
 
1 

Digital VLSI System Design 

Dr. S. Ramachandran 

Department of Electrical Engineering 

Indian Institute of Technology, Madras 

Lecture No. 46 

System Design Examples (Continued) 

(Refer Slide Time: 01:46) 

 

 

We were looking into the design of DCTQ. We have covered a novel algorithm for 

implementation of the same with a view to speed up the throughput. We also 

considered the architecture earlier. Now, we are about to start the Verilog codes for 
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the same design. Before we start this design, let us have a look at the image, how it is 

going to be processed, what the resolutions are, what does color mean and so on.  

(Refer Slide Time: 02:44) 

 

What you see here is a very high resolution picture of a bird. You can see that the 

resolution is 1024 by 768 and it is true color. You may not be in a position to read 

here and I am reading out for your sake. It is written 24 here. This stands for true 

color. That means to say there are three color components in this. Depending upon the 

type of picture that you have, there are different formats. For example, bitmap pixel, 

which is what you see right now, with an extension of .bmp.  

There are other files called raw. What we have seen earlier as a gamma-corrected 

RGB will be available in a raw file. There are other files like JPEG, which are 

compressed files, whereas bmp and raw files are not compressed as such. We also 

have one more type called TIF file, which we will be requiring for MATLAB and 

other codes, which we will be describing later on in order that we may use it for 

generating these pictures in a form that can be an input to the simulator. You see that 

it is a very high resolution here. Even if I increase the zoom, you still see a very good 

picture. 
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(Refer Slide Time: 04:07) 

 

Similarly, we have a special software called XnView, the site of which is given 

towards the end of this lecture – you can download from there. Using this, you can 

have resize and they are all menu driven. You can resize and do cropping so that we 

can extract from the picture of 1024 by 768 pixels and we can get 256 by 256. That is 

what you will be seeing here.  

(Refer Slide Time: 04:43) 
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You can see that the picture is not that good and you can see some information being 

lost. This is because it is a 256 by 256 image, although it is continuing to be true color 

here.  

(Refer Slide Time: 05:03) 

 

If you zoom the first high-resolution picture, you will get all squares. Each of these 

squares is known as a pixel. A collection of 64 pixels or 8 by 8 pixels we take in order 

to process DCTQ and that is referred to as a block. A block consists of 8 by 8 pixels. 

If you examine each pixel very closely, you will see that one particular square has 

only one common intensity all through. This is because this is a pixel and if you zoom 

further, you cannot go deeper into this – deeper than a pixel, you cannot see anything. 

If it is a true color, this will be a 24 bits representation. For each of the three color 

components, you need 8 bits. The software can also help you in converting this into a 

monochrome image should you desire one. This is for 1024 high resolution into 768 

resolution. 
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Note that you cannot make out anything here, except perhaps the eye of the parrot. If 

you see in the second one, which is also a zoomed version, you can see the parrot here 

to some extent. Once again, you can see the pixelations here and there is a mark for 

the 8 by 8 pixel block. You can see a much wider area covered.  

(Refer Slide Time: 06:28) 

 

That is because it is for a lower resolution and the resolution is 256 by 256. Once 

again, it is true color. Now, we will continue with the Verilog design.  
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I will read this out. To start with, this is the top-level design module for the 

computation of DCTQ. The design file is dctq.v. DCTQ prepares the ground for 

effective compression of data, especially that from images, whether it is still or 

motion pictures. Motion pictures are also referred to as video sequence. 2D-DCT is a 

simple two-stage multiplication of three 8 by 8 matrices: C, X and CT, which you 

have already seen earlier. Input for this DCT is a block, which we have seen in the 

image just now. It is 8 by 8 pixels as mentioned before. 
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(Refer Slide Time: 07:16) 

 

DCT produces 64 coefficients. The first coefficient is known as DC coefficient, while 

the other 63 are known as AC coefficients. We have also seen this earlier.  

