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We will continue with the Verilog DCTQ controller design.  

(Refer Slide Time: 02:33) 

 

We stopped last time at the ready signal. The ready signal is turned on only if this 

condition is met. This condition is given here – as long as the start is asserted and we 

have the counter as 01 here. This implies that we have already processed DCTQ for 

the previous block. We have already started the current block just at the beginning. At 

this stage, we can allow this host to write data into the other RAM whose value has 

been already processed. That is what we are doing at this end only when this 

condition is satisfied. If this is not satisfied, ready will get this inversion of start_reg, 

for example, if it is 1, it will not make it ready. This means that there is no start signal. 
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On the other hand, if start is asserted and count value is something else, then also this 

will not be satisfied. Therefore, 1 will be inverted and it will continue to be low, for 

other [04:00] as well. 

(Refer Slide Time: 04:03) 

 

Here, we produce the dctq_valid signal. In order to have this, we need one more 

signal and we will see why. During reset, we reset both these signals.  

(Refer Slide Time: 04:20) 

 

If a hold is encountered, dctq_valid must be switched off because the DCTQ 

processing is held now and so, the valid signal must also be withdrawn. That is why 
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we do this. You remember that pipeline was 45 before DCTQ starts out. dctq_valid 

goes high only at this stage – because of this, it is going high and that is for cnt1 being 

equal to 44. At this stage, we also make this signal 1 for this purpose. For example, 

after this, it keeps on processing. At that point of time, let us say, the hold comes 

again. So, what will happen? DCTQ is forced to 0. 

(Refer Slide Time: 05:11) 

 

 

Once it is withdrawn, it will come to this stage. What will happen here? Earlier, dctq 

was 1, but because the hold has come, it has been forced to 0. How to retrieve this 

when hold is removed and continue from where we left? That is possible only if you 

make this once again 1 from 0. That is possible by copying these contents into 
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dctq_valid, which we do at this step. If nothing else, then we just preserve the 

contents.  

(Refer Slide Time: 05:47) 

 

The next signal is start reg, which we have been using before. For this, the condition 

is start = 1. Mind you, this is not start register or start next, but the actual start input 

itself. When the start input is applied, it will be sensed only when cnt1 is 0. Then 

only, it will assign 1 for this start_reg. That is this condition here. This will take place 

one clock cycle later. In the next case, suppose start is 0 and then counter is 62, 

implying that the DCTQ processing is nearing the end, what happens? At that point of 

time if start goes to 0, then what should happen?  
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(Refer Slide Time: 06:39) 

 

It must reset the start here. That is what it does.  

(Refer Slide Time: 06:47) 

 

This completes the controller module. We have to do the test bench. This is the 

DCTQ test file. We take a lena.txt as the input file name and final output will be 

dctq.txt from the same.  
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(Refer Slide Time: 07:05) 

 

As usual for the test bench, we run at 100 Megahertz. Therefore, this variable is made 

5 and another clock is also made 5. We define a variable called NUM_BLKS to 

indicate how many blocks there are in 256 by 256 pixels, each block being 64 pixels. 

From this, you can get this. This is the design module, which we include here.  

(Refer Slide Time: 07:30) 

 

Then, start the DCTQ test module here. reg denotes all the inputs that we need to 

declare here.  
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(Refer Slide Time: 07:40) 

 

 

Wire denotes the outputs. Notice that DCTQ, its validity, and address are all wire.  
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(Refer Slide Time: 07:52) 

 

We also need a counter for end of block and also a signal called stopproc to stop after 

1024 blocks are processed and so on – all these are used here. When a particular block 

has ended, that also should be known. When the test bench must start the whole 

DCTQ processing is governed by this signal. 

(Refer Slide Time: 08:14) 

 

If you want a different picture, we have to change the blocks. All the statements to be 

changed are listed here. In the test bench, we have a counter that keeps track of the 

number of blocks processed. DCTQ output file list is contained in fp1.  
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(Refer Slide Time: 08:33) 

 

First, we read a disk file and copy it into a memory array. We have seen this in 

external memory design earlier. We have a total of 8192 here, each being 64 bits. This 

much memory is required in order to have 1024 blocks of 256 by 256. This is related 

in terms of number of bits – for address, you need 13 bits, because it is nothing but 

8K. 

