
1

Digital VLSI System Design

Prof Dr. S. Ramachandran

Department of Electrical Engineering

Indian Institute of Technology, Madras

Lecture No. 49

System Design Examples using FPGA Board

(Refer Slide Time: 01:37)

2

(Refer Slide Time: 02:23)

We have been looking into the design applications using the FPGA board. We also need

different cards such as digital input/output card in order to increase the resources. For

example, the features of digital input output card are as follows. This is the card that we

are going to use in addition to the I/Os that are on the FPGA board. The first feature is it

has a total number of 48 discrete inputs and outputs. Each of these inputs and outputs can

be configured by the user and therefore, it is called user selected. In addition to this, we

have four push button switches, each of which is hardware debounced. We use a 7400

3

NAND gate for debouncing this circuit. This is right there on the board. We also have

eight four-bit binary switches and eight of BCD switches. This is very handy if you want

to straightaway select in decimal values. For example, 0 through 9 are graduated on the

BCD switches and you can be at home with decimal settings.

If you still insist on a binary setting, you can use this. In fact, all these eight binary and

BCD switches are in parallel. You can select one of the two – one binary switch or one

BCD switch, which is connected in parallel. You can select them in any combinations. In

addition to this, we also have outputs. We have six seven-segment LEDs. They have a

right decimal point display, which is not available in the FPGA board – we have already

seen this earlier. In addition to these seven-segment LEDs, we have 16 discrete LEDs.

These are all the LEDs that we are going to use in the first application, namely the traffic

controller. This will be the very last of the six seven-segment LEDs. These seven

segment LEDs and discrete LEDs are once again in parallel. This is parallel as far as the

last two seven-segment LEDs are concerned. The whole board works on a single supply

namely +5 Volts. We will have a look at the layout of the I/O card.

(Refer Slide Time: 04:56)

This is the I/O card. This card has a connector with 50 positions and a [05:16] male has

been put on this board. Naturally, you need a female FRC connected to mate with this

4

and interconnect it to the FPGA board on the expansion headers. If you remember, we

have two expansion headers. The cable will have to be bifurcated and then connected to

the two expansion headers, since this is the only single connector at this end. We need to

supply +5 Volts, which is done through the male connector on the board – this is called a

Molex connector. Normally, this is popular for connecting power supplies.

The first two pins are +5 Volts and the next two pins are grounded. We also have a

provision for 3.3 Volts here. Also, two or three crystal oscillators can be connected on the

board, which is not shown here, because we are not going to use them for this particular

application. In addition to this, we have four push button switches. This is a push button

shown here (Refer Slide Time: 06:28). You also have four jumpers here. Right now, it is

shown as a right-installed jumper but if you install the jumper on the left, it will

automatically select this push button switch and it is debounced by using 74LS00.

You need cross-coupled NAND gates, which we will be covering later on. Out comes the

debounced digital value, which is connected to pin number 3. This is the point we will

have to connect. The second push button is connected to pin number 4; pin number 5 and

pin number 6 are respectively used for PB3 and PB4. You see some more switches. All of

them are connected in the very same order, left to right, like a raster scan order.

Parallel to these four bits, we have a switch SW1, which is a binary switch. There will be

four discrete switches. The leftmost of the switches is parallel to this switch here and the

second is parallel to this, third parallel to third position and fourth parallel to PB4.

Parallel to this switch 1 is the BCD switch, which is SW5. This is graduated as I

mentioned earlier from 0 through 9. You can use either the push button switch or this DIP

switch for binary setting or the BCD switch for the decimal setting. All these are BCD

switches – four here and four down here; all are symmetrical and very easy to find.

Similar to SW 1 to SW 4, there is also a group of binary switches SW9 through SW12 –

four of them here. Since each has four bits, in order to cater to eight numbers, you need

32 bits. These 32 bits are connected in exactly the same order that you see into his

fashion – first these four, which are parallel to these four and after this, SW4 is connected

to SW9 again in the same order. Once again, SW13 is parallel to SW9 and so on. SW16

5

is parallel to SW12. This completes all the inputs. They would naturally take 32 bits and

they are connected starting right from pin number 3 and counting 32, you will land up

somewhere here. You can keep track of how many pins. It is in exactly in the same order

that we have seen the switches positioned here.

