radii by the 

misfit factor and obviously from this, you can see that the misfit factor is going to be very 

large for boron, because the tetrahedral radius of boron differs maximum from that of 

silicon.  
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So, epsilon for boron is actually 0.25, for arsenic on the other hand it is zero. They have 

the identical tetrahedral radii. For phosphorus also it is pretty small and it is about 0.068, 

for antimony it is about 0.15. This brings us to a very interesting point. Boron is a Group 

III element. So, we need boron in order to dope the silicon, p-type. You see, 

unfortunately the tetrahedral radius of boron differs considerably from that of silicon, so 

that the misfit factor is actually the largest among all. On the other hand the Group V 

elements, particularly arsenic and phosphorus, they have zero or very small misfit factors. 

Think of what I said about electronic activity. The misfit factor is going to determine the 

electronic activity. The larger the  misfit factor, the more difficult it is going to be to 

make the dopant electronically active. Yes? 

  



So, you see, it is more difficult to heavily dope silicon p-type, because boron has such a 

large misfit factor. It is more difficult to have a heavily doped p-type region in silicon 

compared to an n plus region in silicon. Corollary - it is easier to fabricate an npn 

transistor than a pnp transistor. Why? Because in an pnp transistor, the emitter needs to 

be p-type. The emitter is the most heavily doped region, should be the most heavily 

doped region in the transistor and since we use boron for doping it p-type, it is going to 

be more difficult to have, to achieve very high doping concentration, very high carrier 

concentration, not just doping concentration, electronically active dopant that is high 

carrier concentration, if you are going to have a pnp transistor. This is one of the various 

reasons why, for integrated circuit we prefer to use npn transistor wherever possible 

rather than pnp transistor.  There are various other reasons why you prefer npn transistor, 

but one of them is related to the lattice constant and misfit factor of silicon and boron. So, 

now you know about the crystal structure of silicon, about the packing density of the 

particular zinc blende structure and about the misfit factors.  

 

Next, let us concentrate on the crystal planes that is the crystal orientation. We mentioned 

that for a certain particular applications, we prefer certain planes. Why is it so? Let us 

first look at some of the common crystal planes.  
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This is a crude sketch of the unit cell. I have just drawn the cubic structure, I have not 

drawn the atoms, okay. Now, a plane is actually, you know, defined by the intercepts on 

the three axis x, y and z axis. You have considered that this is the x-axis, this is the y-axis 

and this is the z-axis.  
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So, a plane is actually defined by this equation that is where a, b, c are the intercepts 

made by the plane on x, y and z axis respectively. I can also define this plane as hx plus 

ky plus lz is equal to 1, where h, k, l are the reciprocal of the intercepts.  

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 43:34) 

 
 

These h, k, l are referred to as the miller indices and the planes are commonly referred to 

by this miller indices; h, k, l values that actually defines the plane.  
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Coming back to this diagram, let us consider this plane, this plane or this plane, you 

could say. On the board you can see this is the plane. This makes an intercept on the z-

axis and it is parallel to both x and y axis. That is its intercepts on the x and y axis will be 



infinite. What is this plane called? This plane is therefore called, its z- axis intercept is 1; 

the reciprocal of 1 is also 1. Its x- axis intercept is infinite, reciprocal of that is zero and 

its y-axis intercept is also infinite, the reciprocal  of this is zero.  
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Let us take this plane. This makes an intercept on the y-axis alone. So, this plane will be 

called 0 1 0. Its y-axis intercept is 1, its x and z-axis intercepts are both infinite, therefore, 

this plane will be called 0 1 0. Similarly you can take the top plane and you can see that 

this is actually 1 0 0.  
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The entire family of such planes which makes intercept only on one axis and are parallel 

to other two axis will be given as, notice the difference. When I put them inside the first 

bracket, I am being specific. I am specifically telling what this particular plane is. When I 

am putting the miller indices inside the second bracket, I am referring not to one 

particular plane, but to a class of planes which makes collectively all those, make 

intercepts only on one axis and are parallel to the other two axis. They are referred to as 1 

0 0 planes.  
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Similarly, I can think of a plane going like this and this plane will be one in the family of  

1 1 0 planes, 1 1 0 planes. So, this plane will be belonging to the family of  1 1 0 planes.  
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Similarly I can even think of another plane like this, a triangular shaped plane and this 

plane you can see makes intercepts all the three axis and therefore this belongs to the 

family of  1 1 1 planes. So, they are the three basic families of planes we need to discuss 



when discussing the crystal orientation of silicon. They are 1 0 0, 1 1 0 and 1 1 1. 

Depending on the particular plane, the properties of the material will differ and in the 

next class we will see how the properties of the material is going to depend on the 

particular crystal plane.  

 

 

 

 

 

 

 

 

 

 

 

 


