Digital VLSI System Design

Prof. Dr. S. Ramachandran
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture — 53
System Design Examples using FPGA Board (Continued...)

-

(Refer Slide Time: 01:25)

-,

\#Contents ofllecture 53

B i

Stop Watchglmpleme ntdnon
""Alarms routine §

(Continued) [_'
-

} B
\t -
] L@lsplay'R'M SUb-module
iFest Bench™@r Real Time Clock

We will continue with the real-time clock Verilog coding. I crosschecked once again what |
have written. Some students expressed there is some mistake. Please note the correction for
the same.

(Refer Slide Time: 02:07)

/ Only ane of the three alarms can be read.
/1 more than one is read, the highest

I priovity uharm alone will be actually read

[/ and, others are ignored.

A Al 1 is the highest priority and Alaom 3
1 ¥ the lowest,

output [7:0] displayl :

!
" output|7:0] display? ;

This is right at the input declaration. When you come to alarm3, the comments are like this.
There was a mistake is not in the code but only in the comment | have written. | will read out
the correct version of the comment. Only one of the three alarms can be read. | had put it as
set earlier. That is what you mean, right? Set is not right, it can only be read. You can set all
the alarms if you wish, but while reading, you can only read one because there is only one
display available. If you happen to set all the three alarms, naturally you cannot read. If you
do not read any of them, then that is also not right.

What we gave is priority to these three alarms. We gave alarm1 the top priority and then we
are enabling that to be read. If more than one is read, the highest priority alarm alone will be
actually read and others are ignored. This is the only change and all other things are the same.
You remember that we stopped at implementation of the stopwatch. We will go to that point

and then continue from where we left.

(Refer Slide Time: 03:16)

(el reg = S)&(entl2 reg — I
(start_stopn_reg -~ 1'b1))|
((ady s sw = D&(ent?_reg < SH&(ent10 reg L))

Hent? = 04 and ent10 - cntl2 = 959 are the
1 conditions for pre-incrementing this counter.

assign cot? pext = ent? reg ¢ 15 // Preincrement the counter.

assign decr ent9 = rsd & (ent10_ reg ~ O)&(entl]_reg 0%
' - 2 e o MK (entD ree = NS

| think this is the one here.

(Refer Slide Time: 03:30)

1 ent9 reg is the Stop watch's most significant MINUTES digit.
I This h]naﬂ or advanced only in the RUN and STOP WATCH
I mode of operation every 1 sec.

asshen res ot -~ ((set_stopw = 1)&(down upn -~ I'bO)&
(term count_reached up ~ 0)&(thsec ~— H&
(o9 reg - S)&(entl0 _reg - N
(et reg ~ S)&(emtl12 reg o)&
(start_stopn_reg 1)) |
((ady_mits sw - D&(ent? reg - S)K(emtlD reg ~—9))| .
((set_stopw ~ D&(down_upn ~ 0)) 3

We were looking at cnt9. Is that right? This is where we stopped. Here, it is precisely the
same. cnt9 is for the stopwatch's most significant minutes digit. What we have covered so far
7 and 8 for stopwatch are hours display. For minutes, it is precisely the same, except that the
conditions are going to be different for each of these counters. For example, this is reset or
advanced only in the RUN and STOP WATCH mode of operation every 1 second. This is

precisely the same for other counter modes. When you want to reset the counter9, this is the

logic that we will have to solve. As usual, we will see only the comments because there is no

point in repeating what you already know.

(Refer Slide Time: 04:09)

wssign res_ent? © ((set_stopw ! 1)&(down upn — I'bO)&
(term count_reached up — 0)&(thsec — 1&
(ent? reg -~ S)&(entl0 reg - &
(entl]_reg ~ SN&(ent12 reg N
(start_stopn _reg — 1))
((ady_mtx sw = D&(ent? reg — S)&(entl0 _reg -~ 9))|
((set stopw ~)& (down_upn = 0)) 3

I et9 - entl2 = 59 59 are
/! the conditions for resctting this counter.

assign adv_ ent9 ~ ((set_stopw !~ D&(down_upn -~ I'bO)&
(term count_reached up == 0)&(thsec —)&
(et9 reg < S)&(entl0 reg — N&

Only thing is you have only to crosscheck — since you have this with you, you can always
crosscheck at any point of time if you happen to have the CD. cnt9 to cntl2 must be 59, 59.
This is the condition for resetting this counter. We are talking of resetting the minutes counter
— that is the third counter from the left, 7, 8 and this is 9. How to reset? What condition
determine the resetting will be precisely as per this comment.

(Refer Slide Time: 04:42)

(entl]_reg < SH&(ent12 reg - &
(start_stopn_reg ~— 1'b1))|
((ady_mits_sw == D&(ent? reg < S)&(entl0 reg == 9));

Hent® = 04 and cnt10 - cnt12 = 9 59 are the
1 conditions for pre incrementing this counter.

asshgn oot next = ent? reg + 11/ Preinerement the counter.

assign decr_ent9 = rsd & (ent10_reg = 0)&(entl]_reg -)&
(entl2 reg - DX (emt? reg > 0)&

—

You can also advance cnt9 for this particular status. For example, cnt9 can be 0 to 4 and
cntl0 to cntl2 can be 9, 59. This is the condition when you can advance by 1. This is the pre-

incrementing of counter9.

(Refer Slide Time: 05:02)

sl cot9 pext -~ ent? reg ¢ 15V Preincrement the counter.

i assign decr et - ol & (entl0 e Mot Il reg -~)&
(entl2 reg = &(e9 reg >~)&
(e reg < S)N&(thsec 1)
I For emt9 - 15 and ent10 cotl2 = 0000
assign ont? oextd -~ ont? reg 1 /! Pre-decrement the counter.
" assign pres ont? = rsd & (thyee 1) & (et reg K
(entl reg D& (cntl] reg - O&

Y e

Once again, there is a decrement counter if you happen to be in the down-counting mode, for
which the conditions are 1 to 5 for cnt9 and cnt10 to cnt12 must be all 0s. We are counting
down. If it is 1 to 5, then only we need to decrement cnt9, which is precisely this. If it is 5,

you will be decrementing it to 4.

(Refer Slide Time: 05:23)

e e O —
wssign decr = sl & (ent10 reg — D)&(entl]_reg - 0)&
(ent12 reg — 0)&(ent? reg >)&
(ent? reg <= SH&(thsec 1)1

M For ent9 = 1-5 and cnt10-ent12 - 0 00,

assign oot9 nextd < o9 reg -1 /I Pre decrement the counter.

assign pres_ o9 < nd & (thaee = 1) & (et reg - 0N
(entl0 reg - 0)&(entll reg -)&
(entl2 reg = 0)& ((ent7 reg ! O)cntS reg !~ 0)) 3

Note that the other digits must be Os and pre-decrement once again and this is the condition

for presetting cnt9.

(Refer Slide Time: 05:34)

/I For ent7 or ent$ not equal to 0 and cnt® ot 12 - 00 08,

always @ (posedge olk or negedge reset n)
begin

if (reset_n -~ 1'b0)
ent? reg < 4403 I Indtialize when the system is reset.

Reset if terminal count ix mltlml.

The condition is cnt7 or cnt8 must not be equal to 0 and cnt9 through cnt12 must be 0s. This
is clear. If all of them are 0O, it has come to the terminal value and there is no further
decrementing. In order to take care of that only we are putting it here that at least one of them

must not be 0.

(Refer Slide Time: 06:01)

always (@ (pasedge Ik or negedge reset_n)
begin

il (reset 0 1'b0)
o9 reg < 4'd0 /f Tnitiakize when the systemn s reset.

clse if (res et — 1'b1) /! Reset if terminal count is reached.
oot reg < 40

else if (ndy o9 = 1'b1)
ot reg < ent? vext s/ Advance the count once if the

/ stop watch is still running.
else if (decr_ a9 =~ 1'bl)

d : // Decrement the count once ifthe ©
e

As usual, cnt9 implementation is here, reset condition, then advance and then decrement
condition.

(Refer Slide Time: 06:10)

if (reset_n - 1'b0)
9 reg <= 4'd0; // Initialize when the system is reset.

else if (res_ent9 = 1'b1) 1/ Reset if terminal count is reached.
a9 reg <~ 4'd0;

else if (ndv_cent9 = 1'b1)
ot reg < o9 nest: // Advance the count once if the
P I stop watch is still running.
else if (decr_cnt9 ~ 1'bl)
ent9 reg < et nextd 5/ Decrement the count once if the
/ stop watch is still running.
else if (pres cnt? —— 1'b1) Il Preset if count down terminal
I count ks reached.

When this condition takes place, only then it will do the advancing or decrementing or
presetting.

(Refer Slide Time: 06:17)

cd;_ng <= 4'd0 5

else if (adv_ent? = 1'b1)
a9 reg <~ ent? next; // Advance the count once if the
1/ stop watch is still running.
else if (decr ent? - 1'b1)
ot reg < ent9 nextd ; // Decrement the count once if the

1 stop watch is still running.
clse if (pres ent9 -~ 1'b1) I Preset if count down terminal
1 count is reached,

In this case, this is minutes, so you can go right up to 5. This is the preset value. After 0, it
should roll back to 5 and that is why when the preset count is 1, it has been preset to 5.

(Refer Slide Time: 06:33)

1 Otherwise, don’t disturb.
end

/ entl0 reg is the Stop watche's least significant MINUTES digit.
/I This is reset or advanced only in the RUN and STOP WATCH
{ mode of operation every | sec.

I entl_reg is the Stop watche's least significant MINUTES digit.
1 This ks reset or advanced only in the RUN and STOP WATCH
I mwode of operation every | sec.

assign res_ ont10 = ((set_stopw ! D& (down_upn -~ 1"
(term count reached up -~)X
(thsec ~= 1)&
(ent10 reg - N&(ent 1l _reg — 5)H&
(entl2 reg = K (start_stopn reg < 1))]
((ady mts sw - D&(entl0 reg = 9)) |

S R n\' -

The next one is cnt10. It is the stopwatch's least significant minutes digit. This is advanced or
reset only in the RUN and STOP WATCH mode every 1 second. This is once again the same
thing.

(Refer Slide Time: 06:47)

~ »

(term_count_reached up -~ 0)&
(thaee ~ 1H&
(entl0 reg -~ N&(entll reg — SHNK
(ent12 reg ~ 9)&(start_stopa_reg == 1))|
((ady_mits sw == 1&(entlD reg - 9)) |
((vet stopw ~ D&(down_upn -~ 0)) 3

ent10 - ent12 = 9 59 are
I/ the conditions for resetting this counter.

assign adv_entl0 = ((set_stopw !~ D&(down_upn ~— 1'bO)&
(term count_reached up - 0)&(thsee = &

cnt10 to cnt12 must be 9, 59 — condition for reset.