(Refer Slide Time: 09:05) 

 

That is what it says here. We now invoke the DCTQ design and list all the I/Os 

therein. 
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(Refer Slide Time: 09:15) 

 

 

Then, we start the initial block of the test bench. In the first step, we read lena.txt, 

which is the actual image file in a text form and put it in the memory that we have 

declared earlier as reg mem. That is what this command does – $readme hex format is 

the instruction for that. 
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(Refer Slide Time: 09:44) 

 

 

Then, we need to identify the output file, which we do here and also ask it to open 

that. This is the command for that. dctq.txt is the dctq output and is derived from 

lena.txt, which is the input. Here, we initialize all the inputs. These are all the signals 

that you are already familiar with and so, we will not go into the details. 
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(Refer Slide Time: 10:16) 

 

i is a counter that we have already set before. At this point of time, we apply the reset, 

so active low here for 20 nanoseconds, then withdraw and then give the start signal.  

(Refer Slide Time: 10:29) 
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Once you give the start signal, because we have invoked the DCT design already, it 

will start functioning. After 700,000 nanoseconds, the file will be closed and stopped, 

during which time you would have already processed one frame of image and got it in 

dctq.txt as output file. This is the statement for inverting the clock so that the clock 

can run. This is for both the clocks. 

(Refer Slide Time: 10:56) 
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We now have an always block to take further decisions and process block after block. 

We will see how it is done. We need to take action only if start is 1, which we have 

already made 1 there.  

(Refer Slide Time: 11:11) 
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At the positive edge of the PCI clock, we have to read the image block and input it 

into the actual design. Before we do that, we make sure that all the blocks are not 

already processed. That is why i checks for not equal to 0. Since i was initialized to 

1024, this will be decremented block after block and checked. At the positive edge of 

the clock, we make data in valid, because we are going to input the very first block 

there, which can be got from the memory that we have already stored using 

readmemh – we have already stored the disk file into the actual memory. From that, 

we start reading right from the first location, which is 0 here, and input to the dual 

RAM. This is nothing but DCTQ design core. Every time we do this, we increment 

the address, so that we go to the next location and keep on writing row-wise in a 

block. You need seven more times in order to complete one block, because there are 

eight such rows. That is what we do by repeat. This is the block that does precisely 

the same. This is all exactly the same. 

(Refer Slide Time: 12:37) 
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Next, we wait for ready to go high again, because the DCTQ core has started 

functioning and it is churning out the first DCTQ block. Once it is complete, it will 

assert ready. Till that time, we do not input. What we have done so far is we have 

merely input one block of image data into the dual RAM. Now, we have to start the 

DCTQ process. That can be done only by asserting the start signal here. We keep 

repeating this block after block. That is why we are decrementing from 1024, then it 

becomes 1023 and so on. Finally, it will become 1. When it becomes 0, it quits the 

always block, as we have seen before.  

(Refer Slide Time: 13:30) 
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In addition to this, we need a counter for counting the number of blocks processed and 

then compare it with the number of blocks we have already given right at the 

beginning, which is 1024. This is the running counter. When the two are equal, then 

we stop and close the file.  

(Refer Slide Time: 13:53) 

 

The next thing is that we need a signal called stopproc in order to stop the entire thing 

after one frame is already completed – DCTQ value is computed and stored in dctq.txt 

file. This expression does that precisely. The running counter is examined for the 

number of blocks and we see that end of block is also 1. Only then, we take this 

action. If that is not met, it means that DCTQ processing is still going on. Only then, 

we write into the output file, which is dctq.txt. If it is 1, we will not write here, which 

means that stopproc will go right at the end of all the blocks being processed.  
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(Refer Slide Time: 14:42) 

 

 

In the next step, we have to use end of block. This is generated by just examining addr 

= 63. This is the running address of the DCT coefficient; 63 means that it has just now 

processed all the 64 coefficients and so we set it to 1, otherwise, we set it to 0. That is 

how we count this in the next using advance increment for the end of block counter, 

which we process here. 
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(Refer Slide Time: 15:12) 

 

Whenever this end of block is 1, only then we increment – that is how it is taken care 

of. This completes the test module.  

