Digital VLSI System Design
Dr. S. Ramachandran
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture No. 47
System Design Examples (Continued)

(Refer Slide Time: 01:27)

A

Contents pf fecture 47

5

B SN
Verilog Code for DCTQ"DESEN -
DCTQ ContrelierCode (Contd®s)

r
Jest Benchifon DCTQ{DO§"gn
Synplify Results

XN x PI;aa«eand Route Results

Analysis of Waveforms'of DCTQ
Design

Verification of Vemloe

- |@QIDCT Ceges
r

Matilab Co’des fon Prespaocessing

and Post-’p’r(gc-%gsing‘@f agflmage
- 7

Results “Oneinalfand “~
Reconstnuctedilmage Example

ImplememprFanen Results of DCTQ,
1QIDET, DEIgdnd IDCT Caresion
FPGA/ASIC
CapabiitiesiofllPiCores

*

We will continue with the Verilog DCTQ controller design.

(Refer Slide Time: 02:33)

'
AR LI RI T Br ey

assign swon_ready = ((start_regl == I'b1)& &(centl_reg ==
6°d01)) ? 1'bl : 1'b;

always a (posedge clk or negedge reset_n)
begin
if (reset_n == 1'bi)
ready <= 1'bl:
else if (hold == {"b1)
ready <= peady @
else if (swon_ready)
ready <= 1'bl:

ready <= !start_regl :

else

M

We stopped last time at the ready signal. The ready signal is turned on only if this
condition is met. This condition is given here — as long as the start is asserted and we
have the counter as 01 here. This implies that we have already processed DCTQ for
the previous block. We have already started the current block just at the beginning. At
this stage, we can allow this host to write data into the other RAM whose value has
been already processed. That is what we are doing at this end only when this
condition is satisfied. If this is not satisfied, ready will get this inversion of start_reg,
for example, if it is 1, it will not make it ready. This means that there is no start signal.

On the other hand, if start is asserted and count value is something else, then also this
will not be satisfied. Therefore, 1 will be inverted and it will continue to be low, for

other [04:00] as well.

(Refer Slide Time: 04:03)

always a (posedge clk or negedge reset_n)
begin
if (reset_n == 1"bi))
begin
detq_valid_prev <= 1'b0 :
detg_valid <=1'M0 ;

end

else if (hold == 1'b1)
begin
detq_valid <=1"00 ;
end

clse if (ent] reg==6"ddd) detq is valid from

Here, we produce the dctq_valid signal. In order to have this, we need one more

signal and we will see why. During reset, we reset both these signals.

(Refer Slide Time: 04:20)

rec d

begin
detg_valid_prev <= 1'b0:
detg_valid <= 1'M0 :

end

else if (hold == 1'b1)
begin
detq_valid <= 1"b0 ;
end

else if (ent]_reg == 6'd4d)

begin
detg_valid <= 1°b1 :
detg valid_prev <= 1°b1 :

If a hold is encountered, dctq_valid must be switched off because the DCTQ

processing is held now and so, the valid signal must also be withdrawn. That is why

we do this. You remember that pipeline was 45 before DCTQ starts out. dctg_valid
goes high only at this stage — because of this, it is going high and that is for cntl being
equal to 44. At this stage, we also make this signal 1 for this purpose. For example,
after this, it keeps on processing. At that point of time, let us say, the hold comes
again. So, what will happen? DCTQ is forced to 0.

(Refer Slide Time: 05:11)

rSc é -
else if (hold == 1'bl)
begin
detq_valid <=1"M0 ;
end

clse if (ent]_reg == 6'd4) detq is valid from
entl_reg = 44 dec. onwards.
begin
detg_valid <=1'b1 :
detg_valid_prev <= 1'b1 :
end
else if (hold == 1'bi)
begin

detq_valid <= detg_valid_prev :
end

ehe
detg_valid <= detg valid .

end

assign start_nextl = (start == I'b)& &(entl_reg==1):

always a (posedge clk or negedge reset_n)
begin
Ee= i ireset n == 1"hin}

Once it is withdrawn, it will come to this stage. What will happen here? Earlier, dctq
was 1, but because the hold has come, it has been forced to 0. How to retrieve this
when hold is removed and continue from where we left? That is possible only if you

make this once again 1 from 0. That is possible by copying these contents into

dctg_valid, which we do at this step. If nothing else, then we just preserve the

contents.

(Refer Slide Time: 05:47)

assign start_nextl = (start »= 'bH&&(entl_reg == 1)

always a (posedge clk or negedge reset_n)
begin
if (reset_n == ["bi)
start_regl <= 1"bix;

clse if (hold == 1'b1)
start_regl <= start_regl :

else if (start_nextl)
start_regl <= 1'bl :
else if ((start == "MK &(ent]_reg == 6'd62))

The next signal is start reg, which we have been using before. For this, the condition
is start = 1. Mind you, this is not start register or start next, but the actual start input
itself. When the start input is applied, it will be sensed only when cntl is 0. Then
only, it will assign 1 for this start_reg. That is this condition here. This will take place
one clock cycle later. In the next case, suppose start is 0 and then counter is 62,
implying that the DCTQ processing is nearing the end, what happens? At that point of
time if start goes to 0, then what should happen?

(Refer Slide Time: 06:39)

Clse A start_nestl)
start_regl <= 1'b] :
else I ((sturt ww MK &(cnt]_reg == 6'd62))

start_regl <= ['bo ;
else
start_regl <= start_regl @

end

It must reset the start here. That is what it does.

(Refer Slide Time: 06:47)

This is the test bench to test the DO TOQ Design,

Input image frame is lena. nt - change it for processing a
different image frame.

dergaaxt is the detg output of the image frame, bena. e,

ik T _festn file

define elkneriodin 2 £ Raoth clocks ok & i clk

This completes the controller module. We have to do the test bench. This is the

DCTQ test file. We take a lena.txt as the input file name and final output will be

dctq.txt from the same.

(Refer Slide Time: 07:05)

define clkperiodby2 £ Both clocks clk & pei_clk
operate at 100 N Hz

define pei_clkperiodn2 £
define NUN_BLRS 1024 Defines no. of blocks in a
frame. 2563256 pivel contains
1024 blocks, Change this for a different image size.

include “dergn™ Design module.

As usual for the test bench, we run at 100 Megahertz. Therefore, this variable is made
5 and another clock is also made 5. We define a variable called NUM_BLKS to
indicate how many blocks there are in 256 by 256 pixels, each block being 64 pixels.

From this, you can get this. This is the design module, which we include here.

(Refer Slide Time: 07:30)

include "detga” Design module.

module dety_test

reg pei_clk:
reg ok

reg reset n;
reg sturt :

g [63:0] di:

din_valid :

Then, start the DCTQ test module here. reg denotes all the inputs that we need to
declare here.