(Refer Slide Time: 06:55)

(ent10 reg < N&(entl]_reg — 5)&
(ent12_reg == 9)&(start_stopn_reg -~ 1'bl)) |
((ndy_mts sw == 1&(entlD reg <9)) 3

Hentl0 -0 to8 & entll - entl2 = 59 are the
/I conditions for pre incrementing this counter.

assign cnt10 next = entl0 reg + 15 // Pre increment the counter.

reg - 0)&(entl2 ng-«ll)t"

The condition for advancing cnt10 is 0 to 8 and cnt11 and cnt12 must be 59.

(Refer Slide Time: 07:03)

Hentl0 =0t 8 & entll cntl2 = 59 are the
I conditions for pre-incrementing this counter.

assign entl pext = cntlD reg ¢ 15 /) Preincrement the counter.

asskgn decr cnt10 ol & (et 1] reg =)& (entl2 reg -)&
(ent10 reg > & (cntll reg < N)&(thsec -~ 1)1

N Decremsent cot10 i cot10 = 1-9 and cntll - entl2 -~ 00,
sk ent10 neatd < entll reg - 15/ Pre-decrement the counter.

*assign pres_ent10 = rsd & (thsee < 1) & (ent10 reg — 0)&
(entll rep — D& (entl2 reg -~ 0)&

P e R P e R N LN
f AT

Once again, pre-increment is there and pre-decrement is there. Decrement once again applies
only for the run stopwatch down-count mode. The condition is for 10 equal to 1 to 9 and 11

and 12 must be 0. This is the decrement counter.

(Refer Slide Time: 07:23)

T et 10 ez > 0)&(ent10 reg < 9&i(thsec — 1)
I Decrement ent10 if ent10 = 1-9 and cntl] - entl2 = 00
assign ent10_nextd -~ ent1_reg - |5 // Pre-decrement the counter.

assign pres ot - rsd & (thaee = 1) & (entl reg - 0)&
(entll reg —)& (entl2 reg — 0)&

((et9 reg = 0)(entS reg !~ O)(ctT_reg ! 0)) 5

I Preset ent10 to 9 only if cot7-cnt? not equal to 00 O
I and entl0-cntl2 = 000,

Pre-decrement again and the condition for presetting the counter is here. cntl0 to cnt9 must
be preset to 9 only if cnt7 through cnt9 is not equal to 00 0. Once again, | hope this is clear.
Also, cnt10 to cnt12 must be 0s — all of them 0 except for this condition. This is for presetting

the counter.

(Refer Slide Time: 07:55)

LU - e A O

always (@ (pesedge dk or negedge reset_n)
begin

if (reset_n = 1'b0)
oot reg <~ 4'd0; // Initkalize when the system is reset.

else if (res_cnt10 -~ 1'b1) /! Reset if terminal count is reached.
ent10 reg < 4'd0

clse if (ady_ont10 -~ I'bl)
entl0 reg <= entl0 nexts [/ Advance the count once if the
/1 stop watch i still running.
else if (decr entl0 == 1'bl)
entl0 reg <= entl0_nextd ; /) Decrement the count once if
(1 #hn sdorm svntob Lo oailt .-...rl-—

Realization of cnt10 is here. As usual, reset, then advance, decrement and preset.

(Refer Slide Time: 08:02)

entl0 reg <= 4'd0 ;

ehse if (adv_ent10 = 1'b1)
antl0 reg < ent10 next; /) Advance the count once if the
I stop watch is still running.
else if (decr_ent10 == 1'b1)
ontl0 reg < cntl® nextd ; // Decrement the count once if
/I the stop watch is still running.

else if (pres_cntl0 - 1'bl) 11 Preset if count down terminal
1 conmt is reached.

entl0 reg < 4'd9;

11 Otherwise, don't disturh,

Preset in this case is when it is 9. What we are doing is for 10. 59 is the maximum and 9

corresponds to cnt10. We are concerned with only the minutes LSD.

(Refer Slide Time: 08:18)

Il entl]_reg is the Stop watche's mest significant SECONDS digit.
I 'This is reset or advanced only in the RUN and STOP WATCH

/I mode of operation every | sec.

assign res ent1 1 = ((set_stopw !~ 1&(down_upn - I'BO)K
(term_count_reached up ~ 0)&(thsec)&
(entll reg ~ SHN&(entl2 reg -)&
(start_stopn_reg = 1))|
((ady secs sw == D&(entl]_reg — S)&(entl2 reg -~ 9))| §

vam—— o) -

11 is the stopwatch's most significant seconds digit and the other conditions are the same.

(Refer Slide Time: 08:23)

asslgn res entll = ((set_stopw ! D& (down_upn -~ 1'b)&
(term_count reached up — 0)&(thsec = &
(entl]_reg = S5)&(entl12 reg — N&
(start_stopn_reg -~ 1))]
((adv_secs sw = D&(entl] reg ~— SHN(ent12_reg m|
((vet_stopw ~ 1)&(down upn ~ 0)) 3

el - entl2 = 59 are
// the conditions for resctting this counter.

assign ady_entl] = ((set_stopw !~ D&(down_upn — I'b)&
(term_count reached up — 0)&(thvee == 1)K
(entl] reg < S)H&(entl2 reg — N&
(start_stopn_reg ~— 1'bl))|

The condition for resetting is once again 11 and 12. You can see that the logic is
progressively getting easier. It is 59 as far as the 11 and 12 counters are concerned. The same

is the case for the advance counter except for a slight difference.

(Refer Slide Time: 08:45)

((adv_secs sw == 1&(entll_reg < S)H&(entl2_reg = 9)) 5

Henthl = 0to 4 & entl2 = 9 are the
/I conditions for pre-incrementing this counter.

assign et 11 _next ~entll reg+ 15/ Pre-increment the counter,

That is, cntl1l must be 0 to 4 and cnt12 must be 9. This is the precondition.

(Refer Slide Time: 08:56)

o X TEs

((ady_secs sw = D&(entl1_reg < SH&(entl2 reg = 9) 3

#entll =~ 0 to 4 & entl2 = 9 are the
1/ conditions for pre incrementing this counter.

asshgn cnt1] mext ~ entll reg + 15/ Preincrement the counter.

assign decr entl] = rad & (ent12 reg — 0)&(entl] reg >)&
‘ (entll reg <= S)NA&(thsec 1) 3

/! For emtll = 1.5,

assign ent11_nextd = eotll_reg - 15 // Pre decrement the counter.

Advance increment is here, then decrement cntll. This is the condition for decrementing. As
usual, the rsd signal has been used here and cntl1 is from 1 to 5. This is for seconds MSD.
The maximum that you can go is 5 here and this is the condition for decrement. If itis 1, 1
can go to O but if it is O, it cannot go down further. You can decrement only with the relevant
digit. That is the implication that we have been looking into all along.

(Refer Slide Time: 09:11)

Crep & {entl 1 .nz'> [
(entl] reg < S)&(thsec = 1) 3

I For entll = 1.5
~asshgn et pextd < entll reg - 15/ Pre decrement the counfer.

swsskgn pres oot - rsd & (thsee < 1) & (entl T reg -)&
: (entl2 rep)&
((ent10 reg ! O}(cnt? reg 1= 0)
(ent¥ rep = O)(ent? reg !l 0))

I Preset cot1 1 to S ondy if cnt7-cnt10 nut equad te
SO0 00 vl cnntl Eent12 - 00,

Once again, the pre-decrement, then presetting cnt11. You preset the counter to 5 only if cnt7
and cntl10 are not equal to all 0s. Of course, 11 and 12 must be 0 for the same condition that

we have been seeing.

(Refer Slide Time: 09:46)

if (reset_ 0 1I'M0)
ontll reg <~ 4'd0; // Initialize when the system is reset.

else if (res_cntll — 1'b1) Il Reset if terminal count is reached.
ontll reg < 4'd0;

clse if (ady_cntll — I'bl)
entll reg <= entll next :// Advance the count once if the
1/ stop watch is still running.

else if (decr_ontl] = 1'bl)
entll reg << entll nextd ; // Deerement the count once it
// the stop waatch is still running.
I Preset if count down terminal
J

Again, reset, advance, decrement counter and preset cnt11 of course.

(Refer Slide Time: 09:54)

LU e U O

m-il_ng <= 4'd0;

ebse if (adv_cntll ~ 1'bl)
entll_reg <= cntll next ;// Advance the count once if the
1/ stop watch is still running.
else if (decr_entll ~ 1'bl)
ontll_reg <= cntll pextd ; // Decrement the count once if
/1 the stop watch s still running.
else if (pres entll - 1I'b1) 1 Preset if count down terminal
count s reached.

entll_reg <= 4'dS;

11 Otherwise, don't disturh,

For 11, the maximum number is 5 and so we roll back to 5. Prior to this, it was 0 in the

decrement mode.

(Refer Slide Time: 10:04)

I/ ent12 reg is the Stop watche's least significant SECONDS digit.
I This ks reset or advanced only in the RUN and STOP WATCH
[mode of operation every | sec.

assign res_ ont12 = ((set_stopw !~ D&(down_upn -~ "MK
(term_count_reached up ~ ON&(thsec ~ &
(ent12 reg — 9)&(start stopn reg 1))|
((adv sees sw o D&(entl2 reg == 9)) |
((set stopw = D&(down _upn =~ 0)) 1

1Y 05 b coenibioloe

Now the last digit, seconds digit LSD is here.

(Refer Slide Time: 10:11)

LI e O
every | sec.

assign res entl2 ~ ((set_stopw I D& (down upn — 1'B)&
(term count reached up - DN&(thsee — &
(ent]2_reg == NK(start_stopn_reg = 1)) |
((adv_secs sw == D&(et12 reg ~—9))|
((vet_stopw ~ 1)&(down_upn = 0)) 5

I ent12 = 9 s the condition
/I for resetting this counter.

assign adv_entl2 © ((set_stopw !~ D&(down_upn - 1'b0)&
(term count_reached up = 0)&(thsec &
(ent12 reg < 9&(start stopn reg -~ 1'bl))|
((ndy secs sw = 1&(entl2 reg<9))3

Once again, the reset condition is cntl2 must be 9 — it is the condition for resetting this

counter and cnt12 is itself.

(Refer Slide Time: 10:19)

I ent12 = 9 is the condition
/I for resetting this counter.

sssign ady_entl2 < ((set_stopw !~ 1&(down_upn -~ I'bO)&
(term_count_reached up = 0)&(thsee = 1%
(12 reg < 9)&(start_stopn_reg ~ 1'bl)) |

((ady sees sw o D&(entl2 reg<9)):

I ent12 = 0 to 8 are the conditions

Advancing the counter is for cntl2 equal to 0 to 8 — this is for advance. If it is O, it can

become 1 and if it is 8, it can become 9. Therefore, the valid number is 0 to 8.