(Refer Slide Time: 15:25) 

 

We have the Synplify results for the DCTQ processor here.  
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(Refer Slide Time: 15:29) 

 

You will notice that it operates at about 100 Megahertz here. This is the very same 

device we have used for RAM, ROM, multipliers, adders, etc. earlier.  

(Refer Slide Time: 15:39) 
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It lists all the primitives that it has consumed. Here too.  

(Refer Slide Time: 15:48) 

 

It has taken 16 by 1 RAMs, 128 in number and it has taken 3728, which is roughly 25 

percent of 600,000 gate capacity FPGA. In Xilinx, we will have a little more 

optimization here, maybe 3200. This may remain the same.  



24 

 

(Refer Slide Time: 16:12) 

 

The input for Xilinx is dctq.edf, which we generated from Synplify. It has mapped the 

same device.  

(Refer Slide Time: 16:25) 
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It lists the number of slices, etc. Notice that it has optimized the number of LUTs 

from 3700 to 3200. The number of gates count for this particular DCTQ design is 

around 124,000 gates. We will see the waveform so that we can verify whether it has 

functioned correctly or not. 

(Refer Slide Time: 16:47) 
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The different signals are listed here. There are over 100 signals. It is physically 

impossible for us to take all the signals. We will examine the vital signals here. For 

example, DCTQ is here and its validity is here. Notice that no DCTQ comes here. 

These are all different counters we have used. We will also examine one rnw signal. 

In the first thing, di gets the dual RAM input – gets the first block of data. This is 

din_valid.  
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(Refer Slide Time: 17:20) 

 

You can see this counter running here – 0, 1, 2, 3 and data is input precisely at that 

point. din_valid is also high, 0 through 7, which means 8 such writes are possible and 

each write will be a total of eight bytes; you can see 16 digits of hex decimal. Then, 

din is withdrawn and only after a while, it will be written here. This signal is the ready 

signal that you have at the bottom. It is normally ready and when the first data is 

written, it will temporarily be withdrawn and once again, asserted when the counter is 

1, which we have already seen in the design.  

(Refer Slide Time: 18:05) 
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Just remember one aspect here. I think we are starting here, the start pulse is here. 

That is the third waveform and it  is happening right at this point of time. Although it 

is happening at this point of time, it will be recognized only at the positive edge. It has 

missed the clock marginally and so, this edge will be noticed only here. Once it is 

noticed, this start is converted into another start reg, which we have seen in the 

design. That will come only one more clock cycle here. Therefore, only at this point 

of time where this is 0 here is the actual start happening. Corresponding to this 0, you 

can see this is also 0 here. This is nothing other than cnt1. 

These are the different counters we had used for keeping track of the pipeline. Let us 

just remember when this 0 starts. That corresponds to say 185 nanoseconds here, right 

at this point. Simultaneously at the same point, rnw also switches control from 1 to 0, 

so that another RAM can be written here. cnt1 is 0 and starting to count implies that 

the first block of DCTQ is going to be processed right from here. This is because the 

start pulse takes effect only here. This happens to be 185 nanoseconds, which we have 

noted down. Let us go onto the second one.  

(Refer Slide Time: 19:44) 

 

You can see that din is not applied right here, because it is not yet time. What is 

happening here is that cnt1 is still running and you can see that it has just crossed 10, 

11, etc. We have seen in the DCT controller that precisely when counter is 15, only 

then cnt2 must stop. Likewise, cnt3 will stop only for 20. Although it appears to be 21 

here, it is 20 and we have enabled the counter. The actual counter itself will take place 
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only one clock later on. That is why it is deferred here. In fact, you can see right here 

that the 0 must coincide with 20. That is the implication. We have precisely the same 

thing earlier for 15; you can see 15 and 15 start here. I think I have to examine that. I 

do not clearly remember what value it is.  