In addition to this, we also have these seven-segment LEDs connected to the very same

pins. If you notice, there are six seven-segment LEDs. What is not shown in this figure is

a decimal point, but we will be seeing that separately when we have a zoomed version

later. Seven segments plus one for decimal point would take you to eight bits. Once

again, this is connected from pin number 3 as it is in the case of push button switch or

SW1 or SW5. The order in which this is connected is ABCDEFG and then decimal point,

in that order starting from the left.

For instance, segment A is connected to pin number 3, segment B to pin number 4 and so

on. After you have exhausted all the pins for this seven segment, which is eight in

number, segment A for 7S2 will be connected immediately next to that and so on in the

very same order, you will have it totally. If you see six seven-segment displays, you have

actually have 6 into 8 including decimal point. That means 48 outputs are available here.

If you notice this, we have a 50-pin connector of which we need for VCC ground – +5

Volts is connected to pin number 1 and pin number 2 is ground. Pin number 3 starts with

segment A and it goes on till the very end, 50. You can see that difference is 2 – if you

knock them off, what you have is 50 minus 2, 48. That is precisely what you have here –

6 into 8 is 48 and it is the very same order.

In addition to this, we also have 16 discrete LEDs. For example, in this row, you can see

LED1, LED 2 and so on right up to LED 8. Here starts LED9 through LED16. The first

row LED1 to LED8 is connected in parallel to the last-but-one seven-segment display,

that is, 7S5 is connected to this one in parallel. LED1 is connected to segment A, B

segment is connected to LED2 and so on. So is the case for the seven-segment S6. A is

connected once again to LED9, B connected to LED10 and so on. The decimal point will

be naturally connected to LED16. These are all the resources that you need in order to do

6

any considerable amount of application that you wish to have. The resources on the

FPGA board are clearly not adequate for this purpose.

(Refer Slide Time: 12:20)

Next what we will do is we will just have a look at the circuitry on the board. What we

have here is a push button debouncing circuit. A traditional NAND gate is used. Instead

of NAND gates, you can also use a NOR gate. Note the cross-coupling here. For

example, Q bar is this output and Q is this top output. Q is connected as the input for the

next NAND gate. This output Q bar is connected to the first NAND gate input. This is the

traditional cross-coupling. The two other inputs of the NAND gate are connected to the

push button switch. One of them is connected to the normally open connection and the

other is connected to the normally closed connection. Note that to start with, when you do

not push any push button, it will be returned to the ground, that is, this signal is forced to

ground here.

Notice two pull-up resistors used here. For a pull-up resistor, a typical value used is a

4.7K or 10K – normally, these are all the industry standards. If you use a higher value,

you cannot guarantee the threshold level – the high or low will be at the threshold level.

Avoid going for very high values and do not go for [13:45] region as far as the pull-up

resistor is concerned. The typical value as I mentioned is around 4.7K or 10K – this has

7

been proven in industries all over the globe. If you put a smaller resistor and if similar

circuitry is involved, the current consumption will also be more. Accordingly, you can

limit this by selecting 10K. Do not go beyond 10K. That is the price you may have to

pay. Otherwise, you will get into trouble as far as the noise and performance are

concerned; the level of 0s and 1s will also give a problem.

Let us see how the circuit works. To start with, this is 1 because it is pulled high and this

is forced to 0. You know that 0 into anything is 0. Just before the bubble of the NAND

gate, you get only 0 and after the bubble, you get 1. So Q bar is 1 for this particular

position of this push button. Let us see what the case is. This Q bar is connected as the

input – just remember it is 1 here. This is pulled high and so 1 into 1 is 1 before the

bubble and after the bubble, it is a 0. That means it is 0 here and 1 here. Therefore, we

have used the notation Q and Q bar because if it is 0, it will be 1, and if it is 1, it will be

0.

Right now, when the push button is not pressed, you get an output of 0. It is this that we

will take as an output. Let us see what happens. When you press the push button, this

connection is broken. It is going to travel all the way and strike at this point. Let us have

a look at what happens before that. As the connection is broken here, this one, which was

forced to 0, will be 1 and because this is not yet connected to this ground, this is also 1.

So 1, 1 would mean store mode in SR flip-flop and that is precisely what we are

exploiting here.