(Refer Slide Time: 10:31)

11 for pre-incrementing this counter.
assign ent12 mext < entl2 reg + 15/ Pre increment the counter.

assign deer ont]2 © rad & (12 reg > 0)&(ent12_reg <=)&
(thsec = 1)

I Decrement ent12 every sec. if ent12 = 1.9,

assign entl2 nextd < entl2 reg - 1/ Predecrement the counter.

assign pres entl2 < o & (thsee)& (et reg -)&
((entl] reg ! D)(entl0 reg !~ D)(ent9 reg !~ 0)]
(entS_reg I~ O)(emt7 reg = 0))
J

L e U O
e s 0 Y]

wssign cntl2 next = entl2 regt 13/ Pre increment the counter.

assign decr ontl2 = rad & (entl2 reg >)& (entl2 reg <= 9)&
(thsee < 1) 3

/f Decrement cntl2 every sec, if entl2 = 1.9,
assign cnt12_nextd = entl2 reg 15/ Pre decrement the counter.
assign pres ont12 = rad & (thvee 1) & (entl2 reg -~ 0)&

((entl1_reg !~ O)(entlD reg !~ O)(ent? reg 1= 0)
(ent8 reg = 0)j(ent? regl-0)):

I Preset ent12 to 9 only if et 7-cntl 1 not equal to
£/00 00 0 and ent12 = 0.

Advance, pre-increment, then decrement in the down-count mode in which case cntl2 is

decremented every second only if cnt12 is 1 to 9. So 1 can become 0, 9 can become 1 and so
on.

(Refer Slide Time: 10:49)

1 Decrement entl2 every sec. if entl2 = 1.9,

wssign entl2 nextd < a2 reg - 15/ Pre decrement the counter.
assign pres cntl2 = rd & (thaee = 1) & (emt12_reg -)&
((entl1_reg !~ 0)(ent10 reg I~ 0)(ent? reg 1= 0)
(o8 reg !~ 0)j(ent? reg!=0)):

I Preset entl2 to 9 only if et 7-entl 1 not equal to
0000 0 and entl2 -~ 0,

always @ (posedge oIk or negedge reset_n)

begin

Once again, pre-decrement and preset the counter. This happens only if cnt7 to cntll are not

equal to all Os; cnt12 also must be equal to 0 and it is preset to 9 in this case.

(Refer Slide Time: 11:09)

entl2 reg <o 4'd0; [/ Initialize when the system is reset.

else if (res ent12 < I'bl) // Reset if count up terminal count
/s reached.
entl2 reg < 4'd0;

else if (mdy_cntl2 — 1I'bl) |
entl2 reg <= entl2 pmext; // Advance the count once if the
I stovn swated be wtill ru-?ln.

LU S X O

T enti2_reg < 40

else if (adv_ent12 ~ 1'bl)
entl2 reg <~ ontl2 next; /) Advance the count once if the
// stop watch is still running.
else if (decr entl2 ~ 1'b1)
ont12 reg <= entl2 mextd 3 // Decrement the count once if
/1 the stop watch s still running.
else if (pres_entl2 ~ 1'bl) I Preset if count down terminal
I conmt is reached.

entl2 reg < 4491

1/ Otherwise, don't disturb,

The block for cnt12 is this. The preset is that 9 will be reflected here. All the other things are

similar.

(Refer Slide Time: 11:20)

LU - e U O

asxign res term count_regl = (adv hrs tor -)&
(term_count_regl = 2)&(term_count_reg2 <= 3) 3

// Reset Terminal count register for Up counter.

assign adv_term_count_regl « (ady_hrs ter = &
(term count_regl < 2)&(term count_reg2 < 9) 5

Next, what we have to see is the terminal count register for the up counter. In the up counter
mode, what we have to look for is you are going to set a particular value and it counts right
from 0, 1, 2, 3 and so on. When the terminal count (that is what you have set) is reached, a
match is found. That is what we mean by terminal count here. For the up counter, it is one
thing and for down counter, it is another. For that, you need this signal also, which implies
reset term_count_regl. This must take place only when adv_hrs_tcr is equal to 1 and when

term_count_regl is equal to 2 and term_count reg2 is equal to 3 (tcr is terminal count

register). Remember that regl through reg6 are there, so this is for up count, is it not? We are
looking for terminal count equal to 2, 3. Only then, you need to energize this signal. It is a

reset terminal count regl.

(Refer Slide Time: 12:37)

I Reset Terminal count register for Up counter,

~assbgn ady term count regl - (ady b tor o D&
(term count regl < 2)&{term count reg2 ~ 9) 3

'|' assign ferm count vegl pext -~ ferm_count regl 4+ 15

|
always & (posedge dk or negedge reset n)

begin
if (reset o 0)
term count regl < 0

L - e X O

I Reset Terminal count register for Up counter.

assign adv_term_count_regl - (ady_brx_ter < D&
(term _count_regl < 2)&(term_count_rep2 = 9):

assign term_count_regl next © term_count_regl ¢ 13
always @ (posedge clk or negedge reset_n)
begin

if (reset n - 0)

term _count_regl <= 03

else if (res term count_regl = 1)

Next is advance terminal. The same regl you need to advance also. For that, exactly the same
condition there. This terminal count reg will be less than 2 and equal to 9. That means 09 or
19 is implied there and it is similar to your cntl or cnt7 that we have already seen before.
Once again, you need a pre-increment here and this terminal count regl is realized as we

have done before.

(Refer Slide Time: 13:05)

if (reset n - 0)
term_count regl <= 03

else if (res term count_regl -~ 1)
term count_regl <= 03

clse if (ndy_term count_regl - 1)
term count_regl <= term count_regl next ;
else

end

asshgn res term count_reg2 < (ndv_hes ter = D&

You need to reset or advance it and there is no decrement as such here.

(Refer Slide Time: 13:16)

LU e O O

che if (ady_term count regl 1)
term_count_regl <= term count_regl next ;
clse
i

end

asshgn res term count_reg? < (ady hex ter - D&

(((term count_regl ~ 2)&(term_count_reg2 ~— 3)) |
((term_count_regl < 2)&(term_count_reg2 -~ 9))) 5

Similarly, for reset term_count_regz2, it is precisely same as what we have seen for regl.

(Refer Slide Time: 13:22)

(((term_count_regl == 2)&(term count_reg < 3)) |
((term count regl < 2)&(term count rep2 %)))3

assign adyterm count_reg? - (adv his tor o D&
{ ((terme count regl < 2)&(term count rep? < ml
((term cout_regl — 2)&(term comt_reg < 5)))5

 asshgn term count reg2 pext - term count regl |15

 always @ (posedge oIk or negedge reset_n)

if (reset 0 0)

I think I have not even put the comment here. Advance counter is also here and you can very
easily reason out what they are. Less than 2 means 0 or 1, less than 9 means 8. You can easily
find out what they are. Terminal count equal to 2 and here, it is less than 3. Only for that, you
need to advance. Mind you, we are just trying to advance the second register, which

corresponds to the hours LSD. Pre-incrementing is there as usual for cnt2.

(Refer Slide Time: 13:57)

if(reset)
term connt_reg2 <= 03

else if (rex_term count reg2 1)
term count reg2 < 03

else if (dy term_count reg2 1)
term count regl < term cownd rep? pest)

Once again, the register advance is there, we assign the next value here when the clock

strikes.

(Refer Slide Time: 14:06)

assign res term count_regd < (adv_mits_ter =)&
(term count regd < S)&(term_count regd ~ 9) 5

assign ady_term count_regd -~ (adv_mits ter - &
(term_count_regd < S)H&(term_count_regd <= 9) 5

asshgn term_count_regd next © term_count_regd + 15

always @ (posedge ddk or negedge reset_n)

Next is reg3. Once again, reset term count, advance term count and then pre-incrementing.
These are all precisely the same except for the conditions shown here, which you can easily
reason out, except that some difference is there. Earlier, | think it was hours, now minutes
will have to be taken into account. This condition also I think we have already covered, this

minutes_tcr.

(Refer Slide Time: 14:35)

h* term_count_regd next < term count regd + 13
always @l (posedge cIk or negedge reset_n)
if (reset 0 0)
term count regd < 03

else if (res term count regd < 1)
term count_regd <= 03

else if (ady_term count regd — 1)
term count regd < ferm_count regd next ;

chve

Once again, the realization of that particular register term_count_reg3 and incrementing is

happening here.

(Refer Slide Time: 14:40)

asshgn res term count_regd < (adv_mits ter - D&
(term count_regd -~ 9);

asshgn adv term count_regd - (adv_mis_ter - D&
(term count regd <9) 3

assign term_ count_regd mext -~ term_count_regd 4 13

Similarly for reg4 with all that reset, advance, pre-increment and then the actual register
implementation — these are all precisely the same, | do not have to repeat the same thing,
which you are already familiar with by now.

(Refer Slide Time: 14:53)

assign res term_count repS © (adv_secs ter - &
(term_count_regS ~ S)&(term_count_regb - 9) 5

assign adv term_count_regS = (adv sees ter < &
(term count_regS < S)&(term count_regb -~ 9) ¢

asshgn term count_regS next © term_count repS ¢ 13

always (@ (posedge clk or negedge reset_n)

Reset, advance, once again pre-increment for cnt5.

(Refer Slide Time: 15:01)

iN(reset)
term count repS <03

elve if (res term count_regS - 1)
term count repS <o 0

else if Gady term count_regS - 1)
term count regS <o term count regS oext ;
else

This is for the seconds MSD. This is the realization for the same.

(Refer Slide Time: 15:07)

aoslgn res term count regh - (ady_seex ter - D&
((term_count regh ~ 9) 5

assign ady term count regh - (ady sees tor - DX
(term count regh < 9) 5

asskgn term count_regh nest © term count_regh 4 15

always @ (posedge ol or negedge reset_n)

- begin
if (reset 0 0)
term count regh < 0

The last one in this sequence is reg6 and that will happen for seconds. That is why this has
been taken into account. These signals are already shown earlier. It means advance seconds
and terminal count reg all being matching.

(Refer Slide Time: 15:32)

if(reset n—0)
term count_regb < 03

else if (res term count regé 1)
term_count regh < 03

else if Gady termn count regé - 1)
term count_regh < term_count repé next §
clse

Once again, pre-increment realization of the counter is here. All the six are almost identical,

except for the signal change.