(Refer Slide Time: 20:52) 

 

Similarly, we have seen that for the next counter 0 is 20. These are all the pipelines. If 

you make a single mistake, even one clock cycle this way or that way, you will not 

get proper output and everything will be in total disarray. This is what the waveform 

says. We will straightaway go to DCTQ and the counter here; further counting has 

taken place here. Now, at this stage, the last counter has gone – it is cnt4 here and it is 

happening at 35. You must be remembering 20, 35 was okay. Then, it starts counting.  
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(Refer Slide Time: 21:41) 

 

 

Similarly, for DCTQ, address will also be given by the last counter; that will take 

place only at 44 or so. You can see 44 right at this point of time. Now, you notice that 

this is the DCTQ. The very first DCTQ block has come only after the 45 clock cycles 

right from the start. At the start, it was 185 nanoseconds. Now, let us see how much 

time this is occupying here. This one is 635 nanoseconds. If you take the difference, 

you get precisely 450 nanoseconds, which means 45 clock cycles. This is because our 

time period of 100 Megahertz is 10 nanoseconds. Precisely after the latency of 45 

clock cycles, you have got the first output. This is the DC coefficient and the others 

are all AC coefficients. They will be 64 in number. If you go through that, we will go 

into the other waveforms.  
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(Refer Slide Time: 22:38) 

 

You can see that it has completed the very first block data writing. cnt1 is for the di 

input for the dual RAM and it has completed. Since it has completed, rnw is once 

again automatically switching and so, not a single clock cycle is wasted. It is a 

continuous firing of the input image and so also the output. You can also see the 

output here. This is not yet complete. We will see in the next waveform.  

(Refer Slide Time: 23:15) 

 

In the next waveform, you can see that this is the address for the coefficient. You can 

see that the coefficient number is 63, which means that the 64th coefficient is just 

processed. Immediately, without wasting any clock cycle, it starts processing the next 
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block. At this point of time, it is 1275 nanoseconds. The start of the block was at 635 

nanoseconds. If you take the difference between these two, you will get precisely 640 

nanoseconds and if you divide this by 10, you get 64 clock cycles. Our claim was that 

every coefficient is created at every clock cycle. This is proved and it is continuing 

here. That is what we want to see. It keeps going there. We have some more 

waveforms. 

(Refer Slide Time: 24:15) 

 

This is towards the end of all the 1024 blocks being processed. That is the start. This 

04b is now not shown in decimal, but in hex decimal just for a change, because the 

output file derives only in hex decimal. You can see that AC coefficient is here. The 

first AC coefficient is 8, the others are 0. As we mentioned before, DCTQ succeeds in 

making most of them zeros – there will be only a few non-zero coefficients. The first 

coefficient will always be a very high value. That is for DC coefficient. This is the last 

but one block that is processed here. 
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(Refer Slide Time: 24:57) 

 

Towards the end, it keeps going.  

(Refer Slide Time: 25:02) 
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This is the last waveform. Let us see towards the very end of the block. We have what 

is called a stop processor processing after all the 1024 are done. Now you can see that 

the last coefficient is 63, this address. You can see that not a single cycle is wasted 

anywhere and you can verify it in a minute. You can see that stopproc goes high at 

this point of time, indicating that all the 1024 blocks are processed. We started the 

processing at 635 nanoseconds and now, we are ending the process at 655,995. If you 

subtract the two, you will be getting 655,360 nanoseconds. Knock off that 0 and you 

will get it in clock cycles – it has taken 65536 clock cycles for 1024 blocks. Each 

block is 64 bytes. Therefore, it is 65,536, which you know as 64K. You see that the 

entire image has been processed at exactly one pixel per clock cycle. This proves the 

first statement we made at the time of explaining the algorithm. 
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(Refer Slide Time: 26:15) 

 

We have completed the design of DCTQ. In a similar fashion, you may have to do 

IQIDCT on your own, which is just the inverse of DCTQ. We need to verify whether 

these DCTQ – IQIDCT cores are functioning properly. In order to do this, we will 

have to resort to MATLAB coding, which we will cover. Before we start the 

MATLAB coding, let us see what we need to do for verification. I will just read out. 

Invoke MATLAB and run the following file for reading an image disk file, which is 

in raster scan order. The disk file is lena.raw and you need to run this file in 

MATLAB (after invoking MATLAB).  

You have also to specify what the size is and that you want to process block by block; 

8 indicates 8 by 8 block and lena is the file name. Execution of this file creates (it 

takes about 10 minutes, depending upon the computer that you use) another disk 

output file lena.txt, which is in block format. Now, it is converted into block format. 

We have to change the raster scan into block format, because we want to simulate. 

That is what we are doing here so that we can use it in ModelSim. 
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(Refer Slide Time: 27:27) 

 

 

The next step is to invoke ModelSim, compile the DCTQ test bench and also load. 

You can use these commands instead of the menu, which we have seen before. Also, 

invoke the waveform and signals (select all) from menu and the “run all” command. 

DCTQ output is created as a disk file dctq.txt. It takes about five minutes. DCTQ has 

produced the result and that will be in dctq.txt. This will be precisely what you have 

seen as the waveform, say 158, etc., which you have seen – all that will be contained 

in this. That will be in hexadecimal or rather binary, because we are dealing with the 

hardware. 
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(Refer Slide Time: 28:11) 

 

The next step is to invoke the IQIDCT. It is the inverse and it is left as an exercise for 

you. I hope that you complete it and then you can run this. Once again, you do the 

compilation as well as load the design and then invoke the signals and run the same. 

When you do that, it will take dctq.txt that got in the previous step and do the inverse 

operation and thus, reconstruct the picture. It will have iqidct.txt as the output. Once 

again, it takes so much time. This will be in the block order, because we have 

converted into block earlier.  

(Refer Slide Time: 28:52) 
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In order to see the image in the right perspective, we need to once again convert this 

block order into raster scan order, which we do by invoking another MATLAB 

program. It takes this, which was created in step three.  

(Refer Slide Time: 29:04) 

 

This is the command you have to run. This is the file you have to run in MATLAB. 

iqidct is the file. Execution of this creates another file called iqidct.raw, which is in 

raster scan order. This will automatically be done in raster scan order. When we see 

the MATLAB code, we will understand this. The file for displaying this reconstructed 

image as well as the original lena.raw image. We have got the reconstructed output as 

a file and we have also succeeded in converting it into a raw file, which is raster scan 

order. We need to show this, so that we can visually see the picture and compare. For 

example, original picture is lena.raw and the reconstructed picture can be compared 

visually. Then, you can make out whether the picture quality is good or not.  
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(Refer Slide Time: 29:55) 

 

In order to have some ready reckoner, you also have a computation that is called psnr 

– power signal noise ratio. It is conducted over the entire image from the reference 

image (the original image) and the reconstructed image. For this also, you need to run 

another MATLAB code called show_image for showing and psnr.m for computing 

the PSNR codes. We have said before that we need to download the XnView 

software. You can download it from this site. You can use XnView in order to convert 

from one format to another – raw to TIF format and so on, which we will need for 

running the MATLAB code.  

(Refer Slide Time: 30:43) 
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Here are the MATLAB codes. This is the top module in order to read the image. Here, 

we declare that as a function. We give the file name, number of rows, block size, etc. 

An example is given here. We also have to declare the input file as a raw format and 

output file as text format, because we need to get lena.txt here, which we will input 

into ModelSim. That is what we are trying to do here. We have to declare it as read 

and write after opening the file.  

(Refer Slide Time: 31:17) 

 

It is here that we actually read the input file, which is in raster scan order. After 

reading, this image will be put into a 1-D vector.  
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(Refer Slide Time: 31:34) 

 

Then, call the image read function to organize it into blocks and see this for details. 

We initialize a variable here. This is a pixel counter. They are all C-like structures.  

(Refer Slide Time: 31:47) 

 

You have a for loop here, start end point here for k, i and j. The innermost loop is this. 

We have a raster scan order image that we are trying to convert into block. That is 

what we are doing here, for which we need two dimensions, i and j. There are 8 by 8 

pixels. Therefore, it is 1 to 8 and 1 to 8. Like this, we have 1024 blocks in an image. 

That is what this variable k is for. We also increment the counter for the number of 

pixels.  
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(Refer Slide Time: 32:23) 

 

Then, we invoke another module, which will be explained later. Output oneblk that 

we have got into a disk file for use in the next stage. Then, close all the files.  

(Refer Slide Time: 32:38) 

 

imageread is the function we had called earlier. That is what is declared here. Once 

again, that is available as x here. We initialize here and convert all elements to 0.  
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(Refer Slide Time: 32:53) 

 

Once again, we have for loops here. We already have one block of pixel. Like this, 

there may be several blocks along the horizontal dimension of the image. We will call 

that as a row block. It is a row for the block. It means that there are eight rows and so 

8 into 256 pixels will be covered in one row block. You should understand that. How 

many such rows there are vertically in the picture is governed by this i here. You can 

start that from 0 and it advances as I mentioned in sets of 8 into 256. Then, the last 

one is 256 into 256 – all the pixels minus this particular step, because that is the last 

row that we need to process.  

Then, within that row block, we need to identify which block we are processing. That 

is done by this j variable. i is another, which starts from 1. Each block is 8 pixels in 

width. So, it advances by 1, then 9, then 17 and so on. The very last block will be 249 

and the end of that pixel will be 256 – 8 pixels there also.  
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(Refer Slide Time: 34:15) 

 

 

We have one more loop for k and m. This is to process a particular block. This will be 

done by 0 through 7 here. If you take one example, it will be clear. We write what we 

have processed into a matrix x, which is a one-dimensional vector. If you take one 

example, the very last in the row block, you remember that 249 was the last there – 

that is for j and 7 here is the last one and m is also 7 for the last block. So column is 

256. This is here. It precisely turns out to be 8 into 256. This implies that this is the 

last pixel that we have processed and put here. This is in 1-D vector. That is what is 

meant here. 
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(Refer Slide Time: 35:12) 

 

Next one is to write this block. What we have done before is we have got it arranged 

it into a block. Then, we have to write it into the output file. That is what we do by 

this file.  

(Refer Slide Time: 35:23) 

 

In this case, just ignore this. We need to arrange the block in i, j form. This is the form 

in which we have already input. We need one more counter here, j [35:37] 1, 8 and i 

counter also and here (Refer Slide Time: 35:43). We have to process one block. That 

is why it is given as 1 to 8 and blk is precisely the same thing. It is arranged as an 8 by 

8 matrix and that is copied into a number here. That number will have to be converted 
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from decimal to hex, because what we get from the raw file is actually in decimal 

format and so, we have to do that here. Every time we process one pixel, we append it 

into another hex string 1-D vector here. Finally, write the same variable into the 

output file. This is that output file corresponding to that lena.txt or whatever name we 

have given. Every time you write, a new line must be taken into account. So, every 

next line you have to write. What you have here is everything arranged in a single file, 

pixel after pixel – arranged in that fashion. Write into the output file, each pixel in a 

new line. 

(Refer Slide Time: 36:59) 

 

That completes the writing into the file, block by block. After we have seen 

verification in that step, this is the step for running the DCTQ. After that, you will run 

the DCTQ, and then its inverse IQIDCT. Finally, that will also give you a 

reconstructed picture. That will be in block format, which will have to be converted 

into raster scan format. For that, you need this MATLAB code called write_image 

file.  
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 (Refer Slide Time: 37:27) 

 

It takes the reconstructed image and converts the block format into raw format for 

displaying using showim. This also we have seen before. We will first have a look at 

this. These are all the usual: filename, whether it is text format or raw format, whether 

it is read or write and this is the one we read from that file. fp1 is the first one here –

file_in. If it is lena.txt, that will be read here and put in this variable here in decimal 

format. Note that it was in hex decimal – IQIDCT was still in binary or we can 

actually say hex decimal. It was converted earlier, if you remember, in readimage. 

Now, we have to do the conversion into decimal. This is a simple thing, a C-like 

instruction there.  
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(Refer Slide Time: 38:24) 

 

Here, we call this imagewrite once again, as we did in imageread earlier and finally, 

output that result into the final output. You can treat it as a character string. This will 

be row-wise into the raster scan order.  

(Refer Slide Time: 38:41) 

 

This is the function that converts that block into raster scan order. This is a function 

we are going to call. That was a higher level program, which we have just now seen, 

which calls this one. Here, you will have this raster scan. It is the exact counterpart of 

imageread, which we have seen before. We can quickly go through this. This is a 

declaration. You remember this, 0, 8 into 256, the entire row block as I was saying. 
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We have now to write a block that is confined to… say it starts here, and then goes to 

the second line, and so on. It will be a block like that. Now, what we have to do is 

write the first line of the block row first, then go to the second row of the block, and 

write alongside the first and repeat in the same fashion till you have exhausted all 256. 

That is what we mean by raster scan. That is what we are doing here. That is the 

pointer there for that. 

(Refer Slide Time: 39:43) 

 

 

As usual, we have some more variables, j and 0 for block processing. This is the block 

within the row block processing. The only difference is that this was on the right hand 

side at that time. Now, what we have is block-arranged image details. This is pixel 
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value. There will be as many data in 1-D vector as there are pixels, but arranged in a 

block fashion and that is got here. Now, it is arranging, as we have seen before, into a 

raster scan order. It goes right up to the very last 8 into 256 pixels. That shows that it 

has converted correctly. Every pixel we advance and this is the pixel counter. These 

are the corresponding end for the for loops.  

(Refer Slide Time: 40:38) 

 

This is the module for showing the image and that is the image. We have two files: 

one is the raw format lena, which is the original and we now have iqidct created by 

writeimage here as a raw file.  

(Refer Slide Time: 40:57) 
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Here, we have two loops for covering all the pixels. This corresponds to the horizontal 

width of the image and this corresponds to the height of the image. All the image 

pixels are covered here and we arrange it in two dimension here. im1 is the actual 

image read from that file. We have to convert it into double format first and then 

make it into eight integers. This is the requirement for using the MATLAB command, 

which we will cover later. So you have to manipulate the conversion. 

(Refer Slide Time: 41:37) 

 

Every pixel you process, you just increment that.  

(Refer Slide Time: 41:43) 
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Finally, you open an output file here and im2 is that output file. This is for the second 

one, reconstructed. What we are trying to see is show image. So far, we have 

processed the original file. Now, we are going to process the reconstructed file. That 

is exactly the same here. Once again, we take the double, then uint and then, put it as 

a reconstruct matrix i, j. i, j varies from 1 to 256. 

(Refer Slide Time: 42:15) 

 

 

n plus 1 is to increment the pixel counter. With this, we have processed and got in 

original and reconstructed matrices the actual original image and reconstructed image. 

What we have to do is just display. For that, there is one command called imshow. 

This is the format you have to use. This demands that uint double precision we have 
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used earlier. We have done that because of this requirement. It shows straightaway on 

the screen, when you execute. 

(Refer Slide Time: 42:45) 

 

You can also give a title if you wish, here. That was for the original file. figure(2) is 

for the reconstructed file here. You can compute the PSNR value, which is very 

simple.  

(Refer Slide Time: 42:58) 

 

You need to use XnView and convert that raw file, which we got just now, into a TIF 

file. Only then, you can execute this. There are two files here, for which we need to 
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compute. This is the reconstructed file, this is the original file, and we need to 

compute the PSNR. 

(Refer Slide Time: 43:19) 

 

We have two variables orig and recon and we use double precision here. m, n is the 

size of the actual image. PSNR computation is governed by this expression, which 

means 10 log 10 and then, on the numerator, you have 255 square multiplied by m 

into n, which is nothing but the picture size (in this case, 256 by 256 for lena) and 

divided by the numerator here, which is nothing other than pixel-wise intensity 

between the original and reconstructed figure. For every pixel difference, you get rid 

of the sign by squaring it and finally summing for all the pixels – that is the 

denominator. If you do this, you get the PSNR value in dB (decibels). 
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(Refer Slide Time: 44:10) 

 

Dot means element to element. It means that this is not the entire file. For example, if 

you take a lena image, I have also done DCT as well as IDCT cores, which needs 

change from DCTQ–IQIDCT, in which case you get a very high PSNR value. It is 

38.9 dB. If you apply DCTQ-IQIDCT in Verilog for this lena image, I get a PSNR of 

29.4, which is very close to MATLAB DCTQ–IQIDCT and serves as the reference 

for checking this. This is not explained in the present course – it is left as an exercise 

for you to evaluate DCTQ. It is merely manipulation of matrices. It is very easy for 

you to do that. 

Compression effected will also have to be incorporated in that. Unless you do the 

VLC course, you cannot have that – that is covered in that course, from which you get 

this compression ratio to be 12.28 for this particular image. Now, let us have a look at 

the results for the image.  
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(Refer Slide Time: 45:25) 

 

 

This is the original image. What you see here is the actual original image and from 

MATLAB, after DCTQ–IQIDCT, you get this image. It may appear to be close. I do 

not know how it appears on the TV monitor. Is there a difference between the two? I 

am not sure. You can probably see some quality suffering here. This is DCTQ–

IQIDCT, which we report as 29.4 decibels.  
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(Refer Slide Time: 45:58) 

 

This is Verilog-created DCT–IDCT. You see a very high decibel for this. It is as good 

as the original. A good quality picture is supposed to be 30 dB and above; a bad 

quality one is 25dB and below; you will get indistinguishable quality if it is 35 dB. 

That is the thumb rule for finding out how the picture is, apart from the visual 

findings. This is reconstructed by Verilog. This is actually DCTQ–IQIDCT applied 

here. You can see that this is very close to the reference from MATLAB. Some say 

this is better than that, but opinions are divided. The point is that you have a fairly 

good image and you are able to process at a very high rate. That is what you have 

here.  
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 (Refer Slide Time: 47:01) 

 

Now, let us have a look at the implementations already done for DCTQ. ASIC has 

also been done as also the FPGA, which we have seen to be 124,000 for DCTQ gates 

count. If you extrapolate the area that is reported in ASIC design in 0.13 micron 

technology, you have only 68,000 gates for the same design. The very same design 

works on the ASIC platform on Synopsys Design Compiler. It works at 270 

Megahertz, whereas Xilinx we have seen to be 102 Megahertz after Xilinx place and 

route. 

(Refer Slide Time: 47:36) 
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The same thing was done for the other course, for example, IQIDCT, DCT and IDCT. 

The results are here. IQIDCT has 80,000, whereas FPGA has 114,000. The speed is 

hit here. This governs the speed of the overall system, because at the decoder end, we 

need IQIDCT. If it is motion picture processing, we need it even at the encoder stage. 

DCTQ is processed at 102 Megahertz, but this is the slower of the two – 81. Let us 

see for that. Similarly for DCT and IDCT. 

(Refer Slide Time: 48:11) 

 

 

These are all the capabilities of IP cores that we have developed. For processing a 

motion picture at 30 frames per second, each of the processors, DCTQ, VLC, VLD 

IQIDCT need to execute one picture frame in 33.33 millisecond or less. Therefore, the 
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picture size is governed by this expression, which you can very easily derive. Here, f 

is the frequency of operation in Megahertz. M and N are the width and height of the 

picture, respectively. If it is true color processing, it is valid for both monochrome and 

color (24 bits true) pictures, assuming all the three color components  Y, Cb and Cr 

are processed concurrently. If you process concurrently, you need three times the chip 

area but you will get a very high speed. The latter case demands three times the chip 

area than the former. Presently, full color processing is not covered by the MPEG 

standards. 

(Refer Slide Time: 49:04) 

 

In MPEG standard, what is covered is…. We have seen this before – four blocks for 

Y luminance and two blocks for Cb and Cr. This is only six blocks instead of 

processing for full color, wherein we need 4 into 3 times – this is just half that 

requirement. You can process much higher. As a result, the picture that you can 

process in this scheme will be governed by instead of 3 there, it is 4.5 here. So 3 to 

4.5 is the difference between monochrome and this, because here it is six blocks, there 

it is four blocks.  
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(Refer Slide Time: 49:49) 

 

The maximum picture that you can process is tabulated here. If you take FPGA 

implementation, I have taken 81 Megahertz as 80 Megahertz here for this case. ASIC 

is 270 Megahertz and the maximum picture size that you can process is 1600 by 1600. 

It is a very high resolution. Unfortunately, we do not have other hardware matching 

this speed, in spite of low frequency for IQIDCT. In fact, I got 100 Megahertz a 

couple of years back. I am not able to reason out why I got 80 – it actually went to 

102. Anyway, I will take the worst case here.  

If you take ASIC, it will be a huge resolution that you can process, of the order 

mentioned here. If it is monochrome or full color, this is the case. If it is as per the 

standard in this ratio 4, then one block, one block – six blocks instead of four blocks 

for monochrome. Actually, the standard sizes come in this format: 1600 by 1200 and 

1024 by 768, which is called XGA format and 800 by 600 is called SVGA format. 

QCIF is 352 by 288. This completes the DCTQ design. Thank you. 
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