(Refer Slide Time: 07:40)

reg [2:0] wa:
reg |T:0] be:

reg hold:

wire ready ;

wire [8:0] dctg : detg output
wire derg_valid :

wire [5:0] addr:
wire [10:0] eobent_next:

reg [7:0] be:

reg hold:

wire reads :

wire [8:0] detg : derg output
wire derg_valid :

wire [8:0] addr:
wire [10:0] cobent_next :

wire stoppro< ;

Wire denotes the outputs. Notice that DCTQ, its validity, and address are all wire.

(Refer Slide Time: 07:52)

wire [8:0] derg @ Vderg outpur

wire detg_valid @

wire [$:0] addr:
wire [10:0] eobent_next :

wire stopproc
reg eob:
reg [10:0] cobent_reg:

reg start_din :

We also need a counter for end of block and also a signal called stopproc to stop after
1024 blocks are processed and so on — all these are used here. When a particular block
has ended, that also should be known. When the test bench must start the whole

DCTQ processing is governed by this signal.

(Refer Slide Time: 08:14)

Change the above o *cobent’ statements for a different
image size. sufficlent to accommodate the total no. of blocks in
a frame,

integer i heeps track of the current na. of blocks
processed.
integer fpl: Points the detg output file,

reg [63:0] mem [8191:0] :
reg [12:0] mem_addr ;

If you want a different picture, we have to change the blocks. All the statements to be
changed are listed here. In the test bench, we have a counter that keeps track of the

number of blocks processed. DCTQ output file list is contained in fpl.

(Refer Slide Time: 08:33)

IMAge sIZe, SUINKCIent to accommodate the 1otal no, of DIOCKs In i
a frame.

integer i: Keeps track of the current no. of blocks
processed.
integer fpl: Points the detg output file.

reg [63:0] mem [8191:0):
reg [12:0] mem_addr :

reg [63:0] contains one row (8 pixels) of an image block -

S such rows, one block.,

1024 such blocks means 8192 rows,

Change mem|S191:0] & reg [12:0] for a different image size,

Aernli Frn ol e detan dagion madunle ro mer

First, we read a disk file and copy it into a memory array. We have seen this in
external memory design earlier. We have a total of 8192 here, each being 64 bits. This
much memory is required in order to have 1024 blocks of 256 by 256. This is related
in terms of number of bits — for address, you need 13 bits, because it is nothing but
8K.

(Refer Slide Time: 09:05)

reg [12:0] mem_addr :

reg [63:0] contains one row (8 pixels) of an image block -

8 such rows, one block,

1024 such blocks means 8192 rows,

Change mem|[S191:0] & reg [12:0] for a different image size.

detg derql(Invoke detg design module to get
the detg output.

Jpel_clkipel_clk).

That is what it says here. We now invoke the DCTQ design and list all the 1/0s

therein.

10

(Refer Slide Time: 09:15)

LIKielk),
Jeset_nireset_ny
stareistare),

Aiediy,
din_valid(din_valid).
JMMna)
e be),

hold{hold),
seadsiready),

detl detg),

detq valid(derg valid),
addr(addr)

initial
begin

Sreadmemb(“lena.ext" . mem): mem receives the input image
frame, lena.txt
change the name for a different image frame.

Then, we start the initial block of the test bench. In the first step, we read lena.txt,
which is the actual image file in a text form and put it in the memory that we have
declared earlier as reg mem. That is what this command does — $readme hex format is

the instruction for that.

11

(Refer Slide Time: 09:44)

fpl = Sfopend "detg.exe™)
derg.ext is the detg ourput of the image frame, lena.rxe

pei_clk=0;
ck=0;
reset n=1:
sart=0;
di=0:
din_valid = 0 ;
wa=it;
be = 8"hif:

L hold=0;

PPN ML AL

"wa
derg.ext is the detg output of the image frame, lena.ixt.

pei_clk=0:
k=0

reset n=1:
start =0
di=0;
din_valid = 0 ;
waw=i;

be = 8"hiY:
hod=0;
mem_addr =0
start_din = 1"bix;

Then, we need to identify the output file, which we do here and also ask it to open
that. This is the command for that. dctq.txt is the dctq output and is derived from
lena.txt, which is the input. Here, we initialize all the inputs. These are all the signals

that you are already familiar with and so, we will not go into the details.

12

(Refer Slide Time: 10:16)

start_din = |"bik

i= 1024
i="NUM_BLRS:
=20 reset_n=1"h ;
=4 reset_n=1'b1:

start_din = 1'bl;

I is a counter that we have already set before. At this point of time, we apply the reset,
so active low here for 20 nanoseconds, then withdraw and then give the start signal.

(Refer Slide Time: 10:29)

start_din = 1'bl;
=T00000

Stclose{fpl) :
Sstop |
end

always

clkperiodbn 2 oIk <= ~clk :

13

-
700000

Stclose(fpl) &
Sstop &
end

always

clkperiodby 2 clk <= ~clk :

always

= pei_cliperiodby 2 pei_clk <= ~pci_clk:

alwavs a(start din or i or ¢lk or pci Ik or reset nor wa or
.-

Once you give the start signal, because we have invoked the DCT design already, it
will start functioning. After 700,000 nanoseconds, the file will be closed and stopped,
during which time you would have already processed one frame of image and got it in
dctq.txt as output file. This is the statement for inverting the clock so that the clock
can run. This is for both the clocks.

(Refer Slide Time: 10:56)

e 4

alwass

= pei_clkperiodby 2 pei_clk <= ~peci_clk:

always a(start_din or i or ¢k or pei_clk or reset_nor wa or
mem_addr)
begin

ifistart_din == 1'bl)
begin

14

alwass a(start_din or for clk or ped_clk or reset_nor wa or
mem_addr)

hegin

ifistart_din == ['bl)

beyin

a (posedge pei_clk)
ii =) Image block counter.
begin

We now have an always block to take further decisions and process block after block.
We will see how it is done. We need to take action only if start is 1, which we have

already made 1 there.

(Refer Slide Time: 11:11)

a (posedge pei_clk)

ifli =) Image block counter.

begin
a (posedge pol_clk) &
=]:
din_valid=1:
wa=1,;
di = mem|mem_add's] : Inputs first row of an image

block.

mem_addr = mem_addr < 1:
repeat(”)

15

16

begin

a (posedge pei_clk) :

ul:

din_valid = 1:

wa=si;

di = mem|mem_addr| : Inputs first row of an image
block.

mem_addr = mem_addr ~ 1:

repeat(”)

begin
a(posedge pei_clk) :
"]
din valid = 1

din_valid = 1:
wawsi;
di = mem|mem_addr] : Inputs first row of an image
block

mem_addr = mem_addr ~ 1 :
repeat(”)
begin

a(posedge pei_clk) :

"]

din_valid = 1 :

waswa~l:

di = mem|[mem_addr] : Inputs second to eight rows
of the image block,

(R T

a(posedge pei_clk) :

"] :

din_valid = 1 :

waswa~l:

di = mem|mem_addr] : Inputs second to cight rows
of the image block.

mem_addr = mem_addr = 1 ;

At the positive edge of the PCI clock, we have to read the image block and input it
into the actual design. Before we do that, we make sure that all the blocks are not
already processed. That is why i checks for not equal to 0. Since i was initialized to
1024, this will be decremented block after block and checked. At the positive edge of
the clock, we make data in valid, because we are going to input the very first block
there, which can be got from the memory that we have already stored using
readmemh — we have already stored the disk file into the actual memory. From that,
we start reading right from the first location, which is 0 here, and input to the dual
RAM. This is nothing but DCTQ design core. Every time we do this, we increment
the address, so that we go to the next location and keep on writing row-wise in a
block. You need seven more times in order to complete one block, because there are
eight such rows. That is what we do by repeat. This is the block that does precisely

the same. This is all exactly the same.