(Refer Slide Time: 15:39)

/1 Timer out s set when the terminal count (Up/Down) is reached.

assign timser ot slurm counter_pext - fimer out_alarm counter
+1
1 30 secx. audio alarm counter.

asskpn timer_out alarm - (timer_out)&
(timer out ahsrm connter ' 31) 3
1 'This sigmal is high for 30 secs. after terminal count
I s reached, Lo, timer out <L

Timer out is set when the terminal count (up or down) is reached. You remember that we
have a timer out, for example, to fire a rocket, as we have already seen. You can do it in two
ways: either up mode or down mode. When the set value is reached, then the timer out goes
high and remains high there. Concurrent to this, a sound alarm is also energized but that will

be on only for 30 seconds — you will get a beeping alarm for that. As far as timer out is

concerned, once the time is over, it goes high and remains high — it is unlike the beeping

output.

This is also as a counter basically and pre-increment is done in the same fashion. Why we
need this counter is we need to keep track of the audio alarm. We have already set it for say
30 seconds (if you want 30 seconds) but you can change that also. In fact, you can change it
from this statement you see here. If you say timer_out alarm, this is nothing other than
timer_out, have we declared earlier? This is the output. When timer_out is 1 and when
timer_out_alarm_counter (that is the counter we are going to see below) is not equal to 31,
only then timer_out_alarm must be on. That means to say this must be on only for 30
seconds, not beyond. Is that right? This signal is high for 30 seconds after terminal count is

reached, that is timer_out equal to 1. This is the condition.

(Refer Slide Time: 17:25)

if (reset n - 0)
timer out alarm counter L

clse if (thser out -~ 1)
titmer oul alarm counter < 0

elve if ((timer out = 1) & (timer_out_abarm_ counter |- 31) &
(thsee 1)

The timer out counter is like any other counter except for a few changes. We have an else-if
here. If timer_out is equal to 0, that means it is not yet energized. What you need to do is the
counter is also cleared. If timer_out is 1, that means timer_out is high and this can be high
only when the terminal count is reached, is it not? That terminal count is different, this
counter is different — this counter is only for sounding the alarms. We need to sound the

alarm just for 30 seconds; otherwise, you get annoyed with the buzzing sound all the time.

When the running time or stopwatch matches with the set value in the count mode, be it up or
down, then only timer_out is set — only after the lapse. After it is set, then only the 30 seconds

will come into play. That is why time timer_out_alarm not equal to 31. 30 means when it is
equal, it has already finished sounding for 30 seconds — that is what it means. Then, this will
go low and this will not be satisfied. We need to satisfy this, so that we may sound the alarm

only for 30 seconds — that is the implication of this and this should happen only every second.

(Refer Slide Time: 19:06)

timer out ‘alarm counter <
timer out alam counter next 5
end

always @ (posedge ik or negedge reset n)

begin

if (reset_n = 1'b)

begin

Otherwise, you increment the actual alarm counter.

(Refer Slide Time: 19:13)

(1 3 x 1 3 3 :

| (al (pesedpe Ik or negedge reset_n)
begin

if (reset n 1'bA)

begin

styrt stopn_reg < 1'b0 5 I/ Initiabize to STOP mode
/! when the system is reset.
/ 'This stares the start/stop vilue,

start stopup reg <= b5 [Previows start/stop value.

We have another set of always blocks for various purposes. For example, you may remember

that we have a push button for start and stop. Why is this register necessary? We have only

one push button switch and when we push for the first time, we should take the system into
start mode. If you push the same push button again, it should be turned into stop mode. Start
and stop are applicable only for up counter and down counter. Whenever you want to start the
counter, all you have to do is press the button. It will start and when you want to stop, press
the same button again. You can use for dark room — you can develop your films, etc., using
this same real-time clock in the down-count mode. You can even use an up counter and there
IS going to be a buzzer after the set time is lapsed and it will freeze at the last value. If it is
down count, it will be all Os and stay there. The buzzer will sound for 30 seconds and be

silent thereafter, but the output itself will remain high.

(Refer Slide Time: 20:23)

S

<= 1'b 3 I/ Initialize to STOP mode
1/ when the system is reset.
/ 'This stores the start/stop value.

<= 1'b0 ; 1 Previows start/stop value.

always (@ (posedge clk or negedge reset_n)
begin
if (reset_n ~ 1'b0)

begin

start_stopn reg < 1'b0 g I/ Initialize to STOP mode
/1 when the system is reset.
/1 'This stores the start/stop value.

start_stopnp reg <= 1'b0: // Previous start/stop value.

Then what we need is for the same signal, we also need to know the previous value so that we
can sense when the start stopwatch push. This will be known only if you register at every
clock pulse or every time this logic is satisfied. Here, this is only clearing the logic when

power on system reset is encountered. This is the previous of value of this.

(Refer Slide Time: 20:55)

Ilwh-lhcmhnnt.
I This stores the start/stop value.

start_stopnp reg <= I'b0; // Previous start/stop value.

else if (set_stopw 1)

!
start stopn reg <0

else if ((start_stopn = 1'b1)&&(start_stopnp_reg < 0)&&
(run stopw = 1))

" siurl u(opn is the debounced START/STOP
' 0o fm-ridnzrdge(lkmnhnoﬂk §

If set stopwatch is 1, that is the literal meaning you should take here, when you are in the
setting mode of stopwatch, what you should do is you have to stop the running up-down

counter, because we do not have to do any action at that point of time.

(Refer Slide Time: 21:16)

start stopn reg < g

ebve i ((start stopn ~— U'bH&&(start sopnp reg -~ NH&&
(run stopw 1))

1/ start_stopn is the debounced START/STOR

I PR input. Look for rising edge (Depression of the
1 prssh button switch),

begin

start stopn reg <= Istart stopn_ reg |
1 Toggle between START & STOP,

On the other hand, if start_stopn is 1, it implies that you want to start and it is already in start
mode after you push for the first time. We have just now seen that the previous value must be
0. 01 senses the rising edge of the push button and that means the push button has been
pressed. It must be in this run stopwatch mode and note that there is no n. This is straight.
start_stopn is the debounced START/STOP push button input and this is the comment for
this. Look for rising edge (depression of the push button switch). That is the comment that we

have just now explained.

(Refer Slide Time: 21:55)

LI e U O

I/ start_stopn is the debounced START/STOP
1l PB input. Look for rising edge (Depression of the
/I push button switch).

begin

start stopn_reg <= Istart stopn reg:
I Toggle between START & STOP.

start stopanp reg < start_stopn ;
1/ Preserve us the previous start/stop value.
end

else

start_stopnp reg < start_stopn |

Here, what we should do is whenever we push the button, it has to toggle. This is because we
have only one register called start_stopn. The same will indicate whether it is in start mode or
stop mode. The first time when your system initializes resetting, this will be cleared.
Subsequently, when you push the start button once, this will be made 1 and subsequent
pushing will have to be inverted. What you need is an inversion and that is precisely what this
statement is for. The same signal is inverted and assigned to itself. In other words, it is
toggling between start and stop. This is how you achieve with single button rather than
having to use two different buttons. Another thing is that you should not forget to load this
previous value with the present value. This is an important thing and if you miss this, it will

not work.

(Refer Slide Time: 22:52)

start stopn reg < !start_stopn reg;
1/ Toggle between START & STOP.

start stopnp reg < start_stopn
I Preserve as the previous start/stop value.
end

else
start_stopap reg < start_stopn §

1/ Preserve as the previous start/stop value.

Preserve as the previous start/stop value. This one is also precisely the same. If none of these
conditions are met, then also you should not forget to preserve the present value into the past

value.

(Refer Slide Time: 23:08)

assign hs2s next = hes2s veg + 11 // Pre-increment the counter.

always @ (posedge clk or negedge reset_n)
begin
if (reset_n -~ 1'b0)
begin
/1 Initialize when the system is reset.
hrsp reg /1 Initialize previous "hrs' value

hrs d 1w clear ON delay output.
! e = /I Clear 2 sec. counter,

Next we need to generate 2 seconds. One of your questions was how long | should hold. We
need to hold it for 2 seconds and that is precisely what we are going to implement now using

this hrs2s_next and hrs2s_reg. This is the pre-increment for that.

(Refer Slide Time: 23:27)

! oin Al ‘. Q,
always (@l (pasedge ¢lk or nezedge reset_n)
begin

if (reset_ n - 1'b0)

begin

I/ Initialize when the system is reset.

hrsp reg <= 03 I/ Initkalize previous "hrs' value
hes d <« 03 / and chear ON delay output.
hrs2s reg <= 03 // Clear 2 sec. counter.,

end

else if (hrs — 0) 11 'hes' PB s released,

Once again there being a counter, we had to have it in a positive edge clock always block.
This is the usual resetting and this is the actual register here. We also need a delayed output
so as to keep track of pushing continuously for 2 seconds. This is what is going to keep track
of that. This is basically derived from the hours push button. If you push the hours button in

order to set, only then all these come into play. The de-bounce condition of the push button

hrs is hrs and its previous value is what we earmark as hrsp. These are all to be initialized to

start with.

(Refer Slide Time: 24:16)

LU e U O

SR ITE

// Initialize when the system is reset.
hesp reg <= 03 // Initialize previous "hes' value
hex d <= 03 // and clear ON delay output.
hex2s reg < 03 // Clear 2 sec. counter.

end
else if (s~ 0) 11 "hes' Plis released,

begin

hrs d <=03 I chear ON delay output,
hesp reg <= his; 1/ Preserve as the previous 'hes’ value.

If the hours push button is released, what will happen is hrs is going to become 0. If you push
also, | think it should go to 0 — just examine this comment yourselves. Clear the ON delay
output. These are all preconditions. In a release condition, this is the one. If it is push, | think
it is 1, let us clarify that. That is why we are trying to initialize this. This is 0, mind you. The
previous value is the actual hours. The current value is taken here and assigned as the

previous value.

(Refer Slide Time: 24:56)

1/ et s the TIRS PE input.
I Clear 2 seq. counter.

/! After 2s delay or greater,

I switeh ON delay output.

e Lt S MO IR

hrs is the hours push button input. Clear the two-second counter. This is the two-second
counter as | mentioned and it needs to be cleared. That means the push button is not pressed
for incrementing that display. Next, suppose the hrs2s starts running (we have not spoken of
running yet) and we look for the value 20, this will give exactly this time basis 0.1 second
once again here and 20 would mean a delay of 2 seconds or greater. This is how you reckon

the actual delay. This is the running counter for keeping track.

It will start from 0, 1, 2, 3. It will start advancing from 0, 1 and so on only if you had pressed
for at least 2 seconds — only then this will come into play. Here, when this happens, that is,
after 2 seconds delay, this hours delay goes high. That is what | was saying when you start
the thing, hours output delay will still continue to be 0. Only after the lapse of 2 seconds
delay, it will go to 1. That is what is happening here and you should not forget to preserve the

current hours push button — you have to preserve that.

(Refer Slide Time: 26:14)

s d <=13 I switch ON delay output.
hesp reg <= hix: / Preserve as the previous 'hrs! value.
I/ "l Is the TIRS PR input.

I/ Note: hix2s_reg is not reset here. It is reset when HRS PRis

/I released as above.
end

else if ((entds_reg < "ds_base)&(hrs - 1))

begin

Note hrs2s_reg is not reset here. | am just inviting your attention by saying that it is not reset
here — it is reset when hrs push button is released as above. Earlier, we have seen release

here.

(Refer Slide Time: 26:29)

hes d <=0; [/ ¢lear ON delay output.
hesp reg < hrs; // Preserve as the previous Thrs' value.

/! "haex' is the HRS PR input.
hrs2s reg <= 03 /I Clear 2 sec. counter.

end

else if (hs2s reg == 20) 1/ After 25 delay or greater,

Here only it is reset but not here.

(Refer Slide Time: 26:34)

1 "' is the TIRS PR input.
hex2s reg <= 03 // Clear 2 sec. counter.

end
else if (hrs2s reg -~ 20) [/ After 25 delay or greater,
!

begin

hrs d <=1 I switeh ON delay output.
hrsp reg < his: J/ Preserve as the previous Thrs' value.
I hrs' is the HRS PB input.

/I Note: hrs2s veg is not reset here. It is reset when HRS PR s

After the time is lapsed, only after the two-second delay, you need to do this.

(Refer Slide Time: 26:42)

clve if ((entds reg ~ “ds_base)&(hrx -~ 1))

begin
hirs2s reg < hisls next

The next condition is counter decisecond. We want 0.1 second. Only when that is equal to the
set value we have defined earlier and the hours push button is also 1, we need to increment
the counter. That means we are incrementing every 0.1 second. 20 is what we have put
earlier, just now we have seen. 20 into 0.1 will be 2 second. That is how you get that. Is it

clear?

(Refer Slide Time: 27:17)

I Advance the count once every L1 sec.
1 s0 long as 'HRS' PR is kept pressed,

I Otherwise, ignore.
<=0; /! Clear ON delay output,
<= hrs; // Preserve as the previous "hrs' value,
/ "hex! is the HIRS PH input.

Advance the count once every 0.1 second so long as the hours push button switch is pressed,
otherwise ignore. Did | convey the same thing or did | make a mistake? Is it okay? 0.1 is the

time base. You are trying to count 20 each time. What we have seen is merely incrementing

when the condition is 0.1 second. Whenever the 0.1 second condition occurs, you merely
increment this counter. When it is equal to 20, stop that. We have forced it to 0, remember?
Here also, clear the ON delay output and preserve as the previous value — you have to do this

also. If none of these conditions are met, you have to just preserve once again.

(Refer Slide Time: 28:14)

I e e .
wssign a2y next < mits2s reg + 15/ Pre increment the counter.

always (@ (posedge Ik or negedge reset n)
begin
if (reset_n = 1"b0)

begin
// Initialize when the system is reset.

What we have seen so far is for hours. Similarly, we need for minutes as well as seconds. |
am not going into many details.

(Refer Slide Time: 28:26)

mtsp_reg <= 1'b0; // Initialize previous 'mis’ value
mits d <03 I and clear ON delay output.
mix2s reg <03 I Clear 2 sec. counter,

end

else if (mts = 0) JIEMTS PR s released,

Clewr ON delay output. g
Preserve as the previous ‘mhl' value.

I will leave it to you, you can just go through. We have got the very same thing here. If

minutes instead of hours is encountered, the action you have to do is precisely the same thing.

(Refer Slide Time: 28:41)

JEIEMTS PR s released,

I Clear ON delay output.
I Preserve as the previous 'mits’ value.

I oats” is the MIS PR input.
I Clear 2 sec. counter.

else if (mtx2s reg < 20) // After 25 delay or greater,

Again if it is 20, it means 2 seconds.

(Refer Slide Time: 28:48)

O e O
X <03 /I Clear ON delay output. '
misp reg < mts; [/ Preserve as the previows "mis’ value.
H *ots” ks the MTS PB input.
mts2s reg <03 I Clear 2 sec. counter.

end
else if (mts2s reg <~ 20) // After 25 delay or greater,

begin !

mis d <=13 /1 switch ON delay output.
misp reg < mis; // Preserve as the previous 'mis’ value.

Earlier, what we spoke was for hours, only two digits hours display will be managed there.
Now, we are going to manage the next two digits for the minutes alone. The next two digits
will be for the seconds, which is going to come over here.

(Refer Slide Time: 29:03)

elbse if ((cntds_reg ~— “ds_base)&(mtx — 1))

begin

mix2s reg < mits2s mext
I Advance the count once every 0.1 sec.
1/ 50 long as "MIS' PB s kept ressed.
I Otherwise, ignore.

mits d <=0; /! Clear ON delay output.
misp reg < mits 3 // Preserve as the previous 'mis’ value.
"oty s the MTS PB input.
end

This is precisely the same condition, decisecond meeting and this time, it is the minutes push
button switch. Based on the minutes push button switch only, we need to take action. These
are all precisely the same.

(Refer Slide Time: 29:16)

misp reg < mts; /[Preserve as the previous ‘mts' value.
1 *mits" ks the MTS PB input.

end

assign secx2s next = sees2s reg + 15 /) Preincrement the counter.

if (reset_ n o 1'b0)

begin
I/ Initialize when the system is resel.

secsp reg <= 1'b0; // Initialize previous ‘seex’ value

sees d el H // and clear ON delay output.
secxls reg <= 03 /1 Clear 2 sec., counter.

end

else if (secs = 0) 11 sees PR is veleased,

So is the case for seconds here. Advance increment, then reset condition, all this and once
again instead of hours or minutes equal to 0, we do this.

(Refer Slide Time: 29:27)

seen d <= 03 /[l Clear ON delay output.

secsp reg < secs s // Preserve as the previous "secs’ value.
1/ "secy” is the SECS P input.

seos2s reg <05 I/ Clear 2 sec. counter.

end

else if (seex2s reg = 20) /) After 25 dekay or greater,

begin

sees d <=3 1 switch ON delay output.
seesp reg <= sees 3/ Preserve as the previous secs value.
1/ secs is the SECS PR input.

We have set or reset the relevant registers. Once again, [29:33] 20 here, the delay is again
made 1 and previous value set here.

(Refer Slide Time: 29:41)

ebse if ((entds reg ~ “ds_base)&(sees = 1))

begin

sees2s reg <= secals next: [/ Advance the count once
I every 0.1 sec. so long as 'SECS' PB
I ks kept pressed. Otherwise, ignore.

axas s s -

secsls reg <o secs2s next 3 [/ Advance the count ence
I every 0.1 sec. so long as 'SECS' PR
1 ks Kept pressed. Otherwise, ignore.
secs d <03 I Clear ON delay output.
secsp reg <o sees: [Preserve as the previous "sees’ value.
I "secx’ s the SECS PR input.
end

else
secsp reg <= secs; [/ Preserve as the previous "sees' value.
1/ *sees” is the SECS PB input.
end

wation starts here

Once again, if this condition is met, only then we increment. As usual, it is precisely the
same. Otherwise, preserve the value.

(Refer Slide Time: 29:54)

Zosen: I Preserve s the prvvi-m Yseex valine.
I "wecx' is the SECS PR input.

Alarm implementation starts here

/ tesnp alarm_regl (o0 6 are 2 set of 4 bit temporary registers which
[/1 hold the aliarm time when it is being set.

- assign adv temp alarm vegl o (ady_his temp alaom - D&
(temp akarm regl < 2)&(temp alarm_reg2 -~ 9) 5

I Mewns 09 or 19

Now, what is left is alarm implementation. It starts right here. For this, we have a set of four-
bit temporary registers temp_alarm_regl to 6, which hold the alarm time when it is being set.
Then, assign this particular signal, which is adv_temp_alarm_regl. We do it only when
adv_hrs_temp_alarm is 1 and temp_alarm_regl is less than 2 — that means 0 or 1. The next
alarm must be 9, which means 09 or 19. Only then, you advance. It is the alarm setting we are
talking of now. Once again, regl will correspond to the hours MSD. That is what we are

talking about here.

(Refer Slide Time: 30:46)

wssign res temp alarm regl < (adv_hex temp alarm -~ &
(temp alarm regl ~ 2)&(temp_alarm reg2 < 3) 3

assign temp alarm regl next -~ temp alarm regl + 13

1 Conmmon akarm setting counter, one
1/ each for the 6 digits display.

always @ (posedge oIk or negedge reset_n)

begin
if (reset n——0)

Similarly, reset condition is here for 2 and 3. This is the same condition and this is pre-
incrementing the register.

(Refer Slide Time: 30:57)

. : ‘ A= s :‘B::&A .
always (@) (pasedge clk or negedge reset_n)
begin

if (reset_ n = 0)

temp_alarm regl < 03

else if (res_temp alarm regl -~ 1)
temp alarm regl <= 03
else if (wdv_temp aklarm regl -~ 1)

temp alarm regl <= temp_akarm regl next;

Once again, as usual, we have the reset condition for realizing the register 1 temporary alarm.
What we do is we first have a temporary alarm for all the six registers, corresponding to the

six counters that we had or six displays we had. Pre-incrementing is assigned actually here.

(Refer Slide Time: 31:19)

e O
ssign adv_temp alarm reg2 = (adv_hrs_temp alarm -~ &
(((temp alarm regl < 2)&
(temp_akarm_reg2 <9))|
((temp alarm_regl — 2)&
(temp alarm reg2 <3)))3

I Advance fotl 0018 (except 09) & 2022,

asshgn res temp alarm reg2 < (adv hes temp akarm <)&
(((temp alarm regl < 2)&
(temp_alarm_reg2 = 9) |
((temp_alarm regl — 2)&
(temp abarm _reg2 ~ 3))):

/I Reset for 09, 19 & 23,

Similarly, for reg2 — it is precisely the same. | am going to read only the comment. Here, you
are going to advance this alarm setting only if it is 00 to 18, other than 09 and 20 to 22. Only
then, you need to advance, not otherwise. Similarly, you can reset only when it is 09 or 19 or
23. This is as far as the second register is concerned, which is corresponding to 9 or this 9 or
3, because this is the terminal count. Whether it is up counter or down counter setting or

alarm counter, all will go only in the forward direction — incrementing only.

(Refer Slide Time: 31:58)

I eSO O

(temp_atarm_reg2 = 9)|

((temp _alarm regl -~ 2)&

(temp alarm reg2 ~ 3)))
1 Reset for 09,19 & 23.

assign temp alarm reg2 next < temp alarm reg2 + 13

| always (@ (posedge clk or negedge reset n)

begin
if(reset n - 0)
temp alarm reg2 < 05
else if (res_temp alarm reg2 -~ 1)
temp alarm rep2 <= 03
else if (ady temp alarm reg2 < 1)

temp alarm_reg2 <0 temp_akarm_reg2 next s
clse

Once again, pre-increment for that and the temporary alarm reg2 is precisely the same as the
previous thing.

(Refer Slide Time: 32:07)

assign ady temp alarm regd -~ (adyv_mts_temp alarm - 1)&

(temp alarm_regd < S)H&(temp akarm_regd

+ » .

I/ Advance for 09, 19,29, 39, 49.

assign res_temp_alarm regd = (adv_mits temp alarm < D&

(temp alarm regd S)&(temp akarm regd -~ 9)
/I Reset for 59,
assign temp abarm regd next ~ temp akarm regd 4 15
always @ (posedge clk or negedge reset_n)
begin

always @ (posedge Ik or negedge reset_n)
begin

if(reset 0 0)

temp alarm regd <= 03

else if (res_temp alarm_regd -~ 1)

Once again, for 3 you have advance as well as reset here. The condition is 59 here. Then once

again, pre-increment and a block for temporary alarm reg here. This is exactly the same.

(Refer Slide Time: 32:24)

else if (ndv_temp alarm regd = 1)

temp alarm regd < temp alarm regd next ;
clse

»

end

assign ady_temp alarm regd © (ady_mits_temp_ akarm -~ DH&
(temp alarm regd <9);

assign ady_temp_alarm regd -~ (ady mits_temp alarm -~ 1)&
(temp_alarm_regd <9) 5

I Advance for 0-8.

assign res temp abarm regd © (adv_mits temp alarm - D&
(temp akarm regd - 9);

/I Reset for 9.

terman alarm reed 41 -

So is the case for advance reg4. The condition is 0 to 8 in this and reset for 9 as far as 4 is

concerned. Once again, there is the pre-increment block for realizing the same.

(Refer Slide Time: 32:39)

temp akarm regd < 0
clse if (res temp alarm regd - 1)
temp alarm repd <o 03

clse if (ady temap alarm regd — 1)

temp alarm regd < temp alarm regd nest §

This is exactly the same.

(Refer Slide Time: 32:43)

assign ady temp alarm regS © (adv sees temp akarm -~ &

(temp alarm_regS < S)&(temp_alarm_regb == 9) 5

/I Advance for 09, 19,29, 59, 49,

assign res temp alarm regS - (-’d\'_m_(mp akarm &

The only thing is that it will advance for 09 or 19 or 29, 39, 49. This is clear. We are in 5 and
one more is there. This is for seconds.

(Refer Slide Time: 32:59)

/I Advance for 09, 19, 29, 39, 49.
assign res temp alarm regS = (adv secs temp alarm - D&
(temp alarm_regS == 5)&(temp alarm_regh -~ 9) 5
// Reset for 89,

asshgn temp alarm_regS next =~ temp alarm_regS 413

always @ (posedge clk or negedge reset_n)

This is assign. This is also required for resetting for 59. Again, pre-increment.

(Refer Slide Time: 33:09)

if(reset n0)
temp alarm regS < 03

else if (res temp alarm regS - 1)

temp alarm_regS <= 03

The block for 5 is here, this is once again the same.

(Refer Slide Time: 33:10)

Lo e U O
> L3 2 221 * * = . = »

else if (ady_temp alarm regS-— 1)
temp alarm regS < temp_alarm regS next ;

clse
end
asshgn ady temp alarm regb — (adv_sees temp akarm - D&
(temp alarm regh <9)

/ Advance for 0.8,

asshgn res temp alarm regh © (ady_sees temp alarm - D&

The last digits for the seconds LSD is here. Then, advance, reset and pre-increment are there.

Advance for 0 to 8 or reset for 9.

(Refer Slide Time: 33:30)

LU e O

= u-p alarm ;!g‘<-‘:

else if (res_temp alarm_regé 1)

temp akarm regh <= 0
else if (ndv_temp alarm regé -~ 1)

temp alarm regé < temp_alarm regb next]
clse

end

/l set_alarml is a signal which indicates that alarm1 is being set.

This is the block for alarm_reg6 here. You assign it here and as usual, you have reset, etc.
Next, we need to set alarml. If you want to set alarm1, what you should do is you should set
the stopwatch and alarm read/set in set mode with alarml set. We have already seen
set_alarm. alarm1 must be in position 1. This is the de-bounced switch position. That is what

we are calling as set_alarml.

(Refer Slide Time: 34:05)

Once again, the block is there for alarm1 and there are three alarms. There are once again six
displays, corresponding to the same order, this being the hours and so on. This is for

resetting. We need separate registers for setting the independent alarms. We cannot have the

same temporary alarm. The temporary alarm is first set and then transferred here. That is
what we are going to see later on.

(Refer Slide Time: 34:34)

end

clse if (set_alarml 1)

begin

alarm1_regl <= temp_alarm regl ;

I Copy alarm setting from common set register
/ into the particular Akarm register.

alarml reg2 < temp alarm regl :
alarml_regd <= temp alarm_regd ;
wlarml regd < temp_alarm regd
alarml_regS <= temp alarm regS:

B e

assign set_alarm2 = (set_alarm -~ D& Galarm2 <= 1) 5

always @ (posedge clk or negedge reset_n)
begin

If set_alarml is 1 (we have seen the condition), if it is set, what we should do is we have to
set that temporary alarm. From temporary alarm, we are setting to the independent alarm.
That is what we are doing here — copy alarm setting from common set register into the
particular alarm register. It is precisely the same here for the six registers and set_alarm2 is

similar to set_alarm1. The condition is clear except that alarm2 is now 1.

(Refer Slide Time: 35:01)

This is the block for realizing the same. Once again, power on reset here for alarm2.

(Refer Slide Time: 35:06)

else if

begin

alarm? regl <= tmp,_ulufm_ngl :
alarm?2 reg2 < temp alarm rep? ©
alarm?2 regd <= temp alarm regs ;
alarm?2 regd <= temp alarm regd ;
alarm?2 regS < temp alarm repS;

Here, temporary alarm is set to this, provided set_alarm2 is there.

(Refer Slide Time: 35:13)

L e X O

else if (set_alarm3 — 1)

begin

alarm3 regl < temp alarm_regl
alarm3 reg2 < temp alarm rep |
alarm3 regd << temp alarm regd |
alarm3 regd < temp alarm repd §
alarmd regS < temp alarm regS;
alarm3d regb < temp akarm reg6 |

ol
end

) (alarm] or alarm2 or alarmd or reset_n)

The same is the case for alarm3. It is precisely the same thing. Here, we are setting the
temporary.

(Refer Slide Time: 35:26)

always @ (alarm1 or alarm?2 or alarm3 or reset_n)

begin

if(reset n - 0)

This is the block. I have lost track of this, let us have a look at this. When alarml or any of
the alarms, then we need to take some action. What is that? We have to read the switch
positions for the alarm. There are three switches, am | right? Please correct me if | am wrong.

This is the power on reset. read_alarm_reg, there is a reg for keeping track of read alarm.

(Refer Slide Time: 36:02)

I/ read alarm reg is a 2 bit reg which stores the number of

I/ the alarm to be read. If no akarm is on, it stores "0%

else if (alarm1 = 1)

/1 1f more than one alarm is on, the one displayed (read) is
/! the top priority alarm. alarml is the top most priority.

I will just read the comment. read_alarm_reg is the two-bit register that stores the number of
the alarm to be read. If there are three alarms, you need to keep track of which alarm we are
speaking. Reading means displaying. Each of the alarms has been assigned some unique
number. For example, if it is 0, you need two bits to represent three alarms. If no alarm is on,

it stores 0. So 0 corresponds to no alarm being set.

(Refer Slide Time: 36:37)

I vead_alarm reg s a2 2 bit reg which stores the number of
1/ the alarm to be read. If no alarm is on, it stores *0%,

else if (alarml ~ 1)

1/ 1F more than one alarm is on, the one displayed (read) is

I/ the top priovity alarm. alarml is the top most priority.

read alarm reg < 13

else if (alarm2 < 1)

If alarml is 1, that is, the first alarm is set (this is the physical switch after de-bouncing), if
more than one alarm is on, the one displayed (read) is the top priority alarm. alarml is the

topmost priority and | hope there is no problem in this — earlier, you remember we corrected.

(Refer Slide Time: 37:06)

11 mere than one alarm is on, the one displayed (read) is
I the top priocity alarme. alarm] is the top most priovity,

read alarm reg < 13
clyve if (alarm2 1)
read alarm reg < 2
else if (alurmd 1)
read alarm reg < 35/ Least priority,

ehse
read alarm reg < 0

Here we need to set this register, read_alarm_reg to 1 for that condition. That was for first
alarm. If alarm2 is set on the other hand, this reg will be forced to the value 2. If alarm3 is
encountered on the other hand, this will be set. Note that this is a priority encoder. This gives
the topmost priority to alarml1 because that was the very first statement and that is how the

priority is assigned. This is clear to you.

(Refer Slide Time: 37:35)

ot =T rEII

else if (alarm2 — 1)

read alarm reg <23
else if (alarmS ~— 1)

read alarm reg < 35 // Least priority.

If none of this is met, simply make it O, which implies that no switch has been set for that.

(Refer Slide Time: 37:38)

1 Display real time or stopwirtch or alarm on the
Il seven segment LEDx

always @ (posedge eIk or negedge reset_n)

The next block is display real time or stopwatch or alarm on the seven-segment LEDs.

(Refer Slide Time: 37:46)

We have datal through data6, which we saw in the simplified architecture earlier just for the

display. We need to clear first.

(Refer Slide Time: 38:00)

elve if (display_time 1) 11 Tiwe will be displayed.

begin

datal < cntl; reg;
data <= em2 reg:
ditad < entS reg;
datad < entd reg:
distasS <= entS reg;
datab <~ cntb reg ;

ond

If you are in display time mode, it implies that we need to display the actual running time. If
you are in that mode, what we have to do is take cntl through cnt6, which is the running
counter and assign it to datal through data6.

(Refer Slide Time: 38:14)

LU e U O

begin
if ((set_stopw = & (down_upn = 0))
begin
datal < termn count regl ;

data2 <= term count_regl ;
datad <= term count regd @

Otherwise, if display stopwatch mode is set now, what you have to do is.... Once again you
have to check the condition whether it is in set stopwatch mode and also in down or up. It is
in up mode. If it is in set stopwatch mode for up counter, then what you need to do is you
have to take term_count_regl and then assign it and push it to the display. datal through

data6 are nothing other than the display.

(Refer Slide Time: 38:50)

datal < ct7 reg:
data2 < o8 reg:

diatad < ot rep

ditad < ont10 reg
ditaS <= entll reg:
datab < entl? reg;

ol

Otherwise, what we have to do is this. This is for stopwatch. cnt7 through cnt12 is earmarked
for the stopwatch. We need to push it to datal, which in turn will be displayed.

(Refer Slide Time: 39:02)

else if (set_alarm 1) /1 Indicates that akarm is set and,
I therefore, temp alarm_regl -
I temp_alarm_ regt will be displayed.

If set_alarm is 1, that indicates the alarm is set and therefore, temp_alarm_reg1 through reg6
will be displayed. This is what you want, because alarm is set and therefore you want to
display the set alarm. This is the condition for set alarm.

(Refer Slide Time: 39:21)

datal <= temp alarm_regl ;
data2 <= temp alarm rep ;
datad <= temp alarm_regd ;
datind <= temp alarm regd ;
dataS < temp alarm regS;
datab <= temp alarm regh ;

ond

else if (display_alarm ~— 1) // Alarm set is displayed.

Only here, we do the same thing and the temporary alarm is pushed to the display.

(Refer Slide Time: 39:35)

-

P::S 3
datab < temp alarm reg6
end
else if (display_akarm <= 1) // Alarm set is displayed.
begin i
case (read alarm reg)

[akarml ks displayed.

else if (display alarm — 1) // Alarm set is displayed.
begin

case (read _alarm reg)

1: / alarm] is displayed.

begin

datal <= alarm1 regl ;
datal < alarml rep;

There is one more mode, many in fact inside this. If it is in display alarm mode, we have a
few more clauses here. First, this alarm set is displayed. In this case, it would depend upon
read_alarm_reg. You remember that corresponding to which alarm is set, we have given
some number for that, O through 3. That is what is here. If it is O, you do not have to do
anything hopefully. It may come at the end, I think. If it is 1, it means alarm1. We need to
display the alarm1.

(Refer Slide Time: 40:11)

datal <= alarml_regl ;
data2 <= alarml reg? ;

datald <= alarm1 regd ;
datad < alarm1 repd
dataS <= alarm1 regS;
ditab <= alarml reg6

So all you have to do is push alarml1_regl through 6, which we have already set earlier, to the
display.

(Refer Slide Time: 40:19)

1/ akarm2 is displayed.

datal < alarm2 regl ;
data2 <~ alarm2 reg2

datal <= alarm2 regd
datad < alarm2 regd
dataS <= alarm2 regS:
datab <= alarm2_regh 5

Otherwise, if it is 2, it means alarm2 and you do the same thing, but this time you do from
alarm2 register and push it to the display.

(Refer Slide Time: 40:30)

begin

datal <= alarm3 regl ;
data <= alarmS regl
dital <= alarm3 regd ;
datad < alurm3 regd

begin

datal < alarm3 regl
datal <= alarm3 regl
datad < alarm3$ regl
datad <= alarmd regd ;
datasS << alarmS regS;

Otherwise, it may mean alarm3. Once again, you do from the alarm3 register onto the

display. That ends that particular set alarm.

(Refer Slide Time: 40:42)

wsslen alarml nateh - (abarm regl o ontl reg)&
(abarm reg2 - ent2 reg)&
(alarm] repd o entd reg)&
(alarml regd - entd regl&
(larm! regS — entS reg)&
(larml regh = cnth reg)

{1 Set if present time = alarm1 set time.

~/ alarml SOsec delay is o bit which becomes T when

;'} A alarm] smatch LI stays high for 30 secs. and then

Jl goes low. alarm] 30 sec iy a counter which counts G, Tt connty

We have to go some more distance before we complete. What we need to do here is
alarm1_match and for this, these are all the conditions. When alarml equal to cntl and
alarml_reg 2... this is the hours, then minutes, then seconds. When each of them equals the
running counter, this is the runtime basically, then what should you do? The alarm has found
its match, is it not. You have set an alarm time and when the running counter matches that set
value.... This is precisely the statement is responsible for turning on the alarm. Set if present

time is equal to alarm1 set time.

(Refer Slide Time: 41:23)

A O v v i
L L e

(alarml regb -~ o6 reg)

/I Set if present time ~ alarm| set time.

I alarml_ S0sec delay is a bit which becomes 1 when

I alarm1_mxatch = 1.1t stays high for 30 secs. and then

Il goes low. alarm1_30 sec is a counter which counts till 30, It counts
1l 50 long as alarm1 3sec delay is high.

1t is incremented every | sec,, e, when thsec -~ L

assign adv_alarm1_ 30sec counter = (thsee — D&
(alarml 30sec delay ~= 1)

]

You noticed that we also needed a 30 seconds buzzer activity. What we do is
alarm1_30sec_delay is a bit that becomes 1 when alarm1_match is equal to 1. It stays high
for 30 seconds and then goes low. alarm1_30 is a counter that counts till 30. It counts so long

as alarml_30sec_delay is high. It is incremented every 1 second when time base is equal to 1.

(Refer Slide Time: 41:48)

T —
.Il‘pu'low.ﬁ.-l_l'._-«l;ao-;t«mmt..ltlim
1 3o long as alarm1 30sec delay is high.

I 1t is incremented every 1 sec., ie., when thsee = L

asshgn ady! alarml 30sec counter = (thsee - D&
(alarml 30sec delay 1)

assign alarm1 30sec_counter_next ~ alarml_3sec counter + 13

We need a counter. For this alarm1_30sec_counter, advance is the signal that we need to get.
This is for 1 second and when alarm1_30sec_delay. This is the advance counter for that.

(Refer Slide Time: 42:06)

1
alarml 30sec counter < 03

alarm1_ 30sec dekay <=0
end
else if (alarm1_match 1)

II When the present running time equals the
alarm | set time, turn the 30 seex. delay On

Once again, this is the block that initializes these two — delay as well as the counter.

(Refer Slide Time: 42:15)

1/ When the present running time equals the
I alarml set thme, turn the 30 secx. delay On

alarmi 30sec delay < 15

clse if (alarm1 30sec counter -~ 5'd30)

/1 and turn it O when the delay is complete,

When alarml matches, only then we set the alarml_30sec_delayl as 1 here. Counter is
different, delay is different. This is a single bit, whereas the counter is multi-bit here — 5 bit.
When it matches with 30 seconds, then turn it off when the delay is complete. If delay is

complete, that means turn it off.

(Refer Slide Time: 42:33)

S e O
/I Also reset lhnﬂq.

begin

alarml Mhee counter <03
alarmi 30sec delay <=03

end
else if (ndy_alarm] 3sec counter 1)

alarml 30sec_counter < alarml_3sec_counter next

ters work similar to that of ﬁluml. o

You should also not forget to reset the counter and that is what we are doing here. If
alarm1_30sec_counter is 1, you have to only increment. We are counting that 1 second using

that 30. Every time thsec we have used. That is how you are counting for 30 seconds.

(Refer Slide Time: 42:54)

L e U O

alarml Shsec counter <~ alarml_30sec counter next 3

end
I alarm2, alarm3 delays and counters work similar to that of alsrm]1.

assign alarm2 match < (alarm2 _regl - entl_reg)&
(alarm2 reg2 < et reghk

(alarm2 regd - ontd reg)&
(alarm2 regd - ontd reg)&
(alarm2 regS oS reg)&
(alarm2 reg6 - cnth reg) :

Similarly, alarm2 and alarm3 delays and counters work similar to that of alarml. It is
precisely the same cntl to alarm2 this time. This is for match.

(Refer Slide Time: 43:05)

1/ Set if present time ~ alarm?2 time.

assign ady alarm2 30sec_counter -~ (thsec = D&
(alarm2 30sec delay == 1) 3

asshgn alarm2 30sec_counter next ~ alarm2 3sec counter + 13

always @ (posedge oIk or negedge reset_n)

else if (alarm2_match 1)

This is for advance. This is precisely the same, except that alarm2 has come into picture. Pre-

increment. There is a block for realizing the same. Again, match for alarm2.

(Refer Slide Time: 43:13)

alarm2 30sec delay <= 1;

else if (alarm2 30sec_counter — 5'd30)
/1 30 secs. complete.

begin

alarm2 30sec counter <= 03
alarm2 S0sec delay <= 03

end
else if (ady_alarm2 30sec_counter < 1)

<o alarvn? Shee commter povt ¢

clse if (ndy_akarm2 3hee counter 1)

alarm2 J0sec counter < alarm2 30sec_counter next 5

end

assign alarm3 match = (alarm3 regl < entl_reghk
(alarm3 reg2 - a2 reghk
reed o otd reel\l

Then all this. When this match is 30 seconds, it does that. Then advance the counter and
assign the pre-incremented value here. Then alarm3 match. When it is equal to the running

value, then a match is found and it then energizes the signal.

(Refer Slide Time: 43:34)

(alarm3 regh -~ enth reg)

/I Present time ~ alarm3 time.

asshgn adv alarm3 30sec counter = (thsee - D&
(alarm3 S0sec delay <~ 1) 3

assign alarm3 30sec_counter next ~ akarm3 Mhsec counter + 13
always @ (posedge dk or negedge reset_n)
begin

Then you also need to advance the alarm3_30sec_counter corresponding to alarm30, which

we have already seen earlier for 2 and 1. Then, pre-increment that counter.

(Refer Slide Time: 43:44)

alarm3 Mhec delay <=1

clse if (alarm3_ S0sec counter —— 5'd30) 1/ 30 secs. complete.

begin

alarm3 30sec counter <~ 0
alarm3 30sec delay <0

end
else if (ady_alarm3 S0sec counter -~ 1)

30sec counter <~ alarm3 3sec counter next; 7
J J

Once again, realize the same counter. There are two parameters once again. If the alarm
matches, what you do is just set that particular thing to 1. delay is the one that keeps track of

30 seconds, whether it is over or not.

(Refer Slide Time: 44:09)

alarm3 Shwee delay <13

clse if (alarm3 30sec counter |~ 5'd30) // 30 sees. complete.

Here, it implies, when this is equal to 30, it means 30 seconds complete and then, you have to

just reset the counter — ready for the next event.

(Refer Slide Time: 44:17)

clve if (ady_alarm3 30sec counter -~ 1)

alarm3 30sec counter < alarmS e counter next |

end

1 ving is a signal that indicates that one or more alarms ivare active.
1/ beep is the signal (square wave) which is actually output to the

Then you advance the counter when this signal is 1 and assign the next.

(Refer Slide Time: 44:27)

e e O
alarm3 30sec counter < alarm3_I0sec counter next |

end

1 ring s & signal that indicates that one or more alarms ivare active.
1/ beep is the signal (square wave) which is actually output to the
/I speaker if ving is high.

ns 0.2 seconds). When it is 2. PND

What is left is we need a ring signal, which is an intermediate signal. We actually need a
beeping signal. Beep is the signal (it is a square wave that you want to create) that is actually
output to the speaker if ring is high. Ring is an intermediate signal that indicates that one or

more alarms are active.

(Refer Slide Time: 44:46)

/l beep counter counts till 2 (means 0.2 seconds). When it is 2, beep

1 is toggled producing 2.5 1z beeping tone if alarm O/On switch
/s On. Otherwise, the sound alarm is 0T

assign ring = ((alarm1_30sec_delay = 1)}
(alarm2_30sec delay < 1)]
(akarm3 30sec delay < 1)) (timer out_alarm 1)

beep_counter counts (we have a counter also) till 2 (means 0.2 seconds). When it is 2, a beep
is toggled, producing 2.5 Hertz beeping tone. This is how you get a beeping tone, When you
see the demo, you will clearly hear that; since we have not put a mike right now, we could
not hear it. The beeping tone is heard if alarm off/on switch is on. There is another switch for
off/on. If it is on, only then you can hear it. That does not mean activity is not going on. It

does go on but you can hear only if it is in on mode. Otherwise, the sound alarm is off.

(Refer Slide Time: 45:22)

/ beep counter counts till 2 (means 0.2 seconds). When it is 2, beep
1 is toggled producing 2.5 Hz beeping tone if alarm Of1/On switch
s On. Otherwise, the sound alarm is 0T,

~assign ving © ((alaml 3sec delay 1))
(alarm2; Sthee delay 1))
(alarm3 3sec delay 1)) {thmer out alarm - 1) 5

M timer out_alarsm sigaal ks high for 30 sees. (to soumd
 tlve audio alarm) after the terminal count, Up or
I Down, is reached, ie.,

L - e U O = |

s On, Otherwise, the sound alarm is 0T

assign ring = ((alarml 30sec delay < 1)|
(alarm2_ 30sec delay — 1))
(alarm3 30sec delay < 1)) [(timer_out alarm -~ 1) §

// timer out_alarm signal is high for 30 secs. (to yound
/I the andio alarm) after the terminal count, Up or

11 Down, is reached, Le.,

I timer_out <1,

assign beep counter next - beep counter + 15

always @ (posedge oIk or negedge reset_n)

Then assign ring (ring is the signal). When alarm1_30sec_delay or the second or third delay
plus timer_out_alarm, which we have already seen, is 1, then only a ring will be energized.
The timer_out_alarm_signal is high for 30 seconds (to sound the audio alarm) after the
terminal count, up or down is reached, that is, timer_out is equal to 1. Assign beep counter
next — this is the pre increment.

(Refer Slide Time: 45:47)

The block for realizing the same is here. We have a beep counter here and we also have the
beep output here. We initialize these. ring = 0 means no alarm is active. If ring is 0, once

again you do the same thing.

(Refer Slide Time: 46:06)

< (~beep)&((akarm_off_onn ~ 0) |
(timer out alarm 1))3

If beep_counter = 2, what you have to do is the beep must be inverted and fed back only in
alarm_off_on. That means the alarm is in the on condition and only then, you need to beep.
Either this condition or timer_out_alarm is also 1. When either of the two conditions is met,

what do you do is you assign it to beep. When this condition is met, it will assign beep equal

to 1. It will set the beep.

(Refer Slide Time: 46:41)

LU - e X O

0
i

T
ey

st =)k

1 Toggle if alarm switch is in on pesition or if
I timer_out_akarm is high.

Toggle if alarm switch is in the on position or if timer_out_alarm is high. Then, you can reset

counter 0.

(Refer Slide Time: 46:51)

elve if ((ring = 1)&(entds reg — "ds_base))

beep counter <= beep ¢ r_mext ;

end

11 Call the BCD to seven segment display conversion ROM.
/1 Parn off all display decineal points.

/1 Call the BCD to seven segment display conversion ROM.
/1 Turn off all display decimal points.

rlhphy_m displ (addr(datal),

Adec pt(1'b),
out(displayl)
)i

Otherwise if ring = 1 and this is decisecond once again, then only do the incrementing here.
We are going to complete the design. Call the BCD to seven-segment display conversion
ROM. This is the display ROM. We need to call that here by using this and this is the
instantiation of the same. It is nothing but a ROM table. There is an address input, which can
be given as datal, data2 and so on, so that this will straightaway do the code conversion from
BCD to seven-segment display and you can output that output, which is displayl. If you want
to independently control the decimal point, you can put 1 here.

(Refer Slide Time: 47:43)

display rom disp2 (addr(data),
Adec pt(1°b0),
cout(display2)
|

addr(datal),
Adec pt(1'bo),
out(display3)
)i

adde(datad),
dee pt(1'b0),
out(displayd)

LU e O

.).‘ .

display rom dispS (.addr(datas),
dec_pt(1'b0),
out(displayS)
)i

display rom disp6 (addr(datab),
Aec pt(1'b),
out(display6)

" display_rom

/f display_rom.v is the sub module for converting a BCD number
I/ to seven segment LED display code.
nt display values inclnding.u

Like this, we have displayl through display6 here. Each time, data 1, data 2 — different data

sent here and that is the reason why we get a display. That ends the design.

(Refer Slide Time: 47:51)

display rom

{1 display_rom.y is the sub module for converting a BCD number
/1 to sever segment LED display code,
/! This ROM stores the seven segment display valoes induding »

1 vight decinral point.

I Lagie 1 Tights the LED configured in common anode mode.

The submodule we have used for the display ROM is here. display_rom.v is the submodule

for conversion here. It is a ROM table. Logic 1 is meant for turning on the segment. It is a
common anode mode.

(Refer Slide Time: 48:07)

module display rom (addr, dec_pt, out)

input [3:0] addr; // 0000 displays *0%, 1001 displays '9" & so on.

input dec pt: / Input logic *1° if u wish to turn it on.

| Seven segments: abed e fgdp,

This is the declaration of the module. Address, decimal point and out are the 1/0s here. We
need to declare all the inputs, 0000 displays 0, 1001 displays 9 and so on. All other things are
illegal values as far as the display is concerned. If you want decimal input, you have 1 here.

(Refer Slide Time: 48:31)

input dec pt; // Input logic 1" if u wish (o turn it on.

output [|7:0] out; // Sevensegments:abedefgdp,
1/ & is the msb and decimeal point, dp, is the kb,
I/ *a" is the top segment, b’ is the next segment
/! clockwise and "g" is the center segment.

reg [7:0] out:
always @ (addr or dec_pt)
begin

For output, you need eight bits. There are seven segments a, b, c, d, e, f and g — this is the
order for decimal point. a is the MSB of this and dp, the decimal point, is the LSD. a is the
top segment, b is the next segment clockwise and g is the center segment. You need to

declare out as reg.

(Refer Slide Time: 48:49)

always @ (addr or dec_pt)
begin
case (addr)

0: out = {T'BILIL 110, dec_pt) ;

// dec pt = 1 turns ON the decimal peint.
J of

This is a case statement using only combinational logic. Case depends upon the address.
Address is what you give as input. It needs to be converted from BCD to seven segments.
This can go right from 0 through 9. For each, the output will be different and that is assigned
here. For example, all 1s except for the last, 0 means.... a segment is the first, b, ¢ and so on.

This is g, is center segment and decimal point here. If you put 1, it will turn on.

(Refer Slide Time: 49:28)

dec_pt = 1 turns ON the decimal point.
: out = [7'BOLI0 000, dec pt} 3 // Order: abed efg dp
: out < 17'B1I01_ 101, dec_pt] :

< out = {T'BITTL 001, dec pt
: out ~ {T'HOII0 011, dec pt]

: out = {7'BI0OKL 011, dec pi] ;5
: out = {7'b1OI1 111, dec pt} ;
: out = {7'B1LIO 000, dec pt) 5

S e L O LAAL
T dec_pt= 1 turms ON the decimal poiat. |
2 out = [7'BO110 000, dec pt] : / Order: abed_efg dp
: out = [7'B1101 101, dec pt] 5
: out = [T'BIIIT 001, dec pt]
: out = [7'BO110 011, dec_pt] 3
: out ~ {T'BIOIL_ 011, dec pt} ;
: out ~ {7'BI0I1 111, dec pd]
: out = {7'BI110 000, dec pt] 5
: out = {7'BILIL 111, dec pt} 5
: out = {7'BINT1 011, dec pt} 5

1
2
3
4
s
6
7
5
92

That is what is meant here. 1, 2, 3 up to 9 are precisely the same except that the value is
changed here. You can just analyze and convince yourself that it is working. Let us take an
example. For example, this is 9. What you should have is, it will go like this and all segments
are there except for this segment. What is this segment? The center will be g, this will be f
and this will be e. So e segment must be 0, 0 turns off, so a, b, c, d, e precisely. You can

analyze like this and convince yourself that it really works.

(Refer Slide Time: 50:09)

= :-.n; D
N

: out = {7'BIO11 011, dec pt} 5

: out = [7°BIOIT 111, dec pt] 5

: out = [7'B1110 000, dec pt 3

: out = [T'BIILL 111, dec pt}

: out = {7'b1111 011, dec pt] ;

default = out -~ §'b0; /I Blank the display for illegal values.

endcase

end

We just put the default as 0, which will blank the display. For any value other than 0 through

9, it will blank the display. If you give any illegal data, it will blank the display. This ends the
design.

(Refer Slide Time: 50:25)

LU - e O O

TEST BENCH FOR RTC

=2

// This is the test beneh to test the RTC Design.

“define clkperiodby2 1 1/ Run at 0.5 Gz for simulation.
“include "rtc_alarm.y" /1 This is the design file.

module rtc_alarm_test ;

We have a test bench for this real-time clock. This is the test bench. If you want, you can
have a question here, so that we can wind up. We will take up the test bench a little later. If
you have any specific question, you can ask me. What is left out is the test bench and it is
going to be only a small thing, followed by the waveforms for this. This test bench is not
going to be very elaborate — it is going be very short. We have already entered the maze and
come out of it — all intertwined counters. Naturally, we cannot write a very elaborate test

bench. If you have any specific question, you can ask me. Do you have any?
Question (by Student): Why exactly do we do this debouncing, sir?
Debouncing of the switch?

Question (by Student) : Why do we have to do it?

If we do not debounce, multiple inputs will be given. It may not be all that necessary for
everything. For example, you want to push a button. What do you expect? If | push once, it
should increment only once, not hundred times. It will behave erratically if we do not
debounce — it will give you multiple pulses because we are counting the pulse applied; it will
be erratic. You expect just one increment — 1 must go to 2, but you will be annoyed to see 1
going to 8 or 10. That is the purpose of debouncing. Is your question answered? Do you have

any more questions? Thank you.

(Refer Slide Time: 52:22)

!

Stop Watch Implvmuntai'yidg‘

(Continued) [

FAlarms routine
.

L‘_ ii,@.lsplay,R @MESUIb-module

ifest Bench#®r Real Time Clock