Remember it was 0 and 1. This 1 was fed here and this is still 1 only. 1 into 1 and

naturally, the NAND output is 0. That is how the store mode works. In between, it is

always in the store mode. You can analyze here also – since it is 1 here and Q was 0

there, it is naturally 1 here. So 0 and 1 are preserved, that is, it is in store mode. Now,

when this contact is made here, this is forced to 0 for the time being. Once this is 0, this

will be 0 here, therefore 1 here – the Q output has gone to 1. Obviously, I do not have to

analyze this one because this will be the inversion of this. This has gone to 1 and this has

gone to 0. Now what happens when the switch strikes here, it will bounce back because

of elasticity – any contact that you make will bounce back.

8

This keeps on going for a while before it settles down. It will settle down because you are

applying pressure to that. Before that, it will keep on making a number of makes and

breaks here. When it is made 0 here, we have already seen it is 1. The very first time that

you made a contact, even if it bounces back, it is in store mode and therefore, 1 is still

preserved. That is how it is debouncing – the circuit debounces in a very simple manner.

Like this, we have four push button switches. Each LS00 will have two such gates. We

need two such LS00. That is the reason why we saw in the layout earlier two ICs for four

push button switches.

(Refer Slide Time: 17:53)

Here, for a binary switch, there are basically discrete switches – 1 to 4. They are all

grounded here. The other end of the switch is returned to the I/O pins in the order that we

have already discussed. Each of them is pulled high by the resistor array. So is the case

for a BCD switch, which is also a resistor array. In fact, this resistor array and this are the

same because all the switches are in parallel. The ON of a particular switch input will

return to 0 for obvious conditions and it is grounded here. This will be pulled low and this

is how you make a binary setting.

The BCD switch is also similar to this except that some inversion is involved. For

example, if you set 0 on the BCD switch, the BCD switch is graduated from 0, 1, 2 and 3

9

right up to 9. You can take a small screwdriver and turn that to any desired position and

you can thereby have a BCD or decimal setting. Notice that for 0, you will be reading all

1s, which means that all the switches will be off. All 1s are read because of the pull-up

resistor array here. If it is 9, it will actually be reading 0110 because it will make a

contact corresponding to 1001, which is the usual thing you can see – 1001 means

making a contact is 1 here but in terms of logic, it will be inversion because of this

configuration. That is the reason it is inverted here. You know that this is nothing but

8421 code. One can easily derive what you have to put here but just remember to invert

this. These conditions are required if you are to recode, which may be given as an

assignment towards the end.

(Refer Slide Time: 19:43)

Coming to this, a seven-segment LED is shown here. The segments are a, b, c, d, e, f and

this is the last one. In addition, there is also a decimal point. The center one is g. The

typical driving circuit for each of these LEDs or for that matter even the discrete LED is

quite simple. You have a 74LS05 and that input is once again connected from the I/O

pins that we have already seen – 48 of them. This is once again pulled high by a pull-up

resistor there. When it is not connected, 1 will be pumped in here because of this open

collector output, which can sink current. The LED is connected in this fashion. The

seven-segment LED that we have used on the board is a common anode type. That is why

10

all the seven segments are combined together as far as the common anode is concerned.

When it is 1 here, it will be 0 here. This is the current-limiting resistor. Naturally, the

LED will conduct. The typical resistance is around 200 Ohms, which you can easily find.

The conducting LED will take about 1.5 Volts and this will be 0.3 Volts with reference to

the ground, which means that the drop of 1.8 Volts is accounted for by the +5 Volts

supply and the difference will appear across R. Just allow for some 10 milliamps to 20

milliamps. Typically, 10 milliamps is enough to light up the LED.

(Refer Slide Time: 21:20)

We will be showing one of the FPGA boards. In some of the boards, especially based on

XC4000 series, there are problems associated. We have experienced a practical problem

in the course of development of different applications. The problem is FPGA boards

using XC4000 series malfunction if input switches are connected permanently. We have

already seen that. In digital I/O, we have directly connected the switches. They are to be

used with the FPGA board XSV-800, that is using XCV-800 type of FPGA. This problem

is not encountered with that. This problem is only in the XC4000 series. The way to

overcome this problem is by using on-chip tri-state buffers as shown below.

11

(Refer Slide Time: 22:21)

This is the FPGA input pin. Here, you may be connecting a DIP switch. In such a case, if

you do not use this tri-state buffer and straightaway connect to the FPGA pin, when you

switch on and download the bit stream, the system really goes mad. It does not function

well and so it malfunctions. In order to overcome that, we have either to use an external

tri-state buffer or a better option would be to use the on-board resources. The

corresponding Verilog code for the same is given here.

(Refer Slide Time: 29:59)

12

It is a very simple Verilog code. This is the module declaration, a and b are what we have

already seen. enable is the enable for this of course, it is bigger here you can remove this,

actually it is enabled there. When enable is on, then a will be communicated to b. a will

be connected to a DIP switch or BCD switch, thereby actually connecting it to the FPGA

pin after the tri-state buffer.

(Refer Slide Time: 23:35)

The code for this is here. Input output declaration is here. We have used only four bits

here. You will have to use as many number of bits you require. For a four-bit binary

switch, four is enough. If you have multiple bits, accordingly you will have to increase

this. Instead of three, you can increase it to as many as you want.

13

(Refer Slide Time: 23:52)

We are going to use only assign statements. They are declared as wire. There are two

simple instructions that will do the trick. For example, we enable first here and the

concurrent statement is another MUX here. This is the output assign statement. b is

derived from either the actual DIP switch, which is connected to the input, or it is forced

with 0. It is forced with 0 if it is in disable mode – if enable is 0, 0 will be forced to b.

This is at the time of configuring. When you configure the bit stream, this is the case

normally because when you switch on, all the FPGA pins are normally cleared.

14

Therefore, we have written it this way. Very simple, just two codes in essence will easily

solve the problem that we have explained earlier. This is the end module.

(Refer Slide Time: 24:57)

We have seen this 4000 series board, wherein a problem is encountered. This board is

shown here. This is the Xilinx chip. This is actually XC4010. We have seen and analyzed

how to solve the problem associated with this.

(Refer Slide Time: 25:28)

15

Next, we will see the traffic controller demo using different boards that we have already

considered, namely, the FPGA board as well as digital I/O card. We need to connect this

FPGA card to a parallel port. That is shown here. This is the parallel port connection.

From here, it trails there and gets connected to the FPGA board right on the top here

(Refer Slide Time: 25:45).

(Refer Slide Time: 25:46)

This is the connection.

16

(Refer Slide Time: 25:49)

This is the FPGA board. A zoomed version is available right now. The main FPGA is

here. This is an XCV-800 device. We have already seen descriptions of all the other

things. These are all the flat cable connection expanders. These cables are connected to

the digital IO card, which is next.

(Refer Slide Time: 26:17)

17

You can have a look at a zoomed version. The cable connection is right here. We have

already seen the 50-pin connection. This is the BCD switch. It is graduated as 0, 1, 2, 3

up to 9. Eight such provisions are available, eight DIP switches are available and push

button switches are here. Now we will see the working of the traffic controller. Right

now, it is on. You can see the traffic controller board.

(Refer Slide Time: 26:43)

The zoomed version is here. Just have a look at part of this sequence for a while.

18

(Refer Slide Time: 27:00)

(Refer Slide Time: 27:03)

The traffic controller bit stream is loaded by using GXSLOAD. We have already seen

this in the manual covered earlier. The board type XSV-800 is selected here.

19

(Refer Slide Time: 27:15)

The connection is an LPT 1 parallel port and that is what is put here.

(Refer Slide Time: 27:20)

The bit stream that you need is for example, traffic_controller – it is actually a .bit.

20

(Refer Slide Time: 27:29)

We have to get this field by merely copying and dragging from the folder in which it is

available.

(Refer Slide Time: 27:37)

This is what we have already seen in the previous design of a traffic controller.

21

(Refer Slide Time: 27:45)

Once you have got the desired file on this, you have to load that.

(Refer Slide Time: 27:48)

This is done by pressing this button on the right side. Watch what happens while doing

the load.

22

(Refer Slide Time: 27:53)

You see another small window opened down and it is actually loading the bit stream here.

If you see that, it is traffic_controller.bit. Immediately, what did you see here? It has

initialized the traffic controller display starting with this is the main road, right from here

left to right.

23

(Refer Slide Time: 28:13)

What you saw was a green transiting to yellow.

(Refer Slide Time: 28:18)

The vertical road is the side road. You can see the entire sequence.

24

(Refer Slide Time: 28:30)

Earlier in the design, we have used green for 45 seconds for the main road.

(Refer Slide Time: 28:32)

But this has been lowered to 15 seconds in order to get a good demo here.

25

(Refer Slide Time: 28:42)

You can probably keep track of how much time it actually takes for each of them and

then make sure that they are really working.

(Refer Slide Time: 28:47)

This will be there in one of the corners all the time. Now, let us see what we have in the

traffic controller.

26

(Refer Slide Time: 29:03)

This is the traffic controller that we are already familiar with. I will not go through the

detailed description of the Verilog code, which we have already seen earlier. What we

have done in this is added some more features – pedestrian crossing, which was given as

an assignment earlier, is actually put in this code. This is not in the demo that you are

seeing. While running through the normal sequence of the traffic lights, you also have the

provision for pressing a blink control. You see PB1 through PB4 and one of that is used,

namely PB 1. If I press this, just watch what happens to the display.

27

(Refer Slide Time: 29:55)

You can see that all the yellow lights are blinking as long as this is switched on. This is

equivalent to blinking of the lights during the night for cautious driving. When you

release, it reverts to the very first sequence that you see there. We will see the traffic light

controller code amended to cater to blinking covered in every state instead of just one

state that we have covered earlier. That is one change that has been incorporated in this

revised traffic controller design. In addition to this, we had given an assignment for

pedestrian crossing and that has also been incorporated in this. This controls the traffic

lights of a four- road junction with pedestrian crossing. We earlier had 45 seconds for the

main road traffic, which has now been amended to 15 seconds and 10 seconds for the

side road. The other things are the same – yellow lights for 5 seconds and blinking at 1

second rate. This is what we have already seen.

28

(Refer Slide Time: 31:19)

29

This is the road here. Before that, let us have a look at the PowerPoint presentation for

the same with the amended code.

(Refer Slide Time: 31:25)

To start with, what we have is the straight-flowing traffic with MG1 green, MG2 green.

While this happens, we can also allow the pedestrian to cross over here. PS stands for the

pedestrian signal. 1 and 2 is the same nomenclature we have adopted earlier – 1 for this

side road and 2 for the other side of the side road. S stands for the side road. You have

this signal, which is ON. The next sequence is that it converts into yellow. When that

30

happens, we have removed the pedestrian crossing because it is much safer before the

oncoming traffic, which is S2. It happens to be the left turn as well as the right turn here.

The corresponding signals are all lit here. We now have a left turn – this is an extra

addition here. This was already there. Once again, it will go through the yellow as far as

main traffic is concerned – that is the S3 sequence.

(Refer Slide Time: 32:37)

In the S4 sequence, the reverse for the same main road happens – right and left traffic is

allowed here in this case. Once again, you can see the left indicator here. Once again it

goes through the yellow sequence, in which case SY1 and SY2 are on here because it is

going to be green here in the next sequence – SG1 as well as SG2. That is why we have

provided this. In case you are not happy, you are free to change because it is a question of

changing a few Verilog codes.

Here, you can see that the main pedestrian crossing is lit, this signal is lit, allowing the

pedestrian to cross because this going to be straight traffic. In addition to this left, we can

also provide here. In fact, we can duplicate the same thing here also if you want this

crossing – you do not need any extra signals for that. Next is once again the yellow traffic

transition here.

31

(Refer Slide Time: 33:43)

After this, we have the S8 sequence, which will be the same case for left and right traffic

from the side roads. Side road 1 is allowed here and once again, yellow transition. In this

case, yellow is given only for this because next is going to be on this side – right traffic as

well as left traffic flow as far as side 2 is concerned. All the other things I do not have to

explain here – red and whatever is to be done has been done. As far as this is concerned,

both left flow as well as the right traffic signal must be ON. Once again, it goes through

the yellow in this sequence.

32

(Refer Slide Time: 34:29)

Next is the very first sequence here (Refer Slide Time: 34:36). That is why yellow has

been marked for the main here. S12 gives the blinking. Earlier if I remember correctly, it

was S8 state and now, it is S12 state because we have added some more states in

between, instead of eight plus one, nine states were there earlier, I think. Is it starting

from S0? S0 to S11 is the normal sequence, that is twelve sequences plus one more

sequence for the blinking.

(Refer Slide Time: 35:21)

33

Reverting to the code, these are all precisely the same definitions and we are not going to

repeat it. Wherever there is a change, we are going to cover that. We had a time base for

40 Megahertz earlier, if I remember correctly. Now, what we have is 50 Megahertz

because this is what is demanded by the [35:39] board. As I mentioned earlier, there was

a divisor we programmed and that was in terms of 1, 2, 3 and so on we had put a divisor

of 2. That means we get from 100 Megahertz, which is the basic clock frequency. A

factor of 2 will give you 50 Megahertz and because of the board requirement, we change

34

its frequency, for which, instead of 3999 for 40 Megahertz, we need to update it to 499.

That is all the change here.

(Refer Slide Time: 36:12)

We also have to change the timing. This is for the 15 seconds timer – always 1 count less,

as we have discussed before. 0.1 second is the time base. Therefore, the decimal point is

reckoned here. So it is actually 15; 14.9 means 15 because this is 1 count less. 0, 1, 2, 3 is

the count and that is the reason for 1 less. So is the case for 5 seconds, 4.9 here.

35

(Refer Slide Time: 36:42)

Similarly, for the side road you need 10 seconds so it is 9.9.

(Refer Slide Time: 36:15)

For 0 through 9 it goes as far as the basic time base is concerned, which gives a 0.1

second delay – that is here, for which we need instead of 10, 9 actually – 1 less. So this

will give you a 0.1 second delay.

36

(Refer Slide Time: 37:04)

37

These are all the declarations here. For example, left turn extra here and pedestrian main.

Similarly, pedestrian side and similarly left are all extra here, then pedestrian signal. Then

blink happens to be the very same thing.

38

(Refer Slide Time: 37:25)

39

Once again, we have I/O declarations and once again, you see this – left output and

pedestrian main.

40

(Refer Slide Time: 37:38)

Once again left for the side, then pedestrian crossing output. The wire happens to be the

same thing, then for timer.

41

(Refer Slide Time: 37:57)

Once again, we have to declare registers. This is pedestrian main and once again, left side

turn as well as pedestrian. They have to be declared as reg.

42

(Refer Slide Time: 38:16)

This is essentially the same. This is to create 0.1 second time base. These codes are

exactly the same. You cannot take it left, you can see the first.

(Refer Slide Time: 38:40)

Although the first character is appearing on the monitor, it is not appearing on the screen.

I hope it is visible on the TV. Anyway, we are not really interested in the actual. We have

already covered these codes and so we need not really worry about that. I am not

43

describing the code. This is exactly the same thing; I am pointing out only the difference.

For example, it was 45 seconds but now, the comment is for 15 seconds.

(Refer Slide Time: 39:12)

This is the timer 2, catering to yellow lights, for 5 seconds. There is no change here.

(Refer Slide Time: 39:21)

This is for 5 seconds.

44

(Refer Slide Time: 39:29)

This is for 10 seconds here.

(Refer Slide Time: 39:33)

This is for 1 second for blinking. The same thing continues. Different counters are

running, which we have already seen.

45

(Refer Slide Time: 39:48)

This is the initialized condition. This is also the same. Wherever the extra sequences are

involved, we will cover that.

(Refer Slide Time: 39:58)

The first one is also the same.

46

(Refer Slide Time: 40:05)

Here, side pedestrian is included. You can cross when the main green lights are on. We

have turned PS1 and PS2 to 1 here. All other lights are exactly the same – we will see

that all through, in each of the extra sequences that we have added.

(Refer Slide Time: 40:28)

For example, we have to turn off an unwanted left signal and that is what we are doing

here.

47

(Refer Slide Time: 40:35)

This is for the 15 seconds timer.

(Refer Slide Time: 40:41)

Hereafter, after every sequence, we will be noticing that we have included the blink state,

so that we do not have to wait till the end of all the sequences, which we have done

before. In this case, we are taking at every sequence – S0, S1, etc. We are sensing the

blink at all sequences.

48

(Refer Slide Time: 41:06)

Once again, you can see this pedestrian is not wanted here and therefore turned off.

(Refer Slide Time: 41:14)

Then main pedestrian is also turned off here.

49

(Refer Slide Time: 41:29)

That was for two sequences, S0 and S1. This is the S2 sequence. Once again, blink

control is taken into account. If blink is 1, then it will go to the last state – S12 state,

which happens to be the blink state. This is what we have already encountered earlier also

in the other two sequences.

(Refer Slide Time: 41:52)

In this particular sequence, we have MLT1 coming into the picture as well as MRT1.

50

(Refer Slide Time: 42:04)

Naturally, we need to switch off all other unwanted lights, including MLT2 here and the

main pedestrian crossing.

51

(Refer Slide Time: 42:16)

Again, SLT1 and SLT2 for left traffic of the side road, as well as pedestrian crossing for

the side road.

52

(Refer Slide Time: 42:34)

Once again, for S3, we have a blink control here.

(Refer Slide Time: 42:39)

Once again, the lights are different here.

53

(Refer Slide Time: 42:45)

Once again, you can see the left flow for the main are all switched off here including the

pedestrian crossing.

(Refer Slide Time: 42:55)

The side road left are also all off here and so is the case with the pedestrian crossing.

54

(Refer Slide Time: 43:12)

This is the S4 state. If you want to recollect what that S4 is, you can have a look here

(Refer Slide Time: 43:18). This is right flow traffic from the main road itself.

(Refer Slide Time: 43:32)

You can see that right is allowed here; right as well as left flow from the second of the

main road. All other lights are off.

55

(Refer Slide Time: 43:51)

You can see that this left side as well as pedestrian signals are all off.

(Refer Slide Time: 44:03)

The S5 state is just the yellow transition in the same manner.

56

(Refer Slide Time: 44:17)

57

You can see the yellow is on here and all others are off including MLT, and SR, PM, then

SLT as well as pedestrian crossing.

(Refer Slide Time: 44:39)

The next state is S6 here. Once again, the blink is taken into account. This is the S6 state.

58

(Refer Slide Time: 44:46)

Here, S6 is the side main traffic flow. There is a PM here (Refer Slide Time: 44:56). Only

SG1 and SG2 are alive there.

(Refer Slide Time: 45:05)

You can see SG1, SG2 and PM also there. All others are off. The side main traffic yellow

lights are shown here as the S7 sequence (Refer Slide Time: 45:26).

59

(Refer Slide Time: 45:29)

The corresponding code here is MR1, MR2 are 1, then side is 1 each. All other lights are

off.

60

(Refer Slide Time: 45:50)

The next sequence is S8. Once again, blink is taken into account. In this case, you can see

all reds and side right as well as left traffic is ON here (Refer Slide Time: 46:12). Next is

yellow followed by this side. S10 is from the top.

61

(Refer Slide Time: 46:40)

62

In S9 once again, blink is there. We have seen this. Both the main red as well as side red

are ON. So also the side yellow. All other lights are off.

(Refer Slide Time: 47:00)

63

This is S10 sequence. Once again, blink is taken into account. In this case, main road red

as well as side road are all 1, right and left are ON here – you can just have a look at this

(Refer Slide Time: 47:22). You can see this 10. The right as well as left are ON here and

all others are red. This turns into yellow here – MY1, MY2 and then red for S11

sequence.

64

(Refer Slide Time: 47:50)

65

S11 is here. Once again, blink is taken into account. You have MY1 and MY2 as 1, then

side road red here and side yellow on. Is this correct? This is for S11 sequence. S11 is

MY1, MY2 and SR1, SR2.

(Refer Slide Time: 48:36)

MY1, MY2 and SR1, SR2. I think there is some problem in this. SY1, SY2 should

actually be 0, is it not? This is for S11 case. I think this should be 0, S11, is it not? We

will correct this. This is 0, this is also 0. We will just go through this. All other lights are

off.

66

(Refer Slide Time: 49:31)

This S12 is the blink state. We check the blink also here and we switch off all lamps

except for the yellow lights, which are going to blink.

67

(Refer Slide Time: 49:47)

That is covered only here. This is precisely the same as we had in the S8 state in the

earlier design – this is exactly the same thing. We are inverting the SY, all yellow lights

condition so that it keeps toggling. This is happening every 0.5 seconds, so you have a 1

second time period or 1 Hertz. That is for all yellow, which you can see from the

PowerPoint here (Refer Slide Time: 50:16). In addition to this, what we have is an

assignment for you. The timings are all programmed for the main side road traffic as well

as yellow lights. What you do is you take these switches SW7 and SW8, which are all

BCD switches and you can program right up to 99. You use this as input for the timing.

You have only one two-digit setting. Each time you want to set for main traffic delay,

you can use two more jumpers. In the SW1 switch, the last two bits you allocate for

selecting which of the three timers you are going to select. Let us say you select 00 for

the first main timing, 01 for the side timing and 10 for the yellow timing. You also have

to set the corresponding timing in the BCD switch. Whenever you want to enter this, you

can just press push button 2. This is the assignment for you, so that a cop can change it

right on the field. Thank you.

68

(Refer Slide Time: 51:55)

69