(Refer Slide Time: 12:37)

a (posedge pei_clk) @
=]
din_valid =0 ;
walt (ready) : \Wait for ready to go high,
a (posedge <Ik) ;
#] start = 1'bl : Start the dotg process after
inputting the image block &

when ready signal is high

Address the nest image block

17

mputting the mage block &
when ready signal is high

Address the next image block

Next, we wait for ready to go high again, because the DCTQ core has started
functioning and it is churning out the first DCTQ block. Once it is complete, it will
assert ready. Till that time, we do not input. What we have done so far is we have
merely input one block of image data into the dual RAM. Now, we have to start the
DCTQ process. That can be done only by asserting the start signal here. We keep
repeating this block after block. That is why we are decrementing from 1024, then it
becomes 1023 and so on. Finally, it will become 1. When it becomes 0, it quits the

always block, as we have seen before.

(Refer Slide Time: 13:30)

wait(eobent_reg == NUM_BLKS):

Completion of all the image blocks.

Stclose(fpl) :
\\tnp :
end

end

18

In addition to this, we need a counter for counting the number of blocks processed and
then compare it with the number of blocks we have already given right at the
beginning, which is 1024. This is the running counter. When the two are equal, then

we stop and close the file.

(Refer Slide Time: 13:53)

assign stopproc = ((ecobent_reg == "NUNM_BLRS-1) && (eob ==
b7 b b

alwars a (posedge clk)
begin
iRdceg valid == 1'bl)
begin
fistopproc == |"bi) Means, the process is not stopped.

Stdisplastfpl,"“h" dctq) ; DO TQ coeffichent ks written
into the detq output file
everstime the derg s valid

Don't write into derg.ext file when all the coefficients are

already written

The next thing is that we need a signal called stopproc in order to stop the entire thing
after one frame is already completed — DCTQ value is computed and stored in dctq.txt
file. This expression does that precisely. The running counter is examined for the
number of blocks and we see that end of block is also 1. Only then, we take this
action. If that is not met, it means that DCTQ processing is still going on. Only then,
we write into the output file, which is dctq.txt. If it is 1, we will not write here, which

means that stopproc will go right at the end of all the blocks being processed.

19

(Refer Slide Time: 14:42)

always a (posedge oIk or negedge reset_n)
begin

if{reset_n==1"MI)
cob <= |"ha;
clse ifladdr == 6"'d63)
cob <= I'bl;
else
coh <= 'hix

end

asslgn eobent_nest = cobent_reg = 1

assign eobent_meat = ¢obent_reg = 1:

ulways a (posedge clk or negedge reset_n)
begin

iflreset_n==1"M)

In the next step, we have to use end of block. This is generated by just examining addr
= 63. This is the running address of the DCT coefficient; 63 means that it has just now
processed all the 64 coefficients and so we set it to 1, otherwise, we set it to 0. That is

how we count this in the next using advance increment for the end of block counter,

which we process here.

20

(Refer Slide Time: 15:12)

begin
eobent_reg <=0
end
else iffeob == 1'b1)
begin
cobent_reg <= cobent_nest ;

end

end

endmodule

Whenever this end of block is 1, only then we increment — that is how it is taken care

of. This completes the test module.

(Refer Slide Time: 15:25)

Vertlog ssntax check successful!
Options changed - recompiling
Selecting top kevel module detg

. Performance Summary

We have the Synplify results for the DCTQ processor here.

21

(Refer Slide Time: 15:29)

N orst sdack in desdgn: 9.829

Requested Estimared Requested Estimated

Clock
Starting Frequency Frequency Period Period

oIk S00NMH: S3INMHz 2000 10.1%1
pei_clk £0.0 MHz 1OLIMEHz 20000 95%

Resource Usage Report for detg

Mapping to part; xevfiiiehg 2408
Cell usage:

VK 21 uses

GND 23 ves

You will notice that it operates at about 100 Megahertz here. This is the very same
device we have used for RAM, ROM, multipliers, adders, etc. earlier.

(Refer Slide Time: 15:39)

GN\D 23 uses
MUNCY L 1616 uses
\NORCY 1706 uses

22

It lists all the primitives that it has consumed. Here too.

FDE 1317 uses

FDS 38 uses
FDRS 26 uses

'O primitives:
IBLF "9 uses
OBL} 17 uses

BUEGP 2 uses

SRL primitives:
SRL16 144 uses

(Refer Slide Time: 15:48)

It has taken 16 by 1 RAMSs, 128 in number and it has taken 3728, which is roughly 25
percent of 600,000 gate capacity FPGA. In Xilinx, we will have a little more

optimization here, maybe 3200. This may remain the same.

23

1O Register bits 11
Register bits not including 1'Os;: 6679 (48%)

RAMRONM usage summary
Single Port Rams (RAMIGNIS): 128

Global Clock Buffers: 2 of 4 (20%)
Mapping Summnary:
Toral LT Ts:3%28026%)

Mapper successful!

(Refer Slide Time: 16:12)

Toral LU Ts: 3728 26%)

Mapper successful!

"D USER RAMV ERILOG_LATEST DVESI_DES_VERILOG

detg_igidet rey_Ddergedf™

Using rarget part “v60iehg 408"
Design Summary:

The input for Xilinx is dctq.edf, which we generated from Synplify. It has mapped the

same device.

(Refer Slide Time: 16:25)

Number of errors: 0

Number of warnings: 0

Number of Slices: 4410 0utof 6912 63°%

Number of Slices containing

unrelated logic Doutof 4410 0o

Number of Slice Flip Flops: 6,677 ourof 13824 8%,

Total Number 4 inpur LU Ts: 3676 out of 13,824 26°.
Number used as L1 Ts 324
Number used as a route-thru: 15
Number used as 1661 RAMs: 128
Number used as Shift registers: 144

Number of bonded 10Bs: Youtof 158 o0%
10B Flip Flops: 11

24

Number used as 1651 RAMs:

Number used as Shift registers:
Number of bonded 10Bs: 9outof 158 60°%

10B Flip Flops: 11
Number of GCLRs: 2outof 4 2%
Number of GCLKIOBs: Joutof 4 20°%

Total equivalent gate count for design: 119,451
Additional JTAG gate count for [OBs: 4,704

Mapping completed.
liming summary:

It lists the number of slices, etc. Notice that it has optimized the number of LUTs
from 3700 to 3200. The number of gates count for this particular DCTQ design is
around 124,000 gates. We will see the waveform so that we can verify whether it has

functioned correctly or not.

(Refer Slide Time: 16:47)

e I oy » woe Tkt Formst 'Wdoms

SHG XDB QR Y QQQOEE

T R

25

dong_tedt heoet_n
A tes/ et
doag teat/d
Son_Teot/ B _v ohd
S et s
'dong_tedt be
Goh et hokd
'dong_test ready
g test/dceg

.xr\t-.,- g vl

g el heady

G]

Gong_lest/ Aok vald

deng tesl/deag) fdeag conbal fomt!
'GohQ_teat/dcaq ! Adoag_condal foned
Gehq test/deag) /g conbalt

'S test/daagl /deag corda
'dong_test/dcagl /dceg_conbal

'Gen_ et/ dcag! free

The different signals are listed here. There are over 100 signals. It is physically
impossible for us to take all the signals. We will examine the vital signals here. For
example, DCTQ is here and its validity is here. Notice that no DCTQ comes here.
These are all different counters we have used. We will also examine one rnw signal.
In the first thing, di gets the dual RAM input — gets the first block of data. This is

din_valid.

26

(Refer Slide Time: 17:20)

You can see this counter running here — 0, 1, 2, 3 and data is input precisely at that
point. din_valid is also high, 0 through 7, which means 8 such writes are possible and
each write will be a total of eight bytes; you can see 16 digits of hex decimal. Then,
din is withdrawn and only after a while, it will be written here. This signal is the ready
signal that you have at the bottom. It is normally ready and when the first data is
written, it will temporarily be withdrawn and once again, asserted when the counter is

1, which we have already seen in the design.

(Refer Slide Time: 18:05)

27

28

v e e v vwew
ST
PR S I

s B

Just remember one aspect here. | think we are starting here, the start pulse is here.
That is the third waveform and it is happening right at this point of time. Although it
IS happening at this point of time, it will be recognized only at the positive edge. It has
missed the clock marginally and so, this edge will be noticed only here. Once it is
noticed, this start is converted into another start reg, which we have seen in the
design. That will come only one more clock cycle here. Therefore, only at this point
of time where this is 0 here is the actual start happening. Corresponding to this 0, you
can see this is also 0 here. This is nothing other than cntl.

These are the different counters we had used for keeping track of the pipeline. Let us
just remember when this 0 starts. That corresponds to say 185 nanoseconds here, right
at this point. Simultaneously at the same point, rnw also switches control from 1 to 0,
so that another RAM can be written here. cntl is 0 and starting to count implies that
the first block of DCTQ is going to be processed right from here. This is because the
start pulse takes effect only here. This happens to be 185 nanoseconds, which we have

noted down. Let us go onto the second one.

(Refer Slide Time: 19:44)

AIL WULDO_CB
a0y teet/ch
Scag Yect vevet_n
g tect/ iyr

Sy teet/S

doag tet/dr_valkd

B et e

Sy tect De

Soag oot howd

Sy tertveady

You can see that din is not applied right here, because it is not yet time. What is
happening here is that cntl is still running and you can see that it has just crossed 10,
11, etc. We have seen in the DCT controller that precisely when counter is 15, only
then cnt2 must stop. Likewise, cnt3 will stop only for 20. Although it appears to be 21

here, it is 20 and we have enabled the counter. The actual counter itself will take place

29

only one clock later on. That is why it is deferred here. In fact, you can see right here
that the 0 must coincide with 20. That is the implication. We have precisely the same
thing earlier for 15; you can see 15 and 15 start here. | think | have to examine that. |

do not clearly remember what value it is.

(Refer Slide Time: 20:52)

RS i

Similarly, we have seen that for the next counter 0 is 20. These are all the pipelines. If
you make a single mistake, even one clock cycle this way or that way, you will not
get proper output and everything will be in total disarray. This is what the waveform
says. We will straightaway go to DCTQ and the counter here; further counting has
taken place here. Now, at this stage, the last counter has gone — it is cnt4 here and it is

happening at 35. You must be remembering 20, 35 was okay. Then, it starts counting.

30

(Refer Slide Time: 21:41)

Similarly, for DCTQ, address will also be given by the last counter; that will take
place only at 44 or so. You can see 44 right at this point of time. Now, you notice that
this is the DCTQ. The very first DCTQ block has come only after the 45 clock cycles
right from the start. At the start, it was 185 nanoseconds. Now, let us see how much
time this is occupying here. This one is 635 nanoseconds. If you take the difference,
you get precisely 450 nanoseconds, which means 45 clock cycles. This is because our
time period of 100 Megahertz is 10 nanoseconds. Precisely after the latency of 45
clock cycles, you have got the first output. This is the DC coefficient and the others
are all AC coefficients. They will be 64 in number. If you go through that, we will go

into the other waveforms.

31

(Refer Slide Time: 22:38)

b B R

You can see that it has completed the very first block data writing. cntl is for the di
input for the dual RAM and it has completed. Since it has completed, rnw is once
again automatically switching and so, not a single clock cycle is wasted. It is a
continuous firing of the input image and so also the output. You can also see the

output here. This is not yet complete. We will see in the next waveform.

(Refer Slide Time: 23:15)

= e test/doig vakd

T - 'dong_tes/deeg) fdoag_cormal foni!_sep
‘donq heet/deag Adeig_conbal ontd_wg
Geng_hest/dcg! Aachg_conbal foned_reg
Gon teat/deag) acgcortal fored_sej
dong_teat/dong /deig_conbal /a3

A et/ Ag e

In the next waveform, you can see that this is the address for the coefficient. You can
see that the coefficient number is 63, which means that the 64th coefficient is just

processed. Immediately, without wasting any clock cycle, it starts processing the next

32

block. At this point of time, it is 1275 nanoseconds. The start of the block was at 635
nanoseconds. If you take the difference between these two, you will get precisely 640
nanoseconds and if you divide this by 10, you get 64 clock cycles. Our claim was that
every coefficient is created at every clock cycle. This is proved and it is continuing
here. That is what we want to see. It keeps going there. We have some more

waveforms.

(Refer Slide Time: 24:15)

s BB

This is towards the end of all the 1024 blocks being processed. That is the start. This
04b is now not shown in decimal, but in hex decimal just for a change, because the
output file derives only in hex decimal. You can see that AC coefficient is here. The
first AC coefficient is 8, the others are 0. As we mentioned before, DCTQ succeeds in
making most of them zeros — there will be only a few non-zero coefficients. The first
coefficient will always be a very high value. That is for DC coefficient. This is the last

but one block that is processed here.

33

(Refer Slide Time: 24:57)

o B3

Towards the end, it keeps going.