(Refer Slide Time: 07:29) 

 

Ming you, what we are doing is we are looking into the actual DCTQ design file, 

which has a .v extension. dctq.v is the actual design file. The need for putting all these 

as comments in this is it is a ready reckoner for a designer or anyone else who is 

verifying the design, so that he need not go and look into the massive document that 

we have covered earlier. That is why it says here ‘Please see the DCTQ document for 

details’ should you require more details.  
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The resulting DCT is divided by the corresponding quantization value stored in the 64 

byte ROM romq.v. addr serves as the address for the DCTQ coefficient. Address 

equal to 0 would correspond to DC coefficient, whereas all others are AC coefficients 

up to 63.  

(Refer Slide Time: 08:23) 

 

Earlier, if you remember, we have seen the bottom-up approach of the design. Here, 

we will see the reverse, that is, top-down approach of the design in the sense that in 

the earlier bottom-up approach, we started with the lowest module such as ram_rc and 

then, we went on to a higher level, which invoked this ram_rc and that higher level is 

dual RAM. Like that, we went on from the bottom to the top. Now, what we see is the 

top is the very design file. dctq.v is the top design file that we are seeing right now. 

This will merely invoke different modules or sub-modules down the hierarchy. What 

are included are precisely those modules.  

For example, ram_rc, dualram, the design of which we have covered already and we 

have covered also adder12s and 14sr was given as an assignment to you. What we are 

yet to see is this dctreg in order to store the partial products of a CX matrix 

computation, if you recollect our architecture shown before. We have also seen the 

design of the multiplier for 8u into 8s where u stands for unsigned, s for signed. As 

usual, we also gave assignments for two other multipliers. That is precisely what we 

shall use here. 
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We also covered the design of romc as well as CT. These are the C and CT matrices 

for the evaluation of DCT, which requires the multiplication of three matrices: C, X 

and CT. We also had a quantization table. It is actually the inverse of the quantization 

table and we have seen this earlier. We are yet to see the next one. This is the last 

module, which is called the controller. Any design is dependent upon how good a 

controller design is. It is always a good practice to have a separate module for the 

controller as we see here.  

(Refer Slide Time: 10:39) 

 

 

This is the top-level module for DCTQ. Before we go into the details, let us point out 

one fact. We know that FPGA and ASIC based designs are massively parallel and 
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highly pipelined, resulting in very fast implementations. This is in contrast to the 

conventional approach of using a Pentium or DSP, using either C language or 

assembly language, which are mainly sequential in nature. If you have a computation 

of the order of n cube or even more, n is 8 in this case of DCTQ evaluation, a huge 

number of computations are involved. Naturally, these sequential machines such as 

Pentium and DSPs will take quite a lot of time in order to process even a single frame. 

In order to get a real-time image, you may have to scale down the picture resolution 

may be to 352 by 288, which you write as a CD in MPEG-1 format. This course is 

probably going to be on such CDs. You will be seeing 352 by 288, which is called 

QCIF. Of 288, I am not sure – you can crosscheck in any text book. This means to say 

we can only process a very low resolution picture using Pentium and so on. If you 

really want a sophisticated system, you need to go for either FPGA or ASIC based 

designs. This is the top module we have declared here. DCTQ is the design and these 

are all the signals that you have seen before, in the form of a block diagram shown 

earlier. I do not have to go into all the details. The final output is going to be DCTQ. 

When it is valid is indicated by this signal and its address is also given by this signal.  

(Refer Slide Time: 12:50) 

 

What you have put there we declare as either inputs or outputs and that is precisely 

what you see in the next few instructions. 
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(Refer Slide Time: 12:57) 

 

 

Along with the size of these signals you see there. For example, address is 6 bits, 

DCTQ is 9 bits, and DCT will be 12 bits and so on. 
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(Refer Slide Time: 13:05) 

 

 

If you remember, in the first CX multiplication, we used eight multipliers. They 

produced the output result1 and they are 16 bits in width. They are listed here as 

result1 to result8. Finally, we added all this in order to create one [13:45] and that is 

declared here. This is by means of an adder – 12s, if I recollect. There is also another 

DCT that we need, which is of size 12 bits. Sum is only 15 bits – although it is high 

precision, it is being truncated here. We will look into the details later.  
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We also used a dual RAM and there are two outputs, namely d1 and d2 and they have 

got to be declared as a wire. We will come to why it is wire a little later on. 

(Refer Slide Time: 14:02) 
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We also need to have partial products stored. For these partial products, we had earlier 

used P0 [14:16] etc. You may regard it as qr0, qr1 and so on. Row-wise, it will be 

different and size is 11 bits.  

(Refer Slide Time: 14:31) 

 

At the second stage, we take these partial products and multiply with CT to produce 

independent multiplied results. They are all indicated as res1 through res8. Now, 

notice that the bit precision has improved – that is, increased quite a bit.  
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(Refer Slide Time: 14:52) 

 

Then, we will be needing some counters in order to realize address generation as well 

as address for the ROMs, RAMs, etc., which we use in our architecture. These are all 

generated in the controller. For a quantization table, we have a ROM whose output is 

qout. An important thing: a good design practice is that you should not have any logic 

on the main design, that is, the top design. What you should have is only calling all 

submodules here. For example, dual RAM is being called here and that is what is 

indicated here – dual RAM to read the image input block (8 by 8 pixels); it is read 

block by block. This is the X matrix that we have. One row of a particular block is 

being read at one time. Every clock, for that matter, we keep reading every row in a 

block. 
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(Refer Slide Time: 15:57) 

 

In order to read that into the RAM, we have to invoke a dual RAM here. This is the 

instantiation and these are all the signals that you are already familiar with. The only 

difference is that in dual RAM, we have basically two modes: we can be in either 

read-only mode or write-only mode. To start with, it will be in write-only mode and 

this rnw signal is what is being used for that. While in read mode, we execute the 

DCTQ. This read address will be delivered from the controller by using a counter. 

The same counter is also used for ROM later on – ROM for C and CT matrices.  

Note that only three-bit LSB is used for the X matrix. This is because in the first 

computation of CX, we take a row of C, then take a column of X matrix and repeat 

the same for other columns of the X matrix. That means we advance to the next row 

of C only after processing eight columns of X. That is the reason why this is put as 

LSB. The MSB for the counter, that is, 3, 4 and 5 will be for the C matrix, which we 

will be seeing later on. The final output is d0. This is applied to the second stage, 

which we will cover shortly.  
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(Refer Slide Time: 17:28) 

 

Dual RAM has two pipeline registers. You remember these as one after RAM, which 

is being called by dual RAM and also another at the top level of the dual RAM. Two 

pipeline registers are inside the dual RAM. 

(Refer Slide Time: 17:46) 

 

Next, we have to use a ROM, which stores C matrix and CT. If you notice, C and CT 

are nothing but the same matrices. One is to be interpreted as a regular matrix, 

whereas the other one is a transpose of the same matrix. In this case, the contents of 

both are the same. That is the reason why we just use a single ROM. We have covered 

this design also earlier. We do not take just the C value alone – we take twice the C 
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value and divide by 2 later, so that the functionality is not changed. Yet, we increase 

the precision while processing. That is the reason why this trick is adopted. Both these 

require row accesses for computation of DCT.  

(Refer Slide Time: 18:39) 

 

The next step is to call the ROM C and CT module. You remember that we have two 

addresses: addr1 for C matrix retrieval and addr2 for CT matrix. As I mentioned 

before, MSB is used here for C matrix. Note that 5 to 3 is the MSB of cnt1, whereas 

LSB is for X matrix, which we have seen just now. In addition to this, we also need 

CT matrix. That is available by accessing through this address, which is given from 

cnt3. There will be only 3 bits for this counter and this is for CT matrix. Out comes 

two corresponding data, d1 and d2, which we will use subsequently. 
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(Refer Slide Time: 19:17) 

 

Here, romc.v, which is one of the submodules for realizing C CT ROM, also has two 

pipeline registers to keep pace with the dual RAM. We have to evaluate CX. Unless 

the ROM, which has the C content, and dual RAM, which has the X content, keep 

pace with each other, you will not get any meaningful result. Therefore, the number of 

pipeline registers has been increased to two, although only one is required here, just to 

keep in step with the dual RAM. addr1 and addr2 are for fetching C and CT matrices. 

C is used in the first stage multiplication. Having got C from the ROM and also X 

from the dual RAM, what we need to do is the multiplication. Remember that we had 

eight multipliers in the architecture. We will be invoking eight such multipliers, each 

of them instantiated as U11 through U18. Similarly, we need to evaluate the result, 

which will have to be added. The adder result will again be multiplied by another set 

of eight registers in order to have the last DCT produced, using the CT matrix. 



 
20 

(Refer Slide Time: 19:28) 

 

CX is computed using the following eight multipliers: d0 is the image input, X and d1 

is the C input, which we have seen before, d0 is unsigned, while d1 is in twos 

complement. The entire thing is generally in twos complement – all the computations 

everywhere. The result is in twos complement. This is the first of the set of 

multipliers, which numbers from u11 through u18 – eight multipliers. At each step, 

this one will be the X matrix and notice that only one byte is covered by one 

multiplier. The corresponding C value is available here. Once again, the 

corresponding byte is taken in order to process and it produces a result called result 1. 

This is 16 bit, because it is 8 unsigned into 8 signed – totally, it will be 16 bits. 
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(Refer Slide Time: 21:04) 

 

Likewise, all the eight multipliers are identical, except for the fact that different bytes 

are used. Next, eight bytes are used in this case, producing result2. 

(Refer Slide Time: 21:41) 
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It goes on. See here u13, u14. Notice that the bytes are different, progressively less.  

(Refer Slide Time: 22:02) 

 

This is u16, u17. 
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(Refer Slide Time: 22:02) 

 

Then, this is the last multiplier in the set. It is processing the very last X. If you take a 

row, it is very last pixel that is being taken. It could be either the last or the first – it is 

immaterial as long as you take C and X, the identical bytes. The only thing is you 

have to keep track of what you are doing. 

(Refer Slide Time: 22:38) 

 

At this step, we have multiplied and got eight results; result1 through result8. The 

next step is to add these eight results that we have got by using adder12s, which we 

have already designed before. n0 through n7 are none other than this result 1 through 

result 8, which we have got before. Note that we are dropping some bits here, because 
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that much precision is not really required. At this step, if you take the modelsim 

results and ponder over the waveform, you will notice that it will be of the order of 

156 in decimal number. A typical example has been given for one of the results and 

other results will be hovering around this. I want to point out that there is a decimal 

point here and after this, 4 bits. So, it is a mix of a decimal number and binary 

number. After the decimal point, there will be four digits here. This adder, as we have 

seen before in the design, has only five pipeline stages and output is not registered. 

This is not registered because we are going to register the next module that we are 

going to look into. That is called dctreg.  

(Refer Slide Time: 24:01) 

 

You have up to n7 here. Note that we have dropped 4 bits here because we do not 

need that high a precision. These precisions have been arrived after a few iterations 

and keeping in mind the quality of the image that we create. We have very high 

precision in the computation of the same DCTQ and reconstruction in MATLAB. 

That serves as the standard reference for the computation of the quality. After 

truncating these many bits, we always compute the PSNR or what is called the image 

quality. Then, we compare with the corresponding MATLAB output. If it is quite 

close, of the order of say 0.5 dB, maybe we can say that accuracy is 2 percent or less. 

Then, we truncate as per that. That is how we do the truncation here. 

This is a three-stage addition. This is the summation that we are doing. As a result, we 

started with 12 bits as the input for each of these numbers. The final result after 
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addition will be 3 bits more. This is because at every stage of addition, you have one 

extra bit if you add two numbers. That is how we have 15 bits – 14 through 0 – as the 

sum here. This will have to be stored as a partial product.  

