
Digital VLSI System Design

Dr. S. Ramachandran

Department of Electrical Engineering

Indian Institute of Technology, Madras

Lecture – 51

System Design Examples using FPGA Board (Continued)

(Refer Slide Time: 01:39)

We will take another design example for implementation on FPGA board, the real-time

clock.

(Refer Slide Time: 02:19)

It has many applications right from real-time display, using which you can show 24 hours

or 12 hours time range. What you see is the hardware here for the same.

(Refer Slide Time: 02:38)

You notice that there is an FPGA board and also a digital I/O board and of course, there

are power supplies, the details of which we will be seeing after a lecture or two. Let us

get into the basic applications. Apart from the real-time display, we can have an up

counter or down counter and we can use the same for an industrial or photographic timer.

You can use the same timer with three different alarm settings for medical treatment,

which demands the administration of medicine on a timely basis.

See, for example, patients with epilepsy are prone to fits and other attacks if they do not

take medicine within 45 minutes to an hour. Needless to say, this will prove to be very

useful for such patients.

(Refer Slide Time 03:44)

The features of the real-time clock are as follows. What we have designed is a 24-hour

clock and you will be required to convert it into a 12-hour clock later on, when we deal

with the assignments for you. The clock will feature hours, minutes, seconds and push

button settings. You can have three independent push button switches to set the same.

You have a stopwatch that can count up or down and count setting by push buttons. You

can set the counter up or down by using the very same push button that you have used for

this.

There is also a timer out. After having run out of the … timed out, that is after running

the set time, be it in up counter mode or down counter mode, when it finds the match

with the set time, this timer out signal (a single-bit output) will be turned on. So you can

use this, for example, for firing a rocket if you wish to. You can have a down counter and

when the time is all 0s, you can fire the rocket and timer out will go to 1 and remain as

such. If you do not like this mode, you can have a real-time counting in the up counter

mode, wherein you can actually see the real time and when the set time matches with

what is running (which is the same as the running time), once again, a timer out will be

issued and you can use any of these two as per your real application.

We have three independent alarms that can be set using DAP switch and the alarm

settings can be done by push buttons as you have done for the up counter, down counter

or time mode setting. There is a common audio alarm. An alarm is made using a

piezoelectric buzzer.

(Refer Slide Time 05:44)

When you design a system, what is important is the construction of the product. What

will be your end product must be borne in mind. To start with, as a layman, if you are in a

shop to buy a clock, you will be looking at only the display and not the inner details as to,

whether you have used a controller or any other embedded system or microprocessor or

FPGA – it does not really matter as far as the customer or user is concerned. He is a

common man or layman who does not know the intricacies of the design involved.

So, as a designer, you should always think from that point of view when you design a

system. What appeals to our mind is you want to use a real-time clock and you want to

keep it on your bench. Let us say we wish to put the real-time clock right on the tabletop.

Naturally, you need a six-digit display for the same for hours, minutes and seconds.

When you have this, there must be a provision to set them. You can locate the push

buttons right beneath this and name it like this. The layout is quite important because it

will be very easy to learn how to operate this from the common man's point of view.

There is a buzzer, which is a piezoelectric buzzer and there is a timer out, LED here. In

addition to this, you will also have an output. We have already made use of ULN2003 to

trigger that. The timer out can be connected to one of the outputs of ULN2003 and the

other end of ULN2003, which is Darlington pair open collector, can be connected to a

solenoid or a relay or a solid-state relay. You can connect any real-time output. For

example, for photographic exposure, you can connect this timer out to the actual lamp

that really exposes the film and you can use for the same thing as well.

You also need other controls. There are so many modes such as the time mode. If you

want the time mode, you can set using this here. The down position is the time and the up

position is the stopwatch. Once you have this, you also need to decide whether the time

must run or stopwatch must run. If you put it in run stopwatch mode, naturally it runs the

stopwatch. If you want to set the time, you put it to set here and then let it be in time. If

you want the stopwatch setting, set stopwatch is all that you have to do. As you can see,

so it is. It will be a simple thing, which even a child can handle if you design bearing in

mind the ease of handling as far as the common user is concerned.

You have an up counter as well as a down counter, you have a switch for that, which you

can set to up or down. Similarly, you need an alarm. These two are earmarked for alarm.

You can switch off the alarm on switch on the alarm. This is only to switch off the actual

audio alarm. This does not really reset whatever you have set. There are three different

alarms that you can set, alarm1 through 3.Of these, the topmost priority is AL1 (alarm1)

and AL3 has the lowest or least priority.

If you take to this position, you would be setting or reading the respective alarm. You

also have one set and read. This appears to be redundant but it is not really so because we

also need to have the same controls for the stopwatch also. Once again, in a stopwatch,

we have an up counter as well as down counter. Perhaps if you give a little more thought,

you can save some of the switches, but I did not make much attempt in reducing because

these switches are already available on the hardware that we have already used for the

traffic controller earlier.

In addition to this, if you want to reset… Normally, this will not be provided for the user.

This will be inside the unit, but just for the sake of completeness, I have put it here. In

fact, you should conceal such resets from being tampered by the normal customer. This is

the goal in mind. With this in mind, we should go for what hardware is available,

especially at the R&D stage, just as we are right now. We are trying to learn the design,

not the actual product that is going directly to the market – we are in the development

stage. Nevertheless, we should start with this and then go to the actual hardware that we

already have.

(Refer Slide Time 10:55)

We have already seen the use of the digital input/output card and if you notice, we had

six digits there. I am not going into the details of this because I have already explained to

you how to use this. They are all socketed totally so that we can configure for any other

application. The very same board such as digital I/O or FPGA board that is going to

follow can be reconfigured for any number of applications, of course, subject to the

limitation of the hardware that you have. What all you need in this digital I/O card is only

this six-digit display. Note that I have just marked hours, minutes and seconds, which

was not there earlier when you had seen it the last time. It is only to earmark hours,

minutes, seconds and it uses only six digits. There is nothing more on that board.

(Refer Slide Time: 11:43)

On the FPGA card, we have an eight-bit DIP switch and we have already seen the setting

earlier.

(Refer Slide Time: 11:50)

Our goal was this and naturally, you cannot get a one-to-one correspondence. There may

have to be a slight difference when you configure the same thing because the hardware is

already done and you have no choice over this. As far as possible, I have retained the

very same arrangement for all the switches, except that reset is a part of the DIP switch

here, which was shown as a push button switch in the previous layout. You have hours,

minutes and seconds right at the FPGA board left hand side corner. They are all

numbered SW4 through SW1. There is one more switch here, so that we may start or stop

the up counter or down counter. This was also depicted in the earlier layout that we have

seen.

These are naturally push button switches and this is a DIP switch. We have intentionally

suppressed all other hardware on the FPGA card. In addition to this, we need one more

switch – alarm on and off switch. This is a separate switch here, which is there on the

board on your right end.

(Refer Slide Time: 13:02)

Now, let us go into more details. First, we have to formulate a specification. Before we

specify anything, what we want to do is we are going to make a chip. We need a block

diagram for the chip. For example, this chip will have to have different switches that you

have already seen earlier.

(Refer Slide Time 13:25)

In addition, you need some more signals. For example, you need a system clock and you

need a reset, which was already there. We need a run_set switch, which was shown there.

Now, notice that I have just added one i here, because this is the block diagram and the

pin diagram. This is what we want to implement using Verilog. While using the Verilog

code, we are going to use the very same nomenclature and nothing different from this.

For that, we have many such signals. For example, irun will be there, there will be rrun,

run_set and so on. We will have three variants for each of these inputs. We will see the

details later on. We need a time stopwatch and we already have seen all the switches, so I

will quickly go through this. You need a down_up and i stands for input. This is the

physical input pin that you have to connect. You need three push button switches for

hours, minutes, seconds setting and you need to start or stop if you are in the up or down

counter mode.

If you want to turn on or turn off alarm, you have this switch. If you want to read or set

the alarm, you have another switch. For three independent alarms, you need three

switches here – alarm1 through 3. As far as the outputs are concerned, we have six digits

of a seven-segment display that you have already seen and I hope it is running on a

corner. What is running there on the corner is a display for down-counting. For example,

the application for this studio demands a 50-minutes program and every episode is going

to have 50 minutes. When we started, we have switched on the down counter and I hope

it is running in some corner. When the time is over, it will be 0, and it will stop as well as

give the buzzer output. That is the purpose of this stopwatch. Using the very same

hardware, we have done for this particular studio application.

Coming to the display, those seven-segment displays are six in number – display1

through display6, each of which is eight bits in width. We will go into more details, what

each bit is doing. We need seven segments plus one decimal point also. It takes eight bits

totally – that is the reason we have 7 through 0 (eight bits for each of the displays here).

We also need a beeping sound alarm and so what we have to do is create a square pulse

and that is what is output here in beep. This is connected straightaway to the ULN2003 or

74LS05 – I think it is the latter, the output of which is connected to the buzzer. The

buzzer operates at around 8.5 Volts, which happens be the power supply for the FPGA

board that we use. This is the naturally the pin diagram or you can regard it as the block

diagram of the real-time clock. You have finally one more output for timer out, which we

have already explained. Next is the actual signal description.

(Refer Slide Time: 16:54)

Some of this I have already described and so, I will quickly go through each of this here.

clk is the system clock. reset is asynchronous and it is active low, as we have used in

many design examples or applications that we have seen before. You have a RUN/SET

switch, then TIME/STOP switch, an UP/DOWN switch, then push button switches for

hours, minutes, seconds, then a Start/ Stop push button switch, then sound alarm ON/

OFF, which is common to all the three alarms.

(Refer Slide Time: 17:25)

Then, this switch alarm_read_setn enables reading or setting of the alarms. You can set or

read or even switch off the alarm1 or alarm2 or alarm3 as you see here, listed separately.

(Refer Slide Time: 17:40)

There are obviously six digit displays, which we have already seen. Here, what it means

is display1 is the hours and so also is display2. Hours will be on your left side, which you

are seeing on the stopwatch running there and that will be the most significant digit on

the extreme left. That is display1 or counter1 that we are going to see when you look into

the actual Verilog code. So is the case for display2, which happens to be just the LSD

hours. So is the case for minutes and there are two digits once again – MSD and LSD,

corresponding to display3 and display4. 5 and 6 are MSD and LSD, respectively, for

seconds display.

(Refer Slide Time: 18:25)

You have a beep alarm, which you have already seen the last time. The last is timer_out

and this is switched on when the set time expires in up or down counter mode.

(Refer Slide Time: 18:34)

There is a note here and I will read it out for you. Only one of the three alarms can be set

or read at one time – you cannot do all the three simultaneously. You have to do one after

another. If more than one is set, the highest priority alarm alone will be actually set and

the others will be totally ignored. Alarm 1 is the highest priority, alarm 2 is of medium

priority and alarm 3 is of lowest priority.

(Refer Slide Time: 20:00)

What we have already seen we are seeing once again, and this time it is going to be a

little different. Now, we are going to start the Verilog coding. Prior to that, you should

grasp the fundamental principle of the design. This is basically the same pin out that we

have already seen and I am not going into these details. Instead of display1 through

display6, that is actually here. This is what is going to power the seven-segment display

that is running right now there.

If it is in stopwatch mode, we are going to use cnt7 through cnt12, which is the case for

this particular example that you are seeing. The running stopwatch is using cnt7 through

cnt12. cnt7 corresponds to display1 in the same order hours, minutes and seconds. It is

exactly the same order that we have seen for the display. So is the case for cnt1 through

6, except that this is going to show the actual real time. The real time that you have in

your watch display will be through this cnt1 through 6 and one of this will have to be

routed to this display and that is done by a MUX here. So many bits of information are

going here or here. The MUX is the selector and it will select either this or this depending

upon this control. This is not as simple as just a single signal – there are multiple signals

and there may be six signals or so. When we go into the details, we will see more about

this.

(Refer Slide Time: 20:37)

It is enough to say primarily they are in either time mode or in stopwatch mode. If it is in

time mode, let us say if it is 1, so cnt1 through cnt6 is connected to the display that you

see there. Otherwise, when stopwatch is on; when it is 0, cnt7 through cnt12 will be

routed and 1 through 6 will be off.

This is the simplified architecture of the real-time clock. We have seen in any design how

a customer will have to look. We have to look from his point of view and fashion it and

then go on to the architecture. If there is an algorithm, we have to do as we have done in

detail for MPEG, JPEG, making use of DCT quantization earlier, which we have seen

elaborately. The same is the approach for this design as well. For any other design, I

strongly recommend, from my own experience, that you adopt a similar strategy. Now we

are going into the Verilog code.

(Refer Slide Time: 21:34)

This is the Verilog code for a real-time clock. The design file you have to put this

particular design is going to be more than two hours lecture for this, the code that is going

to run. Please stop me at any point of time if you are not clear, because we are going into

more and more intricate details. It is like entering a labyrinth, let me warn you, so follow

it very carefully. This particular file is a design file, so we will use nomenclature by the

common names. For example, I want an alarm also. There are three alarms. The

nomenclature has rtc, standing for real-time clock, with alarm facility. The .v means it is

a Verilog file. The file that you are right now seeing is .v. You have to locate all these

Verilog codes, which is the same as writing any other C program, except that this is

hardware design language and not a software design language. We have seen many times

the difference between C and this.

(Refer Slide Time: 22:37)

I will read out the comments here. You also need a test bench to test this. I have not

written a very elaborate test bench. I will explain the further details later on. That will be

rtc_alarm_test.v. This is the test bench in order that we may test the design. This is the

design for real-time clock to display time as well as function as a stopwatch. In the latter

mode, it can count up or down and up to three different sound alarms can be set.

I have separated out hours and minutes for each of the readings, although it is not so in

the hardware that we have. It is a 24-hours timer and it will go right up to 23, 59, 59, after

which it will wrap around this and keep going on so long as there is power available to

the system. It is in hours, minutes and seconds. For more details, see the specification

sheet. We have actually come through the specification sheet. If you have a doubt, go

back to the specification sheet.

(Refer Slide Time: 23:40)

The real code starts here and here we are going to use only one submodule, which is

display_rom. It is a code conversion from BCD to seven-segment LED outputs and

basically what is going to run as the timer or counter is counter1 or counter7 as we have

seen before. It will be four bits in width and that will have to be converted into seven bits.

There is one more bit also earmarked for the decimal point. We are not going to use it in

this particular project. It might probably come as an assignment, I am not very sure.

We have to include that submodule here and that is why we say include. We also need

some variables. For example, I want to keep track of how many milliseconds have passed

or how many seconds have passed or how many deci-milliseconds, which means 0.1

millisecond, have passed. This is for 0.1 millisecond and we have to keep track of how

much time has elapsed. For that, we need to define. It simply means dms_base is equal to

1999. We are going to operate a 20-Megahertz operation and the time base is 0.1

millisecond. If you want to change it for simulation purposes, you can make it 9 instead

of 1999 so that we can run it much faster. Otherwise, it will be an impractical task for you

to run the test bench because we are no longer dealing with a small number but almost

astronomical numbers. We are dealing with hours, minutes and seconds. Again, from 20

Megahertz onwards, we have to start counting. That means 20 million count, followed by

60 for seconds, 60 for minutes and then 24 hours. You see it has already skyrocketed to

astronomical heights. Writing an elaborate test bench will be a very difficult affair.

(Refer Slide Time: 25:44)

We need another definition. For example, we need decisecond, for which we need a 23-

bit counter later on. For that, we need to set it here. In this setting here, for 20-Megahertz

operation, the time basis is 0.1 second because decisecond implies 0.1 second. For 23, all

1 9s setting, this is what is required for 20 Megahertz. It counts right from 0 to….

As we have done for non-retriggerable mono earlier, here also it demands going from 0

through whatever is the last count here – 1 followed by 999999. Normally, the FPGA

card will have a crystal oscillator, which may not run very accurately. In fact, this

particular card has some inaccuracy and so we have to fine–tune it. Fortunately, we have

the software way of fine–tuning and that is simply done by changing this value.

Theoretically, you should have put 1 followed by all 9s here, but I have put it here so that

I get an accuracy within less than a second for this 50 minutes.

I hope you are timing in your watch and crosschecking whether it is really true. I have

checked couple of times and I am satisfied with that. I think it is 0.5 second or even less –

that is the accuracy you get. We need to define the time base, which is seconds. We put

only 9 there because we are going to count only 0.1 second here. If you count 0.1 second

10 times, you get 1 second. That is how you get a time base of 1 second. Similarly, for

debouncing the switch, we need 3 milliseconds and we are going to derive this from

DMS, which we have already seen – deci-millisecond. That will serve as the time base. If

you count 30 for that, 30 into 0.1 millisecond is 3 milliseconds. You would have made 3

millisecond debounce time and the actual module starts here.

(Refer Slide Time: 27:34)

We declare the module name as rtc_alarm. This is the actual design module. It lists all the

I/Os that we have used, which you have already seen in the architecture: clock, reset, run

and so on.

(Refer Slide Time: 27:47)

I am not going through these once again. You can just have a look. I have also put a

comment here to denote what it is. For example, if you take alarm_off_on, one

nomenclature I have given as I had done before for all other design examples earlier, here

n stands for negative, rather it is low. That means this is a single-bit signal and if it is 0, it

means on and if it is 1, it means off. That is what these comments say. It is exactly the

same for all of them.

So is the case for alarm. Then display1 through display6 are there and they are seven-

segment LED displays. display1 and display2 are for hours, display3 and display4 for

minutes and display5 and display6 for seconds; 1, 3 and 5 are MSD, while all other

displays are LSD.

(Refer Slide Time: 28:36)

You need a beeping alarm and the highly recommended is the piezoelectric buzzer. It is a

miniature thing, which you see on the hardware there. You also need a timer out and this

completes the module declaration. We are just listing here all that we have put inside as

I/Os.

(Refer Slide Time: 28:57)

I will quickly go through these and it is for you to grasp it totally. These have been

already described to you and so I do not have to go through it. Hours, minutes, seconds,

start/stop push button.

(Refer Slide Time: 29:08)

This is alarm_off_on and then the three alarms.

(Refer Slide Time: 29:16)

Only one of the three alarms can be set or read. If more than one is set, the highest

priority alarm alone will be actually set and others are ignored. Alarm 1 is the highest

priority whereas alarm 3 is the lowest. In specification we have seen exactly the same

thing, but there is no harm in putting the same thing in the text also. When you write the

code, you are not merely writing for your own sake. You do not want to just pass your

examination and go away. It is to serve for all others who are going to use this

subsequently. Some other designer may come and would like to change your code for

some other application. Do you not think you will be doing a great service if you put the

right comment? That is why I have been emphasizing that you put the proper comments

all through – if possible line-by-line comment. I think I have adequately put comments

but if it is lacking, let me know, so that I can improvise on the existing ones.

(Refer Slide Time: 30:11)

These are all the output declarations. There are eight bits in total. You see display1

through display6. We have a beep – single bit. Therefore, there is nothing here, whereas

eight bits are described here in this fashion. Beep and timer out are the two single-bit

outputs. Wherever you have used signals in assign statements, it will be a wire in the

design, which we have already seen earlier in several examples. The width is declared

here. display1 through display6 is declared as wire, because finally you are going to use

an assign statement for the same.

(Refer Slide Time: 30:52)

Similarly, there are so many other wires. For example, I want a counter for deci-

millisecond, I want to keep track of 0.1 second. I can do this by running a counter that

has 13 bits. You can arrive at the number of bits by simply using the calculator that you

have on your desktop on the computer. That is how I have arrived at this. You should

know the maximum that you need to [31:16]. Accordingly, you have to set the number of

bits. So is the case for decisecond. Decisecond is a huge figure. You need 23 bits because

we need to track 20 million totally. If you want a counter base that is in seconds, you

need just four bits because we need to keep a track of 0 through 9 only. All other timing

is already kept by this. This is going to refer to this. This cnt_dms is used to keep track of

3 millisecond debounce time, for which you need just five bits here. Since it is going

from 0 to 31, you need five bits. That is how you arrive at the accuracy that you need.

(Refer Slide Time: 32:09)

Then, you declare other wires, for example, deci-millisecond, time base in second,

run_time and set_time. I will quickly go through all this because there are many of them.

(Refer Slide Time: 32:20)

Set_stop. I will just read it out and when we come to a particular signal, I will describe

what it is. Run_stop, then adv_hours, adv_mts, adv_seconds, adv_hrs_time, adv_hrs_sw.

(Refer Slide Time: 32:30)

Then adv_mts_time, adv_mts_sw, then seconds similarly, then time and stopwatch. You

need to reset the counter for certain conditions.

(Refer Slide Time: 32:47)

Then you need this wire for reset counter1 through counter6 here. 1 through 6 are for the

running timer. Counter 7 to 12 is for the stopwatch up down counter. They also need

resetting when the occasion demands. You also have to discriminate whether it is in

stopwatch mode or in set mode. These are all the intermediate signals that will be needed

in order to fulfill your total design. So is the case for 9, 10, 11 and 12.

(Refer Slide Time: 33:27)

You also need presetting. For example, after you go to the fag end, let us say 9 is the last

and after that, it should become 0. If it is in down count mode, you may have to go from

9, 8, right up to 0, and after 0, you have to wrap to 9. This is called preset. Normally, this

is used for the down counter mode and 8 through 12 is for presetting the same.

(Refer Slide Time: 33:54)

Then you have counter 1 through 6 for advancing. When should you advance the count

by 1? That is what it means here.

(Refer Slide Time: 34:02)

Once again, for counter 7 through 9, you have a similar thing as you have seen for preset

and reset. This time, it is going to be advanced by 1. Once again, it depends upon whether

it is in set mode or stopwatch mode. Right up to counter 12, you need advance.

(Refer Slide Time: 34:22)

We have always been using statements for realizing registers. A counter can be realized

by that. We have seen that also in many number of applications. We are going to continue

the same trend even in this design. Once again, this is a very good example for counter-

based design. It is full of counters and nothing more. Simply by using assign statements

and always statements, the entire Verilog can be contained. You can be fully RTL-

compliant just by using this. The learning time for Verilog is dramatically reduced if you

just stick to this. You will also conform to RTL coding guidelines, which will certainly

work in the hardware. Otherwise, you are not guaranteed of its working on the hardware

– I emphasize that.

You need to keep track of the counters and you need to do the pre-incrementing. We do

that by having a separate counter running. It is also four bits in width. They are still wires

using assign statements – counter 1 through 6 here. This will be used for pre-

incrementing the actual counter6_reg, which is the real counter. Counters 7 through 12

are serving a similar purpose for the stopwatch.

(Refer Slide Time: 35:35)

There are plenty of wires. We have to wade through these signals unfortunately. We are

probably halfway through declaring. We have another signal for run, stopwatch, down

mode. When it is in such a mode, we activate another signal so that once you give

different meaningful signals, you can use them when the occasion demands – you can

straightaway borrow this signal there and do the logic, rather than write a long code each

time. That is the reason we are using so many intermediate signals. In this mode, if you

want to reset the counter8, we need one more signal. Similarly, you want to reset the

counter, I think this is while the stopwatch is running. Is it correct?

(Refer Slide Time: 36:43)

If you want to decrement the counters 7 through 12, you need these signals here.

(Refer Slide Time: 36:47)

If you want to decrement 7 through 12, it is just like we used increment, we are going to

use pre-decrement counters before we assign to the actual register, which is cnt7_reg. d

stands for decrement here. Once again, the bits are same.

(Refer Slide Time: 37:08)

Now comes the declaration of registers. Registers, as you know, are the signals that we

use in the always block, whether it is a combinational logic or sequential logic.

(Refer Slide Time: 37:21)

Whatever is appearing as signals within the always block will have to be declared as

registers and we need data1 through data6 here, which is a signal to mean either counter1

through counter6 or counter7 through counter12. We have seen right in the simplified

architecture routing one of the two. This is precisely that signal which has that single

output directly fed to the display. We also need a 13-bit counter deci-millisecond as a

register. Similar names might have appeared but they are all slightly different signals. It

might be a next signal and I hope there are no duplicates. If there were any duplicates, it

would have shown up as some error or warning. I did not see anything. If you happen to

see any of them, you can correct it. Then for decisecond, you need 23 bits. This is the

actual register that is going to run. For time base one second, this is the register and then

this is for debounce counter.

(Refer Slide Time: 38:28)

We have already used irun_set. run_set is the actual switch and irun_set is the actual

physical signal that goes into the chip input. Within that, we need a register so that we

can know the current value as well as compare it with the previous value, so that we can

know when the transition has been made. For example, if you push a button; how do you

recognize the button being pushed? Only if you keep track of and continuously monitor

its status. At any point of time if you read 0 for that push button switch and later on if you

read 1 for the same thing, you recognize that the push button has been pressed. That is

how you recognize. For that, you need to store in a register. This is nothing but the

irun_set but with a delay. This has been registered when the clock strikes. That is the

nomenclature adapted all through and r stands for the register. It is nothing other than the

actual input signal that is registered inside so that we may keep track of any transition

that you make. Otherwise, you cannot recognize the push button being pressed.

(Refer Slide Time: 39:29)

For time_stopwatch, down_up, these are the registers. What you seen down here we have

already seen as inputs.

(Refer Slide Time: 39:40)

Hours, minutes, seconds, start_stop, etc., are all registered. So is the case for

alarm_off_on and the three alarms are also registered internally here.

(Refer Slide Time: 39:50)

In addition to this, in the layout that we have already seen, we used only run_set and we

are going to precisely use the very same variable name. Rather, we should not use

‘variable’ because it is C domain. Coming back to hardware domain, we speak in terms

of signals. Habits die very hard. It is reflected in my own sentence, so just beware of that.

Refer to it as a signal. Here, what is rrun? It is actually run_set after doing the

debouncing. It has to be debounced and you have to write appropriate code for

debouncing, which we will see later on. We see that all this is precisely the very same

input or reg with the same name, but now it implies that the debounced switch condition.

It is actually the same as what we have started with earlier in the layout for the common

man. We are going to use the very same symbol hereafter – this will be used extensively

hereafter.

(Refer Slide Time: 40:52)

So is the case for the hours, minutes and seconds push button switches. This is also a

push button switch that says start_stop. If you push the button once, it will be in start

mode and if you push the same button again, it will be in stop mode. One push button

switch plays a dual role. You have an alarm_off_on and once again off and notice that on

is low. This is a single bit. All of them are single bits. So is the case for alarm_read_set.

You can either read or set the alarm. There are three different alarms. This is precisely the

same thing.

(Refer Slide Time: 41:38)

Now we also have four-bit width counters. This is the actual counter that is really running

for your time. Notice that we have used here reg. Earlier, we have used next. That was

declared as wire whereas here it is declared as reg because we are going to use this in the

always block. There are 4 bits here and counter 1 through 6 are used for hours, minutes,

seconds.

(Refer Slide Time: 41:55)

If it is in stopwatch mode, exactly the same hours, minutes, seconds counter 7 through

12. They are also registers.

(Refer Slide Time: 42:04)

We have start_stopn_reg and start_stopnp_reg. We have some more hours here. You are

already familiar with start and stop. When you press, you should know what was the

previous value and that previous value will have to be a different register, so we use the

exactly same name with p here – this implies it is previous and only then, by comparison

of the two, you can know when it has been pressed. Similarly, for hours previous value

and hrs_d is what we are going to explain later on and this is in the setting mode – on

delay output hours. We have what is called an on delay timer and that output is this,

which will be needed at the time of setting the hours display.

(Refer Slide Time: 42:52)

Similarly, you need a delay of 2 seconds so that when you want to advance, if you press

the push button once, it will advance by one. If you keep it pressed for a minimum of 2

seconds, it will automatically run 10 times faster. If you want to display for a long time,

you can set it fast. It runs at 10 times the normal speed. Otherwise, it will run at 1 second

and every time you push, it will run. When you near the targeted value, you can stop

before releasing the button, and then advance it by pushing it once so that you advance

step by step – this is what is available in the market. In a Philips two-in-one, you would

have seen this – a real-time display is also available. They have used the same strategy

there in order to set. So is the case for minutes and seconds.

(Refer Slide Time: 43:48)

Again, 2 seconds and all are exactly the same. You also need adv_res_cnt2 and this we

have not covered before. So we need to declare it as a wire because we are going to use it

in the assign statement.

(Refer Slide Time: 44:01)

Then, res_cnt2_time and res_cnt2_set, then reg temporary. We need temporary alarm

registers.

(Refer Slide Time: 44:12)

For six different alarm displays, we need temporary registers. It is exactly the same as

counter1, counter 2 and so on. For each, you need a temporary register so that we can do

the alarm setting. For each, there are three different alarms that will be set using alarm

reg1, reg2 and so on. This is the pre-increment as you have seen next earlier also.

(Refer Slide Time: 44:54)

We have 1 through 6 here for temporary alarm setting and we need

adv_temp_alarm_reg1. This is advancing the very same particular register. If you want to

advance, you need another signal and you need six such registers here.

(Refer Slide Time: 45:09)

We have not seen reset. For the same registers, we need reset here and that is up to this

point. Now come the independent alarms, for example, alarm1_reg1 through 6. This

corresponds to the counter1 through counter6 or counter7 through counter12. Which is

the one? Second one? counter7 through 12, right? This corresponds to that. It is not the

same – it is different from counter 7 but it has a similar meaning. This is exclusively for

setting the alarm. You have three different alarms that can be set.

As I mentioned earlier for epilepsy patients, we would need to set three times, say at

morning 7 o'clock, then in the afternoon at 1 o'clock and then again at dinnertime, say 8

o'clock. If they miss taking the tablets – if they do not take within half an hour, they will

get fits. In order to overcome that problem, you can have three different settings and so,

we have alarm1 through alarm3 here.

(Refer Slide Time: 46:17)

You also need adv_hrs_temp_alarm – you have to advance them so. For hours, minutes

and seconds, you have to advance. Two digits will run independently. You have to set

hours separately, apart from minutes and seconds. You also have set_alarm and that is

declared as wire and 1 alarm is there, r stands for register here. You also need

alarm_read_set.

(Refer Slide Time: 46:47)

You have display_time, display_stopw and display_alarm. When we go into the details,

we will see more about this. We also need to sound the buzzer and for that, we need some

30 seconds counter, at the end of which the buzzer will automatically stop. You do not

have to do any resetting, etc., – everything is automatic. If you want to introduce more

automation, you can – you are free to amend the codes after you learn this. You also need

another register for delay. Another signal is required to match for independent alarms.

This goes high when the run time matches the alarm1 set point. We will later see how to

set, etc.

(Refer Slide Time: 47:29)

We also need alarm1_30sec_counter_next. This is for pre-incrementing the counter and

this is if you want to advance alarm1_30sec_counter – this is the real counter. This is the

pre-increment for this.

(Refer Slide Time: 47:44)

You have similarly alarm2 and exactly the same signals for alarm2.

(Refer slide: 47:54)

So is the case for alarm3 here, right up to the match, counter and so on.

(Refer Slide Time: 48:00)

You also need registers for beep and ring. They are all single bit and this is a buzzer we

are going to connect. In order to do the beeping, we need to have another counter. Three

bits are adequate for that counter. You need to pre-increment, so you need this as well.

(Refer Slide Time: 48:19)

We have some more registers term_count_reg1 through reg6 for use with an up counter.

When you set the up counter terminal count, you need this.

(Refer Slide Time: 48:32)

You also have another terminal count for next till up to this here.

(Refer Slide Time: 48:42)

Then, you need to advance the terminal count register as well as reset. Once again,

advance, reset, advance, reset for each of the six registers that you have here. You also

need adv_hrs. tcr here means terminal count register. You need some more signals.

terminal count reached. For up counting if it is reached, this will be indicated. If it is

down counting, the terminal count is reached when the set delay matches, that is what we

mean, this will be done. They are all wires there.

(Refer Slide Time: 49:15)

You need a timer_out_alarm_counter, which is a 30-seconds counter for audio alarm.

Once again, pre-increment, then timer_out_alarm.

(Refer Slide Time: 49:25)

The real-time clock implementation starts here. Do you have any specific question? Let

us clear that first because we have just finished the declaration. I think we should take it

up only in the next lecture so that we are fresh – the actual core is starting from here. So

far, what we have seen is only the declaration.

Question (by Student): You said it is not required to press the buttons independently to

set the time for up/down counting. If the button is kept pressed for a long time, you can

advance the count. Can you please explain how this is exactly done in the code again?

Not right in the code but let us go back to the actual layout that we have started with.

That was here (Refer Slide Time: 50:16). I said that we need to have this for the layman.

Let us understand this here. If you want to set, let us say, hours, minutes, seconds. How

do you go and set it up? What do you want to set? Do you want stopwatch to be set or

timer to be set? Please come out with what you want. Stopwatch. Stopwatch, okay.

You just set it in set here, then stopwatch. Make sure that these things are all off. This is

preferably in read, this can be off and this is also preferably off. What is going to happen

is we want to set this stopwatch. How much time do you want to set? 20 seconds. 20

seconds, okay. All we need to do is we just press this. Each time you press and release

the button, this will advance by1. For example, 01, next time you press it will be 02, 03

and so on. This is a very tedious thing. If you want to set 59, it will be a tedious process –

you have to press 59 times. In order to relieve yourself of the burden, what you do is you

just press once and hold it.

Having pressed once, the code will recognize and advance by 1 and then, it will continue

to see whether you are continuing to press for 2 seconds and more. If it is beyond 2

seconds, it will start running at a very rapid pace and automatically it will roll. It will

advance 10 times faster. For example, this will become 1, 2, 3 every second instead of

this one. So you have a provision of setting it fast. Here, 1, 2, 3, 4 and when it comes to 5,

you release it. Then you would have got almost 51, 52 – you have no control over that.

After that, suppose you want to set 59 seconds instead of 20. You are now at 52, it has

stopped and you keep on advancing only six times and that is precisely what you have

here in the timer also – the buzzer has gone because it is the right time. Does it answer

your question? Thank you.

(Refer Slide Time: 52:24)