(Refer Slide Time: 25:02)

34

or mowe Bockmark Fomat Window
IDB QN =4 | QQQeE: | [}
iy estipo ch
ey test/ch
1A dertveset_n
doag teet/itat

A tert'S

Soag et/ S _vakd

oA deet/ e

30ag_Yest/Soaq_ v ekd
S0 dent/denq fdeaq_cormal) fert_reg
Aea et/ et /dorg_corelt foni2 peg |8
SohQ et/ dong? /deng_conmol /entd ey [0

oA tect/deagt ey cortoll Jortd _reg |9

dog_teat/dong! Aderg_cortroll /addy

This is the last waveform. Let us see towards the very end of the block. We have what
is called a stop processor processing after all the 1024 are done. Now you can see that
the last coefficient is 63, this address. You can see that not a single cycle is wasted
anywhere and you can verify it in a minute. You can see that stopproc goes high at
this point of time, indicating that all the 1024 blocks are processed. We started the
processing at 635 nanoseconds and now, we are ending the process at 655,995. If you
subtract the two, you will be getting 655,360 nanoseconds. Knock off that 0 and you
will get it in clock cycles — it has taken 65536 clock cycles for 1024 blocks. Each
block is 64 bytes. Therefore, it is 65,536, which you know as 64K. You see that the
entire image has been processed at exactly one pixel per clock cycle. This proves the

first statement we made at the time of explaining the algorithm.

35

(Refer Slide Time: 26:15)

We have completed the design of DCTQ. In a similar fashion, you may have to do
IQIDCT on your own, which is just the inverse of DCTQ. We need to verify whether
these DCTQ — IQIDCT cores are functioning properly. In order to do this, we will
have to resort to MATLAB coding, which we will cover. Before we start the
MATLAB coding, let us see what we need to do for verification. | will just read out.
Invoke MATLAB and run the following file for reading an image disk file, which is
in raster scan order. The disk file is lena.raw and you need to run this file in
MATLAB (after invoking MATLAB).

You have also to specify what the size is and that you want to process block by block;
8 indicates 8 by 8 block and lena is the file name. Execution of this file creates (it
takes about 10 minutes, depending upon the computer that you use) another disk
output file lena.txt, which is in block format. Now, it is converted into block format.
We have to change the raster scan into block format, because we want to simulate.

That is what we are doing here so that we can use it in ModelSim.

36

(Refer Slide Time: 27:27)

the navetorm & signals (sehect all) from Vi

II” commanc- The DCTQ output 15 ¢
b & materans

Unuie

The next step is to invoke ModelSim, compile the DCTQ test bench and also load.
You can use these commands instead of the menu, which we have seen before. Also,
invoke the waveform and signals (select all) from menu and the “run all” command.
DCTQ output is created as a disk file dctg.txt. It takes about five minutes. DCTQ has
produced the result and that will be in dctq.txt. This will be precisely what you have
seen as the waveform, say 158, etc., which you have seen — all that will be contained
in this. That will be in hexadecimal or rather binary, because we are dealing with the
hardware.

37

(Refer Slide Time: 28:11)

The next step is to invoke the IQIDCT. It is the inverse and it is left as an exercise for
you. | hope that you complete it and then you can run this. Once again, you do the
compilation as well as load the design and then invoke the signals and run the same.
When you do that, it will take dctg.txt that got in the previous step and do the inverse
operation and thus, reconstruct the picture. It will have igidct.txt as the output. Once
again, it takes so much time. This will be in the block order, because we have

converted into block earlier.

(Refer Slide Time: 28:52)

38

In order to see the image in the right perspective, we need to once again convert this
block order into raster scan order, which we do by invoking another MATLAB

program. It takes this, which was created in step three.

(Refer Slide Time: 29:04)

This is the command you have to run. This is the file you have to run in MATLAB.
igidct is the file. Execution of this creates another file called igidct.raw, which is in
raster scan order. This will automatically be done in raster scan order. When we see
the MATLAB code, we will understand this. The file for displaying this reconstructed
image as well as the original lena.raw image. We have got the reconstructed output as
a file and we have also succeeded in converting it into a raw file, which is raster scan
order. We need to show this, so that we can visually see the picture and compare. For
example, original picture is lena.raw and the reconstructed picture can be compared

visually. Then, you can make out whether the picture quality is good or not.

39

(Refer Slide Time: 29:55)

In order to have some ready reckoner, you also have a computation that is called psnr
— power signal noise ratio. It is conducted over the entire image from the reference
image (the original image) and the reconstructed image. For this also, you need to run
another MATLAB code called show_image for showing and psnr.m for computing
the PSNR codes. We have said before that we need to download the XnView
software. You can download it from this site. You can use XnView in order to convert
from one format to another — raw to TIF format and so on, which we will need for

running the MATLAB code.

(Refer Slide Time: 30:43)

%% This is the top module (read _mage.m) to read an image file
%o In raw format

function read _imaged filename.rom s cols, biksize) ©

%o Execute " read_image'lenn” 256,226.5) * for reading the
e Input image.

file_in = [flename, " raw'|: “o Specify the input image file
n raw format

40

%o Execute " read_imaget'bena’ 226,226.8) * for reading the
% Input image

file_in = [filename," . raw’j: *o Specifs the input image file
in raw format

file_out = [fHename.".ext'f: “o and ourput image file in e
format

fpl = fopendfile_in.'t"):
fp2 = fopen(file_out,"w");

Here are the MATLAB codes. This is the top module in order to read the image. Here,
we declare that as a function. We give the file name, number of rows, block size, etc.
An example is given here. We also have to declare the input file as a raw format and
output file as text format, because we need to get lena.txt here, which we will input
into ModelSim. That is what we are trying to do here. We have to declare it as read

and write after opening the file.

(Refer Slide Time: 31:17)

image = fscanfifpl."%ec’): %% Read the input file which is in
*u raster scan order.

blks = imagercad(image.rons.cols. blksize) : %o 1-D vector,

%o Call the image read function to organize It into blocks,
%e Refer imagercad.m file for details,

blkn = ||:

n=1:% No of pisels counter.

It is here that we actually read the input file, which is in raster scan order. After

reading, this image will be put into a 1-D vector.

41

(Refer Slide Time: 31:34)

blks = imagercad(image,rows,cols blksize) : %o 1-D vector,

%% Call the image read function to organize it into blocks,
%s Refer imagercad.m file for details,

blkn = [}

n=1:% No. of pixels counter.
for k= 1:1024, ®% 1024 blocks in an image frame.
fori= 18, ®+ Process one block along height next
for j= 18, ®% and along width first.

Then, call the image read function to organize it into blocks and see this for details.

We initialize a variable here. This is a pixel counter. They are all C-like structures.

(Refer Slide Time: 31:47)

R = (]
n=1:% No. of pixels counter
for K= 1:1024, “o 1024 blocks in an image frame,

for | = 18, *% Process one block along height nest

for j= 1§, “u and along width first.

onebli(i,f) = bksin) : *s Rearrange it as one block at a time.
n*n~+1:

You have a for loop here, start end point here for k, i and j. The innermost loop is this.
We have a raster scan order image that we are trying to convert into block. That is
what we are doing here, for which we need two dimensions, i and j. There are 8 by 8
pixels. Therefore, it is 1 to 8 and 1 to 8. Like this, we have 1024 blocks in an image.
That is what this variable k is for. We also increment the counter for the number of

pixels.

42

(Refer Slide Time: 32:23)

end
end

mens(oneblkA0.fp2) : o Call the function 1o write the block
*s into the output file
Yo 0" for writing rowswise or “1" for column-wise writing

%% fp2 bs the ourput image file In txr format
end

fchose("all'y ;

Then, we invoke another module, which will be explained later. Output oneblk that
we have got into a disk file for use in the next stage. Then, close all the files.

(Refer Slide Time: 32:38)

fohose("all'y ;

%o Function (imageread.m) to read the image frame block by
% block from top to bottom and, left to right.

%o This function is called by "read_image.m™ module.

function [x] = imageread(image. rows, cols size)
L | B

imageread is the function we had called earlier. That is what is declared here. Once
again, that is available as x here. We initialize here and convert all elements to 0.

43

(Refer Slide Time: 32:53)

for i =0 ; size*cols : rows*cols - size* cols ,

%o 0:(8*256):(256° 2568 2%6)
%6 Select succeeding block rows,

for j = i=1 : size : i+colssize+1, %o 1:8:249 - this covers all
“o blocks in a row,

%o | Is the starting element of a block == size = § for an 838
%o pixels block.

for K=0:1:size-1, % 0:1:" => Block processing
“s Row address within a block

Once again, we have for loops here. We already have one block of pixel. Like this,
there may be several blocks along the horizontal dimension of the image. We will call
that as a row block. It is a row for the block. It means that there are eight rows and so
8 into 256 pixels will be covered in one row block. You should understand that. How
many such rows there are vertically in the picture is governed by this i here. You can
start that from 0 and it advances as | mentioned in sets of 8 into 256. Then, the last
one is 256 into 256 — all the pixels minus this particular step, because that is the last

row that we need to process.

Then, within that row block, we need to identify which block we are processing. That
is done by this j variable. i is another, which starts from 1. Each block is 8 pixels in
width. So, it advances by 1, then 9, then 17 and so on. The very last block will be 249
and the end of that pixel will be 256 — 8 pixels there also.

44

(Refer Slide Time: 34:15)

for j=i=1:shee @ i=colsaize=1, "o 1:8:249 - this covers all
“w blocks in a row

"o | is the starting clement of a block == size = 8 for an Sx8
“o pixels block

for h=0:1:skze-1, "o 0:1:7 => Block processing
%o Row address within a block

form=0:1:slze-1,% 0:1:7 - codlumn address within a
Y% hl"\"u

= L image() = Kocols = m) | %o 1-D vector, appended.

%% (24972256~ Tw81256), for the last pixel as an example.

WA MO A PR UACSS L AL

“o skip 87256 pixels.

end
end
end
end

%o Function (men.m) to write Sx8 pixels image block as a hex
%o ascii string.

%% To be used by Modelsim for processing detg.

. function menu(bIkS.col.fo) :

We have one more loop for k and m. This is to process a particular block. This will be
done by 0 through 7 here. If you take one example, it will be clear. We write what we
have processed into a matrix x, which is a one-dimensional vector. If you take one
example, the very last in the row block, you remember that 249 was the last there —
that is for j and 7 here is the last one and m is also 7 for the last block. So column is
256. This is here. It precisely turns out to be 8 into 256. This implies that this is the
last pixel that we have processed and put here. This is in 1-D vector. That is what is

meant here.

45

(Refer Slide Time: 35:12)

“o Function (menum) 1o write 838 pixels image block as a hex

“% ascil string.

% To be used by Modelsim for processing detyg

function meny bk, col.fp) :

o colis "0 for nriting rowawise or ' 17 for column-wise writing.

for i = I8,
hexstr = || &

Next one is to write this block. What we have done before is we have got it arranged
it into a block. Then, we have to write it into the output file. That is what we do by
this file.

(Refer Slide Time: 35:23)

for j = 1:8,

Hicol »= 1)
num = bIRSGLD . %o Select column-wise wriring.

l'l\l’
mum = bIKS(L{): %6 Otherwise, select row-wise writing.

end

temp = dec2hexinumly % Character string - 2 digits

hexstr = [hexstr.temp] : *o A\ppend into the final 1-D output

In this case, just ignore this. We need to arrange the block in i, j form. This is the form
in which we have already input. We need one more counter here, j [35:37] 1, 8 and i
counter also and here (Refer Slide Time: 35:43). We have to process one block. That
is why it is given as 1 to 8 and blk is precisely the same thing. It is arranged as an 8 by
8 matrix and that is copied into a number here. That number will have to be converted

46

from decimal to hex, because what we get from the raw file is actually in decimal
format and so, we have to do that here. Every time we process one pixel, we append it
into another hex string 1-D vector here. Finally, write the same variable into the
output file. This is that output file corresponding to that lena.txt or whatever name we
have given. Every time you write, a new line must be taken into account. So, every
next line you have to write. What you have here is everything arranged in a single file,

pixel after pixel — arranged in that fashion. Write into the output file, each pixel in a
new line.

(Refer Slide Time: 36:59)

*ofclose(fp) :

*% This code (write_image.m) takes the reconstructed image
“s output (by Modelsim) and converts the block format into
%o raw format for display using "showim.m™ file.

That completes the writing into the file, block by block. After we have seen
verification in that step, this is the step for running the DCTQ. After that, you will run
the DCTQ, and then its inverse IQIDCT. Finally, that will also give you a
reconstructed picture. That will be in block format, which will have to be converted

into raster scan format. For that, you need this MATLAB code called write_image
file.

47

(Refer Slide Time: 37:27)

“s This code (write_image.m) takes the reconstructed image
“o output (hy Modelsim) and comverts the block format into
“s raw format for display using "showim.m” file,

function [image] = write_Image(ename.ronws.cols, blksize)

file_in = [filename.’.xt']
file_out = [flename.’ raw’) :

fpl = fopendfile_in.'r"):
fp2 = fopenifile_out,'w");

Blks = fscanfifpl. *ed'y

It takes the reconstructed image and converts the block format into raw format for
displaying using showim. This also we have seen before. We will first have a look at
this. These are all the usual: filename, whether it is text format or raw format, whether
it is read or write and this is the one we read from that file. fp1 is the first one here —
file_in. If it is lena.txt, that will be read here and put in this variable here in decimal
format. Note that it was in hex decimal — IQIDCT was still in binary or we can
actually say hex decimal. It was converted earlier, if you remember, in readimage.
Now, we have to do the conversion into decimal. This is a simple thing, a C-like

instruction there.

48

(Refer Slide Time: 38:24)

ineage = iragenwritedblks rons cols hlksize): *« Call function
s “imagenrite.m”.

fprintfi{fp.' * " dmage) : *o Store row-wise into the
%o ourput file,

folose"all'y

%o This function (imagen rite.m) returns a vector that can be
% directly written into an image file.
Yo This is similar 10 “imageread.m” ke,

R e B e e L 3 L

Here, we call this imagewrite once again, as we did in imageread earlier and finally,
output that result into the final output. You can treat it as a character string. This will

be row-wise into the raster scan order.

(Refer Slide Time: 38:41)

%o This function (imagewrite.m) returns a vector that can be
%6 directly written into an image file,

%% This is similar to "imagercad.m” file.

function [image] = imagenrite{ blks.rows colssize)

for i = 0 : size*cols : rows*cols - size*cols |
%o D8 256):(256* 256-8°256)

%o Select succeeding block rows,

This is the function that converts that block into raster scan order. This is a function
we are going to call. That was a higher level program, which we have just now seen,
which calls this one. Here, you will have this raster scan. It is the exact counterpart of
imageread, which we have seen before. We can quickly go through this. This is a

declaration. You remember this, 0, 8 into 256, the entire row block as | was saying.

49

We have now to write a block that is confined to... say it starts here, and then goes to
the second line, and so on. It will be a block like that. Now, what we have to do is
write the first line of the block row first, then go to the second row of the block, and
write alongside the first and repeat in the same fashion till you have exhausted all 256.
That is what we mean by raster scan. That is what we are doing here. That is the

pointer there for that.

(Refer Slide Time: 39:43)

for j = =1 : size : i=colssizes1 %6 | is the starting element of
“o a block
*o 1:8:249 - this covers all Mocks in a
Yo rom

for k=0:1:skee-] “s 1:1:7 <> Block processing
*s Row address within a block.

for ma= 0] :sizes] %6 0:1:% « column address within a
Te hlll\'k

image(= k*cols = m) = blks(n) *s 1-D vector, appended.

for K=10:1: size.] ®s 0:1:° <> Block processing
*s Row address within a block.

form=0:1:sizes] % 0:1:" -« column address within a
S h'"\k

image(j = K*cols = m) = blks(n): *s 1-D vector, appended.

n=n-l;
end
end
end
h end

As usual, we have some more variables, j and 0 for block processing. This is the block
within the row block processing. The only difference is that this was on the right hand

side at that time. Now, what we have is block-arranged image details. This is pixel

50

value. There will be as many data in 1-D vector as there are pixels, but arranged in a
block fashion and that is got here. Now, it is arranging, as we have seen before, into a
raster scan order. It goes right up to the very last 8 into 256 pixels. That shows that it
has converted correctly. Every pixel we advance and this is the pixel counter. These
are the corresponding end for the for loops.

(Refer Slide Time: 40:38)

%o This module (show image.m) displass both the original and
%o the reconstructed lmages.

“o Run psnr.m file for the PS\R computation.

function showim(file].file2)

Sofilel = lenaran’;
Yofilel = "igidctran’;

fpl = fopendfilel,'r"x
iml = fscanfifpl.'* o’k

n=L

This is the module for showing the image and that is the image. We have two files:
one is the raw format lena, which is the original and we now have igidct created by

writeimage here as a raw file.

(Refer Slide Time: 40:57)

SENCe = WpuLLTawn

fpl = fopenifilel.’r"):
iml = fscanfifpl.'® o’y

n =l
for i = 1:2%6,
for j = 1:2%6,

imagze(Lj) = uintS(doubletiml(n))): *o Converts into 8 bit
%% i'“fﬂf(\

n=n-+l:

51

Here, we have two loops for covering all the pixels. This corresponds to the horizontal
width of the image and this corresponds to the height of the image. All the image
pixels are covered here and we arrange it in two dimension here. iml is the actual
image read from that file. We have to convert it into double format first and then
make it into eight integers. This is the requirement for using the MATLAB command,

which we will cover later. So you have to manipulate the conversion.

(Refer Slide Time: 41:37)

image(ij) = ulntS(doubletimI(n))k *s Converts into & hit
v Integers.

end
end

fp2 = fopendfile2.’r' k.
im2 = fscanf(fp." * o'

Every pixel you process, you just increment that.

(Refer Slide Time: 41:43)

end
end

fp2 = fopenifile2.'r'):
im2 = fscanf{fpl.'* o'

n=1
for i = 1:2%6,
for j = 1:2%6,

recondi.j) = uintS(double(im2(n)))
n=n+l:

end

52

Finally, you open an output file here and im2 is that output file. This is for the second
one, reconstructed. What we are trying to see is show image. So far, we have
processed the original file. Now, we are going to process the reconstructed file. That
is exactly the same here. Once again, we take the double, then uint and then, put it as

a reconstruct matrix i, j. i, j varies from 1 to 256.

(Refer Slide Time: 42:15)

- Il‘- AUPTIR NS et N
im2 = fscanfifpl.'* o’

n=1
for i = 1:2%6,

for j = 1:2%6,

recondi.j) = uintS(double(im2(n))):
n=n+l:

end
end

figure(l):

. titlet" Original Image’x

figure(l):
title("Original Image'x

imshow(image, 226):

n plus 1 is to increment the pixel counter. With this, we have processed and got in
original and reconstructed matrices the actual original image and reconstructed image.
What we have to do is just display. For that, there is one command called imshow.

This is the format you have to use. This demands that uint double precision we have

53

used earlier. We have done that because of this requirement. It shows straightaway on

the screen, when you execute.

(Refer Slide Time: 42:45)

figure(2):

title(" Reconstructed Image'y
imshow(recon 256):

felose("all')y:

*s Compuration of image quality (PSNR)
%o psnr.m file

You can also give a title if you wish, here. That was for the original file. figure(2) is
for the reconstructed file here. You can compute the PSNR value, which is very

simple.

(Refer Slide Time: 42:58)

%e Compurtation of image qualits (PSNR)
% psnr.m file

chear

A = imread(.lenatif’ x %o Read the original image file.

v = imread(igidet.tif’ s %o Read the Verilog reconstructed
%% image file.

%o Change ig_idet to idet to read the Verilog

% DCT-IDCT ourour,

You need to use XnView and convert that raw file, which we got just now, into a TIF

file. Only then, you can execute this. There are two files here, for which we need to

54

compute. This is the reconstructed file, this is the original file, and we need to
compute the PSNR.

(Refer Slide Time: 43:19)

“o DCT-IDCT output,

orig= double(x): *s Comvert o double precision,
recon = double(s

[mun|=size(orighk *o Get the size of the image

penar = 10 Jogl (2557 2)" m* n) (sum(sumi(orig-recon). 2))))

e Compute PSAR
"o (orig-recon), => dot means element by element computation.

% For Lena image, \erilog deteidet PSNR = 389 dB, and
"o Verilog detg-igidet PSNR = 294 dB.
e Matlab detasiaidet PSNR = 29.9 dB and

We have two variables orig and recon and we use double precision here. m, n is the
size of the actual image. PSNR computation is governed by this expression, which
means 10 log 10 and then, on the numerator, you have 255 square multiplied by m
into n, which is nothing but the picture size (in this case, 256 by 256 for lena) and
divided by the numerator here, which is nothing other than pixel-wise intensity
between the original and reconstructed figure. For every pixel difference, you get rid
of the sign by squaring it and finally summing for all the pixels — that is the
denominator. If you do this, you get the PSNR value in dB (decibels).

55

(Refer Slide Time: 44:10)

[mun|=size(orig) *o Get the size of the image.

psnr = 10*logl (2257 2)*m* n) (sum(sum((orig-recon). “ 2))))

% Compute PS\NR
%6 (orig-recon). »> dot means element by element computation.

%% For Lena image. Verilog det-idet PSNR = 389dB, and
%e Verllog detg-igidet PSNR = 29.4 dB.

%o Matlab detg-igidet PSNR = 299 dB and

%o compression expressed as bits per pivel = 06514,

%o Compression effected in this case is 12.28,

Dot means element to element. It means that this is not the entire file. For example, if
you take a lena image, | have also done DCT as well as IDCT cores, which needs
change from DCTQ-IQIDCT, in which case you get a very high PSNR value. It is
38.9 dB. If you apply DCTQ-IQIDCT in Verilog for this lena image, | get a PSNR of
29.4, which is very close to MATLAB DCTQ-IQIDCT and serves as the reference
for checking this. This is not explained in the present course — it is left as an exercise
for you to evaluate DCTQ. It is merely manipulation of matrices. It is very easy for

you to do that.

Compression effected will also have to be incorporated in that. Unless you do the
VLC course, you cannot have that — that is covered in that course, from which you get
this compression ratio to be 12.28 for this particular image. Now, let us have a look at

the results for the image.

56

(Refer Slide Time: 45:25)

This is the original image. What you see here is the actual original image and from
MATLAB, after DCTQ-IQIDCT, you get this image. It may appear to be close. | do
not know how it appears on the TV monitor. Is there a difference between the two? I

am not sure. You can probably see some quality suffering here. This is DCTQ-
IQIDCT, which we report as 29.4 decibels.

57

(Refer Slide Time: 45:58)

This is Verilog-created DCT—IDCT. You see a very high decibel for this. It is as good
as the original. A good quality picture is supposed to be 30 dB and above; a bad
quality one is 25dB and below; you will get indistinguishable quality if it is 35 dB.
That is the thumb rule for finding out how the picture is, apart from the visual
findings. This is reconstructed by Verilog. This is actually DCTQ-IQIDCT applied
here. You can see that this is very close to the reference from MATLAB. Some say
this is better than that, but opinions are divided. The point is that you have a fairly
good image and you are able to process at a very high rate. That is what you have

here.

58

(Refer Slide Time: 47:01)

IMPLEMENTATION OF DCTQ

PERFORMANCE
MEGA SAMPLES SEC.)

Now, let us have a look at the implementations already done for DCTQ. ASIC has
also been done as also the FPGA, which we have seen to be 124,000 for DCTQ gates
count. If you extrapolate the area that is reported in ASIC design in 0.13 micron
technology, you have only 68,000 gates for the same design. The very same design
works on the ASIC platform on Synopsys Design Compiler. It works at 270
Megahertz, whereas Xilinx we have seen to be 102 Megahertz after Xilinx place and

route.

(Refer Slide Time: 47:36)

IMPLEMENTATIONS OF IQIDCT, DCT AND IDCT

AS K i i PERFORMANCE
FPOGA IATES MEGA SANMPLES SI

X

59

The same thing was done for the other course, for example, IQIDCT, DCT and IDCT.
The results are here. IQIDCT has 80,000, whereas FPGA has 114,000. The speed is
hit here. This governs the speed of the overall system, because at the decoder end, we
need IQIDCT. If it is motion picture processing, we need it even at the encoder stage.
DCTQ is processed at 102 Megahertz, but this is the slower of the two — 81. Let us
see for that. Similarly for DCT and IDCT.

(Refer Slide Time: 48:11)

¢ width and height respectively. and t

ts true) pectures, assumng all the three color &«
Y. Cb and Cr are processed concurrenth

v}

| RR— ree nimes the »n area than vy rnor Precentih
Jemands three tmes the Chip area than the tormer.

tull color processing 1s not covered by the MPEG standards

These are all the capabilities of IP cores that we have developed. For processing a
motion picture at 30 frames per second, each of the processors, DCTQ, VLC, VLD

IQIDCT need to execute one picture frame in 33.33 millisecond or less. Therefore, the

60

picture size is governed by this expression, which you can very easily derive. Here, f
is the frequency of operation in Megahertz. M and N are the width and height of the
picture, respectively. If it is true color processing, it is valid for both monochrome and
color (24 bits true) pictures, assuming all the three color components Y, Cb and Cr
are processed concurrently. If you process concurrently, you need three times the chip
area but you will get a very high speed. The latter case demands three times the chip
area than the former. Presently, full color processing is not covered by the MPEG

standards.

(Refer Slide Time: 49:04)

Maximum picture size that can be processed

In MPEG standard, what is covered is.... We have seen this before — four blocks for
Y luminance and two blocks for Cb and Cr. This is only six blocks instead of
processing for full color, wherein we need 4 into 3 times — this is just half that
requirement. You can process much higher. As a result, the picture that you can
process in this scheme will be governed by instead of 3 there, it is 4.5 here. So 3 to
4.5 is the difference between monochrome and this, because here it is six blocks, there

it is four blocks.

61

(Refer Slide Time: 49:49)

The maximum picture that you can process is tabulated here. If you take FPGA
implementation, | have taken 81 Megahertz as 80 Megahertz here for this case. ASIC
is 270 Megahertz and the maximum picture size that you can process is 1600 by 1600.
It is a very high resolution. Unfortunately, we do not have other hardware matching
this speed, in spite of low frequency for IQIDCT. In fact, | got 100 Megahertz a
couple of years back. | am not able to reason out why I got 80 — it actually went to

102. Anyway, | will take the worst case here.

If you take ASIC, it will be a huge resolution that you can process, of the order
mentioned here. If it is monochrome or full color, this is the case. If it is as per the
standard in this ratio 4, then one block, one block — six blocks instead of four blocks
for monochrome. Actually, the standard sizes come in this format: 1600 by 1200 and
1024 by 768, which is called XGA format and 800 by 600 is called SVGA format.
QCIF is 352 by 288. This completes the DCTQ design. Thank you.

62

63

(Refer Slide Time: 51:08)

i

Summary of Leéture 47

Verileg Code for DC S180
DETQ ContielliedCode (Contd®H)

Jlest Benchifioh DCTQ{S@@?@
ISy nplify Results s

'.‘ i){(qlmx le Route Results
Analysis of Waveformsiof DETQ

Desigii

64

Verification of
IQIDCT Ceres
Matlab Cedes ‘Or prE“:"»‘
and Postfprocess ingle
Results “Oreinalfand
. . ax :
Reconstpictediimagce Example

!mplenﬁeh «atﬂ@iﬁ Results of DETQL
IQIDET, D(.'.T.?ld IDCT Cares on
FPGA/ASIC

Capah ities ofdlPiCores