(Refer Slide Time: 24:01) 

 

 

This is the actual partial product P, which we had seen in the algorithm before. That is 

what this module is going to be doing. It has one input. That is the same thing here. 

Once again, we see that we drop some more bits here. Otherwise, it will become too 

unwieldy with the next stage. Anyway, it is producing the desired quality. That is also 

a reason why we drop one more bit here. We will just have a look at the comments 

here.  
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This is actually 11 bits signed integer and there is no decimal point here. We drop 3 

bits after the decimal point. In addition to this, we also drop one more bit, because 3 

through 0 are dropped, that is, 4 bits are dropped and so, 3 bits have been accounted 

for here. We drop another bit, which is equivalent to dividing the result by 2. Any 

right shift, as you know, is equivalent to dividing by 2. That is because we had taken 

earlier in order to increase the precision 2C not C, but we actually need C here in 

order to have the correct result. For that, we drop one more bit, which is equivalent to 

dividing the result that contains 2C into getting a result that only contains C. ROM 

and hence one more bit is dropped. That is what we have here. The same is true for 

CT as well. 

Here, we have eight registers that will register all the partial products generated in the 

first stage of multiplication. You need to write it into the appropriate registers. For 

that, you need a three-bit address. As there are eight registers, you need 3 bits here in 

order to write into that.  

(Refer Slide Time: 27:22) 

 

This set of registers is called qr0 through qr7. This writing will be enabled only if the 

enable counter is enabled – it is 1. Each of these partial products will be 11 bits 

signed, as explained before.  
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28 

 

In the second stage, we have another eight multipliers. The set has eight multipliers 

here. In this case, we take these partial products, which are qr0 through qr7 and you 

can see as one of the numbers. The second number is the actual CT. This partial 

product is nothing other than CX. We need to multiply this with the CT matrix in 

order to get the final DCT. That is what we are doing here.  

We need eight multipliers and all these multipliers will be working simultaneously or 

concurrently. That is the beauty of FPGA/ASIC design. You would have noticed that 

we have so many hardware. So far, we have seen eight multipliers and one adder so 

far. In addition to that, all the other hardware such as other set of eight plus one more 

multiplier, adder, and so on – all of them work simultaneously or concurrently. That is 

the beauty of this FPGA/ASIC design. To start with, we said it is massively parallel. 

That is how you have a massively parallel design.  

This particular design has totally seventeen multipliers in order to have a DCTQ. We 

also had ROM, etc. All of these work concurrently for fresh data being input at every 

clock cycle. This is the CT input here. Once again, we apply only one byte at a time. 

This is 11 bits and this is 8 bits. Naturally, result will be 19 bit and we call it res1 to 

res8 – subsequent eight multipliers and two more multipliers here. You can notice that 

we are taking a different byte order each time.  
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(Refer Slide Time: 29:41) 

 

Finally, the last multiplier in the second stage. Thus, we have seen sixteen multipliers 

being used, all of which work concurrently. res1 through res8 is the final result.  

(Refer Slide Time: 29:53) 

 

You add this in the next stage, which is adder with registered output. This was given 

as an assignment to you and I hope you have done it, in which case you can readily 

use the design. You notice that once again we are dropping some more bits for the 

same reason, so that the quality that we get is already satisfied even if you drop so 

many bits. Here, you are dropping nearly 5 bits and as an example for this value, the 

decimal point is shown here. 
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Finally, we add res1 through res8 to get a DCT. When you add, you would notice that 

it is 18 through 0 and we have dropped so many bits here. In spite of that, the number 

of bits is fourteen bits. Actually, it will shoot up by 3 more bits, because the adder has 

three stages of addition inside the pipeline. Therefore, it will create totally 17 bits. 

This is 13, 14, and that will be 3 more bits. There will be 17 bits out of which we need 

to extract only a few bits.  

This is only 12 bits and that is required. