
Digital VLSI System Design

Prof. Dr. S. Ramachandran

Department of Electrical Engineering

Indian Institute of Technology, Madras

Lecture – 53

System Design Examples using FPGA Board (Continued…)

(Refer Slide Time: 01:25)

We will continue with the real-time clock Verilog coding. I crosschecked once again what I

have written. Some students expressed there is some mistake. Please note the correction for

the same.

(Refer Slide Time: 02:07)

This is right at the input declaration. When you come to alarm3, the comments are like this.

There was a mistake is not in the code but only in the comment I have written. I will read out

the correct version of the comment. Only one of the three alarms can be read. I had put it as

set earlier. That is what you mean, right? Set is not right, it can only be read. You can set all

the alarms if you wish, but while reading, you can only read one because there is only one

display available. If you happen to set all the three alarms, naturally you cannot read. If you

do not read any of them, then that is also not right.

What we gave is priority to these three alarms. We gave alarm1 the top priority and then we

are enabling that to be read. If more than one is read, the highest priority alarm alone will be

actually read and others are ignored. This is the only change and all other things are the same.

You remember that we stopped at implementation of the stopwatch. We will go to that point

and then continue from where we left.

(Refer Slide Time: 03:16)

I think this is the one here.

(Refer Slide Time: 03:30)

We were looking at cnt9. Is that right? This is where we stopped. Here, it is precisely the

same. cnt9 is for the stopwatch's most significant minutes digit. What we have covered so far

7 and 8 for stopwatch are hours display. For minutes, it is precisely the same, except that the

conditions are going to be different for each of these counters. For example, this is reset or

advanced only in the RUN and STOP WATCH mode of operation every 1 second. This is

precisely the same for other counter modes. When you want to reset the counter9, this is the

logic that we will have to solve. As usual, we will see only the comments because there is no

point in repeating what you already know.

(Refer Slide Time: 04:09)

Only thing is you have only to crosscheck – since you have this with you, you can always

crosscheck at any point of time if you happen to have the CD. cnt9 to cnt12 must be 59, 59.

This is the condition for resetting this counter. We are talking of resetting the minutes counter

– that is the third counter from the left, 7, 8 and this is 9. How to reset? What condition

determine the resetting will be precisely as per this comment.

(Refer Slide Time: 04:42)

You can also advance cnt9 for this particular status. For example, cnt9 can be 0 to 4 and

cnt10 to cnt12 can be 9, 59. This is the condition when you can advance by 1. This is the pre-

incrementing of counter9.

(Refer Slide Time: 05:02)

Once again, there is a decrement counter if you happen to be in the down-counting mode, for

which the conditions are 1 to 5 for cnt9 and cnt10 to cnt12 must be all 0s. We are counting

down. If it is 1 to 5, then only we need to decrement cnt9, which is precisely this. If it is 5,

you will be decrementing it to 4.

(Refer Slide Time: 05:23)

Note that the other digits must be 0s and pre-decrement once again and this is the condition

for presetting cnt9.

(Refer Slide Time: 05:34)

The condition is cnt7 or cnt8 must not be equal to 0 and cnt9 through cnt12 must be 0s. This

is clear. If all of them are 0, it has come to the terminal value and there is no further

decrementing. In order to take care of that only we are putting it here that at least one of them

must not be 0.

(Refer Slide Time: 06:01)

As usual, cnt9 implementation is here, reset condition, then advance and then decrement

condition.

(Refer Slide Time: 06:10)

When this condition takes place, only then it will do the advancing or decrementing or

presetting.

(Refer Slide Time: 06:17)

In this case, this is minutes, so you can go right up to 5. This is the preset value. After 0, it

should roll back to 5 and that is why when the preset count is 1, it has been preset to 5.

(Refer Slide Time: 06:33)

The next one is cnt10. It is the stopwatch's least significant minutes digit. This is advanced or

reset only in the RUN and STOP WATCH mode every 1 second. This is once again the same

thing.

(Refer Slide Time: 06:47)

cnt10 to cnt12 must be 9, 59 – condition for reset.

(Refer Slide Time: 06:55)

The condition for advancing cnt10 is 0 to 8 and cnt11 and cnt12 must be 59.

(Refer Slide Time: 07:03)

Once again, pre-increment is there and pre-decrement is there. Decrement once again applies

only for the run stopwatch down-count mode. The condition is for 10 equal to 1 to 9 and 11

and 12 must be 0. This is the decrement counter.

(Refer Slide Time: 07:23)

Pre-decrement again and the condition for presetting the counter is here. cnt10 to cnt9 must

be preset to 9 only if cnt7 through cnt9 is not equal to 00 0. Once again, I hope this is clear.

Also, cnt10 to cnt12 must be 0s – all of them 0 except for this condition. This is for presetting

the counter.

(Refer Slide Time: 07:55)

Realization of cnt10 is here. As usual, reset, then advance, decrement and preset.

(Refer Slide Time: 08:02)

Preset in this case is when it is 9. What we are doing is for 10. 59 is the maximum and 9

corresponds to cnt10. We are concerned with only the minutes LSD.

(Refer Slide Time: 08:18)

11 is the stopwatch's most significant seconds digit and the other conditions are the same.

(Refer Slide Time: 08:23)

The condition for resetting is once again 11 and 12. You can see that the logic is

progressively getting easier. It is 59 as far as the 11 and 12 counters are concerned. The same

is the case for the advance counter except for a slight difference.

(Refer Slide Time: 08:45)

That is, cnt11 must be 0 to 4 and cnt12 must be 9. This is the precondition.

(Refer Slide Time: 08:56)

Advance increment is here, then decrement cnt11. This is the condition for decrementing. As

usual, the rsd signal has been used here and cnt11 is from 1 to 5. This is for seconds MSD.

The maximum that you can go is 5 here and this is the condition for decrement. If it is 1, 1

can go to 0 but if it is 0, it cannot go down further. You can decrement only with the relevant

digit. That is the implication that we have been looking into all along.

(Refer Slide Time: 09:11)

Once again, the pre-decrement, then presetting cnt11. You preset the counter to 5 only if cnt7

and cnt10 are not equal to all 0s. Of course, 11 and 12 must be 0 for the same condition that

we have been seeing.

(Refer Slide Time: 09:46)

Again, reset, advance, decrement counter and preset cnt11 of course.

(Refer Slide Time: 09:54)

For 11, the maximum number is 5 and so we roll back to 5. Prior to this, it was 0 in the

decrement mode.

(Refer Slide Time: 10:04)

Now the last digit, seconds digit LSD is here.

(Refer Slide Time: 10:11)

Once again, the reset condition is cnt12 must be 9 – it is the condition for resetting this

counter and cnt12 is itself.

(Refer Slide Time: 10:19)

Advancing the counter is for cnt12 equal to 0 to 8 – this is for advance. If it is 0, it can

become 1 and if it is 8, it can become 9. Therefore, the valid number is 0 to 8.

(Refer Slide Time: 10:31)

Advance, pre-increment, then decrement in the down-count mode in which case cnt12 is

decremented every second only if cnt12 is 1 to 9. So 1 can become 0, 9 can become 1 and so

on.

(Refer Slide Time: 10:49)

Once again, pre-decrement and preset the counter. This happens only if cnt7 to cnt11 are not

equal to all 0s; cnt12 also must be equal to 0 and it is preset to 9 in this case.

(Refer Slide Time: 11:09)

The block for cnt12 is this. The preset is that 9 will be reflected here. All the other things are

similar.

(Refer Slide Time: 11:20)

Next, what we have to see is the terminal count register for the up counter. In the up counter

mode, what we have to look for is you are going to set a particular value and it counts right

from 0, 1, 2, 3 and so on. When the terminal count (that is what you have set) is reached, a

match is found. That is what we mean by terminal count here. For the up counter, it is one

thing and for down counter, it is another. For that, you need this signal also, which implies

reset term_count_reg1. This must take place only when adv_hrs_tcr is equal to 1 and when

term_count_reg1 is equal to 2 and term_count_reg2 is equal to 3 (tcr is terminal count

register). Remember that reg1 through reg6 are there, so this is for up count, is it not? We are

looking for terminal count equal to 2, 3. Only then, you need to energize this signal. It is a

reset terminal count reg1.

(Refer Slide Time: 12:37)

Next is advance terminal. The same reg1 you need to advance also. For that, exactly the same

condition there. This terminal count reg will be less than 2 and equal to 9. That means 09 or

19 is implied there and it is similar to your cnt1 or cnt7 that we have already seen before.

Once again, you need a pre-increment here and this terminal count reg1 is realized as we

have done before.

(Refer Slide Time: 13:05)

You need to reset or advance it and there is no decrement as such here.

(Refer Slide Time: 13:16)

Similarly, for reset term_count_reg2, it is precisely same as what we have seen for reg1.

(Refer Slide Time: 13:22)

I think I have not even put the comment here. Advance counter is also here and you can very

easily reason out what they are. Less than 2 means 0 or 1, less than 9 means 8. You can easily

find out what they are. Terminal count equal to 2 and here, it is less than 3. Only for that, you

need to advance. Mind you, we are just trying to advance the second register, which

corresponds to the hours LSD. Pre-incrementing is there as usual for cnt2.

(Refer Slide Time: 13:57)

Once again, the register advance is there, we assign the next value here when the clock

strikes.

(Refer Slide Time: 14:06)

Next is reg3. Once again, reset term count, advance term count and then pre-incrementing.

These are all precisely the same except for the conditions shown here, which you can easily

reason out, except that some difference is there. Earlier, I think it was hours, now minutes

will have to be taken into account. This condition also I think we have already covered, this

minutes_tcr.

(Refer Slide Time: 14:35)

Once again, the realization of that particular register term_count_reg3 and incrementing is

happening here.

(Refer Slide Time: 14:40)

Similarly for reg4 with all that reset, advance, pre-increment and then the actual register

implementation – these are all precisely the same, I do not have to repeat the same thing,

which you are already familiar with by now.

(Refer Slide Time: 14:53)

Reset, advance, once again pre-increment for cnt5.

(Refer Slide Time: 15:01)

This is for the seconds MSD. This is the realization for the same.

(Refer Slide Time: 15:07)

The last one in this sequence is reg6 and that will happen for seconds. That is why this has

been taken into account. These signals are already shown earlier. It means advance seconds

and terminal count reg all being matching.

(Refer Slide Time: 15:32)

Once again, pre-increment realization of the counter is here. All the six are almost identical,

except for the signal change.

(Refer Slide Time: 15:39)

Timer out is set when the terminal count (up or down) is reached. You remember that we

have a timer out, for example, to fire a rocket, as we have already seen. You can do it in two

ways: either up mode or down mode. When the set value is reached, then the timer out goes

high and remains high there. Concurrent to this, a sound alarm is also energized but that will

be on only for 30 seconds – you will get a beeping alarm for that. As far as timer out is

concerned, once the time is over, it goes high and remains high – it is unlike the beeping

output.

This is also as a counter basically and pre-increment is done in the same fashion. Why we

need this counter is we need to keep track of the audio alarm. We have already set it for say

30 seconds (if you want 30 seconds) but you can change that also. In fact, you can change it

from this statement you see here. If you say timer_out_alarm, this is nothing other than

timer_out, have we declared earlier? This is the output. When timer_out is 1 and when

timer_out_alarm_counter (that is the counter we are going to see below) is not equal to 31,

only then timer_out_alarm must be on. That means to say this must be on only for 30

seconds, not beyond. Is that right? This signal is high for 30 seconds after terminal count is

reached, that is timer_out equal to 1. This is the condition.

(Refer Slide Time: 17:25)

The timer out counter is like any other counter except for a few changes. We have an else-if

here. If timer_out is equal to 0, that means it is not yet energized. What you need to do is the

counter is also cleared. If timer_out is 1, that means timer_out is high and this can be high

only when the terminal count is reached, is it not? That terminal count is different, this

counter is different – this counter is only for sounding the alarms. We need to sound the

alarm just for 30 seconds; otherwise, you get annoyed with the buzzing sound all the time.

When the running time or stopwatch matches with the set value in the count mode, be it up or

down, then only timer_out is set – only after the lapse. After it is set, then only the 30 seconds

will come into play. That is why time timer_out_alarm not equal to 31. 30 means when it is

equal, it has already finished sounding for 30 seconds – that is what it means. Then, this will

go low and this will not be satisfied. We need to satisfy this, so that we may sound the alarm

only for 30 seconds – that is the implication of this and this should happen only every second.

(Refer Slide Time: 19:06)

Otherwise, you increment the actual alarm counter.

(Refer Slide Time: 19:13)

We have another set of always blocks for various purposes. For example, you may remember

that we have a push button for start and stop. Why is this register necessary? We have only

one push button switch and when we push for the first time, we should take the system into

start mode. If you push the same push button again, it should be turned into stop mode. Start

and stop are applicable only for up counter and down counter. Whenever you want to start the

counter, all you have to do is press the button. It will start and when you want to stop, press

the same button again. You can use for dark room – you can develop your films, etc., using

this same real-time clock in the down-count mode. You can even use an up counter and there

is going to be a buzzer after the set time is lapsed and it will freeze at the last value. If it is

down count, it will be all 0s and stay there. The buzzer will sound for 30 seconds and be

silent thereafter, but the output itself will remain high.

(Refer Slide Time: 20:23)

Then what we need is for the same signal, we also need to know the previous value so that we

can sense when the start stopwatch push. This will be known only if you register at every

clock pulse or every time this logic is satisfied. Here, this is only clearing the logic when

power on system reset is encountered. This is the previous of value of this.

(Refer Slide Time: 20:55)

If set stopwatch is 1, that is the literal meaning you should take here, when you are in the

setting mode of stopwatch, what you should do is you have to stop the running up-down

counter, because we do not have to do any action at that point of time.

(Refer Slide Time: 21:16)

On the other hand, if start_stopn is 1, it implies that you want to start and it is already in start

mode after you push for the first time. We have just now seen that the previous value must be

0. 01 senses the rising edge of the push button and that means the push button has been

pressed. It must be in this run stopwatch mode and note that there is no n. This is straight.

start_stopn is the debounced START/STOP push button input and this is the comment for

this. Look for rising edge (depression of the push button switch). That is the comment that we

have just now explained.

(Refer Slide Time: 21:55)

Here, what we should do is whenever we push the button, it has to toggle. This is because we

have only one register called start_stopn. The same will indicate whether it is in start mode or

stop mode. The first time when your system initializes resetting, this will be cleared.

Subsequently, when you push the start button once, this will be made 1 and subsequent

pushing will have to be inverted. What you need is an inversion and that is precisely what this

statement is for. The same signal is inverted and assigned to itself. In other words, it is

toggling between start and stop. This is how you achieve with single button rather than

having to use two different buttons. Another thing is that you should not forget to load this

previous value with the present value. This is an important thing and if you miss this, it will

not work.

(Refer Slide Time: 22:52)

Preserve as the previous start/stop value. This one is also precisely the same. If none of these

conditions are met, then also you should not forget to preserve the present value into the past

value.

(Refer Slide Time: 23:08)

Next we need to generate 2 seconds. One of your questions was how long I should hold. We

need to hold it for 2 seconds and that is precisely what we are going to implement now using

this hrs2s_next and hrs2s_reg. This is the pre-increment for that.

(Refer Slide Time: 23:27)

Once again there being a counter, we had to have it in a positive edge clock always block.

This is the usual resetting and this is the actual register here. We also need a delayed output

so as to keep track of pushing continuously for 2 seconds. This is what is going to keep track

of that. This is basically derived from the hours push button. If you push the hours button in

order to set, only then all these come into play. The de-bounce condition of the push button

hrs is hrs and its previous value is what we earmark as hrsp. These are all to be initialized to

start with.

(Refer Slide Time: 24:16)

If the hours push button is released, what will happen is hrs is going to become 0. If you push

also, I think it should go to 0 – just examine this comment yourselves. Clear the ON delay

output. These are all preconditions. In a release condition, this is the one. If it is push, I think

it is 1, let us clarify that. That is why we are trying to initialize this. This is 0, mind you. The

previous value is the actual hours. The current value is taken here and assigned as the

previous value.

(Refer Slide Time: 24:56)

hrs is the hours push button input. Clear the two-second counter. This is the two-second

counter as I mentioned and it needs to be cleared. That means the push button is not pressed

for incrementing that display. Next, suppose the hrs2s starts running (we have not spoken of

running yet) and we look for the value 20, this will give exactly this time basis 0.1 second

once again here and 20 would mean a delay of 2 seconds or greater. This is how you reckon

the actual delay. This is the running counter for keeping track.

It will start from 0, 1, 2, 3. It will start advancing from 0, 1 and so on only if you had pressed

for at least 2 seconds – only then this will come into play. Here, when this happens, that is,

after 2 seconds delay, this hours delay goes high. That is what I was saying when you start

the thing, hours output delay will still continue to be 0. Only after the lapse of 2 seconds

delay, it will go to 1. That is what is happening here and you should not forget to preserve the

current hours push button – you have to preserve that.

(Refer Slide Time: 26:14)

Note hrs2s_reg is not reset here. I am just inviting your attention by saying that it is not reset

here – it is reset when hrs push button is released as above. Earlier, we have seen release

here.

(Refer Slide Time: 26:29)

Here only it is reset but not here.

(Refer Slide Time: 26:34)

After the time is lapsed, only after the two-second delay, you need to do this.

(Refer Slide Time: 26:42)

The next condition is counter decisecond. We want 0.1 second. Only when that is equal to the

set value we have defined earlier and the hours push button is also 1, we need to increment

the counter. That means we are incrementing every 0.1 second. 20 is what we have put

earlier, just now we have seen. 20 into 0.1 will be 2 second. That is how you get that. Is it

clear?

(Refer Slide Time: 27:17)

Advance the count once every 0.1 second so long as the hours push button switch is pressed,

otherwise ignore. Did I convey the same thing or did I make a mistake? Is it okay? 0.1 is the

time base. You are trying to count 20 each time. What we have seen is merely incrementing

when the condition is 0.1 second. Whenever the 0.1 second condition occurs, you merely

increment this counter. When it is equal to 20, stop that. We have forced it to 0, remember?

Here also, clear the ON delay output and preserve as the previous value – you have to do this

also. If none of these conditions are met, you have to just preserve once again.

(Refer Slide Time: 28:14)

What we have seen so far is for hours. Similarly, we need for minutes as well as seconds. I

am not going into many details.

(Refer Slide Time: 28:26)

I will leave it to you, you can just go through. We have got the very same thing here. If

minutes instead of hours is encountered, the action you have to do is precisely the same thing.

(Refer Slide Time: 28:41)

Again if it is 20, it means 2 seconds.

(Refer Slide Time: 28:48)

Earlier, what we spoke was for hours, only two digits hours display will be managed there.

Now, we are going to manage the next two digits for the minutes alone. The next two digits

will be for the seconds, which is going to come over here.

(Refer Slide Time: 29:03)

This is precisely the same condition, decisecond meeting and this time, it is the minutes push

button switch. Based on the minutes push button switch only, we need to take action. These

are all precisely the same.

(Refer Slide Time: 29:16)

So is the case for seconds here. Advance increment, then reset condition, all this and once

again instead of hours or minutes equal to 0, we do this.

(Refer Slide Time: 29:27)

We have set or reset the relevant registers. Once again, [29:33] 20 here, the delay is again

made 1 and previous value set here.

(Refer Slide Time: 29:41)

Once again, if this condition is met, only then we increment. As usual, it is precisely the

same. Otherwise, preserve the value.

(Refer Slide Time: 29:54)

Now, what is left is alarm implementation. It starts right here. For this, we have a set of four-

bit temporary registers temp_alarm_reg1 to 6, which hold the alarm time when it is being set.

Then, assign this particular signal, which is adv_temp_alarm_reg1. We do it only when

adv_hrs_temp_alarm is 1 and temp_alarm_reg1 is less than 2 – that means 0 or 1. The next

alarm must be 9, which means 09 or 19. Only then, you advance. It is the alarm setting we are

talking of now. Once again, reg1 will correspond to the hours MSD. That is what we are

talking about here.

(Refer Slide Time: 30:46)

Similarly, reset condition is here for 2 and 3. This is the same condition and this is pre-

incrementing the register.

(Refer Slide Time: 30:57)

Once again, as usual, we have the reset condition for realizing the register 1 temporary alarm.

What we do is we first have a temporary alarm for all the six registers, corresponding to the

six counters that we had or six displays we had. Pre-incrementing is assigned actually here.

(Refer Slide Time: 31:19)

Similarly, for reg2 – it is precisely the same. I am going to read only the comment. Here, you

are going to advance this alarm setting only if it is 00 to 18, other than 09 and 20 to 22. Only

then, you need to advance, not otherwise. Similarly, you can reset only when it is 09 or 19 or

23. This is as far as the second register is concerned, which is corresponding to 9 or this 9 or

3, because this is the terminal count. Whether it is up counter or down counter setting or

alarm counter, all will go only in the forward direction – incrementing only.

(Refer Slide Time: 31:58)

Once again, pre-increment for that and the temporary alarm reg2 is precisely the same as the

previous thing.

(Refer Slide Time: 32:07)

Once again, for 3 you have advance as well as reset here. The condition is 59 here. Then once

again, pre-increment and a block for temporary alarm reg here. This is exactly the same.

(Refer Slide Time: 32:24)

So is the case for advance reg4. The condition is 0 to 8 in this and reset for 9 as far as 4 is

concerned. Once again, there is the pre-increment block for realizing the same.

(Refer Slide Time: 32:39)

This is exactly the same.

(Refer Slide Time: 32:43)

The only thing is that it will advance for 09 or 19 or 29, 39, 49. This is clear. We are in 5 and

one more is there. This is for seconds.

(Refer Slide Time: 32:59)

This is assign. This is also required for resetting for 59. Again, pre-increment.

(Refer Slide Time: 33:09)

The block for 5 is here, this is once again the same.

(Refer Slide Time: 33:10)

The last digits for the seconds LSD is here. Then, advance, reset and pre-increment are there.

Advance for 0 to 8 or reset for 9.

(Refer Slide Time: 33:30)

This is the block for alarm_reg6 here. You assign it here and as usual, you have reset, etc.

Next, we need to set alarm1. If you want to set alarm1, what you should do is you should set

the stopwatch and alarm read/set in set mode with alarm1 set. We have already seen

set_alarm. alarm1 must be in position 1. This is the de-bounced switch position. That is what

we are calling as set_alarm1.

(Refer Slide Time: 34:05)

Once again, the block is there for alarm1 and there are three alarms. There are once again six

displays, corresponding to the same order, this being the hours and so on. This is for

resetting. We need separate registers for setting the independent alarms. We cannot have the

same temporary alarm. The temporary alarm is first set and then transferred here. That is

what we are going to see later on.

(Refer Slide Time: 34:34)

If set_alarm1 is 1 (we have seen the condition), if it is set, what we should do is we have to

set that temporary alarm. From temporary alarm, we are setting to the independent alarm.

That is what we are doing here – copy alarm setting from common set register into the

particular alarm register. It is precisely the same here for the six registers and set_alarm2 is

similar to set_alarm1. The condition is clear except that alarm2 is now 1.

(Refer Slide Time: 35:01)

This is the block for realizing the same. Once again, power on reset here for alarm2.

(Refer Slide Time: 35:06)

Here, temporary alarm is set to this, provided set_alarm2 is there.

(Refer Slide Time: 35:13)

The same is the case for alarm3. It is precisely the same thing. Here, we are setting the

temporary.

(Refer Slide Time: 35:26)

This is the block. I have lost track of this, let us have a look at this. When alarm1 or any of

the alarms, then we need to take some action. What is that? We have to read the switch

positions for the alarm. There are three switches, am I right? Please correct me if I am wrong.

This is the power on reset. read_alarm_reg, there is a reg for keeping track of read alarm.

(Refer Slide Time: 36:02)

I will just read the comment. read_alarm_reg is the two-bit register that stores the number of

the alarm to be read. If there are three alarms, you need to keep track of which alarm we are

speaking. Reading means displaying. Each of the alarms has been assigned some unique

number. For example, if it is 0, you need two bits to represent three alarms. If no alarm is on,

it stores 0. So 0 corresponds to no alarm being set.

(Refer Slide Time: 36:37)

If alarm1 is 1, that is, the first alarm is set (this is the physical switch after de-bouncing), if

more than one alarm is on, the one displayed (read) is the top priority alarm. alarm1 is the

topmost priority and I hope there is no problem in this – earlier, you remember we corrected.

(Refer Slide Time: 37:06)

Here we need to set this register, read_alarm_reg to 1 for that condition. That was for first

alarm. If alarm2 is set on the other hand, this reg will be forced to the value 2. If alarm3 is

encountered on the other hand, this will be set. Note that this is a priority encoder. This gives

the topmost priority to alarm1 because that was the very first statement and that is how the

priority is assigned. This is clear to you.

(Refer Slide Time: 37:35)

If none of this is met, simply make it 0, which implies that no switch has been set for that.

(Refer Slide Time: 37:38)

The next block is display real time or stopwatch or alarm on the seven-segment LEDs.

(Refer Slide Time: 37:46)

We have data1 through data6, which we saw in the simplified architecture earlier just for the

display. We need to clear first.

(Refer Slide Time: 38:00)

If you are in display time mode, it implies that we need to display the actual running time. If

you are in that mode, what we have to do is take cnt1 through cnt6, which is the running

counter and assign it to data1 through data6.

(Refer Slide Time: 38:14)

Otherwise, if display stopwatch mode is set now, what you have to do is…. Once again you

have to check the condition whether it is in set stopwatch mode and also in down or up. It is

in up mode. If it is in set stopwatch mode for up counter, then what you need to do is you

have to take term_count_reg1 and then assign it and push it to the display. data1 through

data6 are nothing other than the display.

(Refer Slide Time: 38:50)

Otherwise, what we have to do is this. This is for stopwatch. cnt7 through cnt12 is earmarked

for the stopwatch. We need to push it to data1, which in turn will be displayed.

(Refer Slide Time: 39:02)

If set_alarm is 1, that indicates the alarm is set and therefore, temp_alarm_reg1 through reg6

will be displayed. This is what you want, because alarm is set and therefore you want to

display the set alarm. This is the condition for set alarm.

(Refer Slide Time: 39:21)

Only here, we do the same thing and the temporary alarm is pushed to the display.

(Refer Slide Time: 39:35)

There is one more mode, many in fact inside this. If it is in display alarm mode, we have a

few more clauses here. First, this alarm set is displayed. In this case, it would depend upon

read_alarm_reg. You remember that corresponding to which alarm is set, we have given

some number for that, 0 through 3. That is what is here. If it is 0, you do not have to do

anything hopefully. It may come at the end, I think. If it is 1, it means alarm1. We need to

display the alarm1.

(Refer Slide Time: 40:11)

So all you have to do is push alarm1_reg1 through 6, which we have already set earlier, to the

display.

(Refer Slide Time: 40:19)

Otherwise, if it is 2, it means alarm2 and you do the same thing, but this time you do from

alarm2 register and push it to the display.

(Refer Slide Time: 40:30)

Otherwise, it may mean alarm3. Once again, you do from the alarm3 register onto the

display. That ends that particular set alarm.

(Refer Slide Time: 40:42)

We have to go some more distance before we complete. What we need to do here is

alarm1_match and for this, these are all the conditions. When alarm1 equal to cnt1 and

alarm1_reg 2… this is the hours, then minutes, then seconds. When each of them equals the

running counter, this is the runtime basically, then what should you do? The alarm has found

its match, is it not. You have set an alarm time and when the running counter matches that set

value…. This is precisely the statement is responsible for turning on the alarm. Set if present

time is equal to alarm1 set time.

(Refer Slide Time: 41:23)

You noticed that we also needed a 30 seconds buzzer activity. What we do is

alarm1_30sec_delay is a bit that becomes 1 when alarm1_match is equal to 1. It stays high

for 30 seconds and then goes low. alarm1_30 is a counter that counts till 30. It counts so long

as alarm1_30sec_delay is high. It is incremented every 1 second when time base is equal to 1.

(Refer Slide Time: 41:48)

We need a counter. For this alarm1_30sec_counter, advance is the signal that we need to get.

This is for 1 second and when alarm1_30sec_delay. This is the advance counter for that.

(Refer Slide Time: 42:06)

Once again, this is the block that initializes these two – delay as well as the counter.

(Refer Slide Time: 42:15)

When alarm1 matches, only then we set the alarm1_30sec_delay1 as 1 here. Counter is

different, delay is different. This is a single bit, whereas the counter is multi-bit here – 5 bit.

When it matches with 30 seconds, then turn it off when the delay is complete. If delay is

complete, that means turn it off.

(Refer Slide Time: 42:33)

You should also not forget to reset the counter and that is what we are doing here. If

alarm1_30sec_counter is 1, you have to only increment. We are counting that 1 second using

that 30. Every time tbsec we have used. That is how you are counting for 30 seconds.

(Refer Slide Time: 42:54)

Similarly, alarm2 and alarm3 delays and counters work similar to that of alarm1. It is

precisely the same cnt1 to alarm2 this time. This is for match.

(Refer Slide Time: 43:05)

This is for advance. This is precisely the same, except that alarm2 has come into picture. Pre-

increment. There is a block for realizing the same. Again, match for alarm2.

(Refer Slide Time: 43:13)

Then all this. When this match is 30 seconds, it does that. Then advance the counter and

assign the pre-incremented value here. Then alarm3 match. When it is equal to the running

value, then a match is found and it then energizes the signal.

(Refer Slide Time: 43:34)

Then you also need to advance the alarm3_30sec_counter corresponding to alarm30, which

we have already seen earlier for 2 and 1. Then, pre-increment that counter.

(Refer Slide Time: 43:44)

Once again, realize the same counter. There are two parameters once again. If the alarm

matches, what you do is just set that particular thing to 1. delay is the one that keeps track of

30 seconds, whether it is over or not.

(Refer Slide Time: 44:09)

Here, it implies, when this is equal to 30, it means 30 seconds complete and then, you have to

just reset the counter – ready for the next event.

(Refer Slide Time: 44:17)

Then you advance the counter when this signal is 1 and assign the next.

(Refer Slide Time: 44:27)

What is left is we need a ring signal, which is an intermediate signal. We actually need a

beeping signal. Beep is the signal (it is a square wave that you want to create) that is actually

output to the speaker if ring is high. Ring is an intermediate signal that indicates that one or

more alarms are active.

(Refer Slide Time: 44:46)

beep_counter counts (we have a counter also) till 2 (means 0.2 seconds). When it is 2, a beep

is toggled, producing 2.5 Hertz beeping tone. This is how you get a beeping tone, When you

see the demo, you will clearly hear that; since we have not put a mike right now, we could

not hear it. The beeping tone is heard if alarm off/on switch is on. There is another switch for

off/on. If it is on, only then you can hear it. That does not mean activity is not going on. It

does go on but you can hear only if it is in on mode. Otherwise, the sound alarm is off.

(Refer Slide Time: 45:22)

Then assign ring (ring is the signal). When alarm1_30sec_delay or the second or third delay

plus timer_out_alarm, which we have already seen, is 1, then only a ring will be energized.

The timer_out_alarm_signal is high for 30 seconds (to sound the audio alarm) after the

terminal count, up or down is reached, that is, timer_out is equal to 1. Assign beep counter

next – this is the pre increment.

(Refer Slide Time: 45:47)

The block for realizing the same is here. We have a beep counter here and we also have the

beep output here. We initialize these. ring = 0 means no alarm is active. If ring is 0, once

again you do the same thing.

(Refer Slide Time: 46:06)

If beep_counter = 2, what you have to do is the beep must be inverted and fed back only in

alarm_off_on. That means the alarm is in the on condition and only then, you need to beep.

Either this condition or timer_out_alarm is also 1. When either of the two conditions is met,

what do you do is you assign it to beep. When this condition is met, it will assign beep equal

to 1. It will set the beep.

(Refer Slide Time: 46:41)

Toggle if alarm switch is in the on position or if timer_out_alarm is high. Then, you can reset

counter 0.

(Refer Slide Time: 46:51)

Otherwise if ring = 1 and this is decisecond once again, then only do the incrementing here.

We are going to complete the design. Call the BCD to seven-segment display conversion

ROM. This is the display ROM. We need to call that here by using this and this is the

instantiation of the same. It is nothing but a ROM table. There is an address input, which can

be given as data1, data2 and so on, so that this will straightaway do the code conversion from

BCD to seven-segment display and you can output that output, which is display1. If you want

to independently control the decimal point, you can put 1 here.

(Refer Slide Time: 47:43)

Like this, we have display1 through display6 here. Each time, data 1, data 2 – different data

sent here and that is the reason why we get a display. That ends the design.

(Refer Slide Time: 47:51)

The submodule we have used for the display ROM is here. display_rom.v is the submodule

for conversion here. It is a ROM table. Logic 1 is meant for turning on the segment. It is a

common anode mode.

(Refer Slide Time: 48:07)

This is the declaration of the module. Address, decimal point and out are the I/Os here. We

need to declare all the inputs, 0000 displays 0, 1001 displays 9 and so on. All other things are

illegal values as far as the display is concerned. If you want decimal input, you have 1 here.

(Refer Slide Time: 48:31)

For output, you need eight bits. There are seven segments a, b, c, d, e, f and g – this is the

order for decimal point. a is the MSB of this and dp, the decimal point, is the LSD. a is the

top segment, b is the next segment clockwise and g is the center segment. You need to

declare out as reg.

(Refer Slide Time: 48:49)

This is a case statement using only combinational logic. Case depends upon the address.

Address is what you give as input. It needs to be converted from BCD to seven segments.

This can go right from 0 through 9. For each, the output will be different and that is assigned

here. For example, all 1s except for the last, 0 means.… a segment is the first, b, c and so on.

This is g, is center segment and decimal point here. If you put 1, it will turn on.

(Refer Slide Time: 49:28)

That is what is meant here. 1, 2, 3 up to 9 are precisely the same except that the value is

changed here. You can just analyze and convince yourself that it is working. Let us take an

example. For example, this is 9. What you should have is, it will go like this and all segments

are there except for this segment. What is this segment? The center will be g, this will be f

and this will be e. So e segment must be 0, 0 turns off, so a, b, c, d, e precisely. You can

analyze like this and convince yourself that it really works.

(Refer Slide Time: 50:09)

We just put the default as 0, which will blank the display. For any value other than 0 through

9, it will blank the display. If you give any illegal data, it will blank the display. This ends the

design.

(Refer Slide Time: 50:25)

We have a test bench for this real-time clock. This is the test bench. If you want, you can

have a question here, so that we can wind up. We will take up the test bench a little later. If

you have any specific question, you can ask me. What is left out is the test bench and it is

going to be only a small thing, followed by the waveforms for this. This test bench is not

going to be very elaborate – it is going be very short. We have already entered the maze and

come out of it – all intertwined counters. Naturally, we cannot write a very elaborate test

bench. If you have any specific question, you can ask me. Do you have any?

Question (by Student): Why exactly do we do this debouncing, sir?

Debouncing of the switch?

Question (by Student) : Why do we have to do it?

If we do not debounce, multiple inputs will be given. It may not be all that necessary for

everything. For example, you want to push a button. What do you expect? If I push once, it

should increment only once, not hundred times. It will behave erratically if we do not

debounce – it will give you multiple pulses because we are counting the pulse applied; it will

be erratic. You expect just one increment – 1 must go to 2, but you will be annoyed to see 1

going to 8 or 10. That is the purpose of debouncing. Is your question answered? Do you have

any more questions? Thank you.

(Refer Slide Time: 52:22)

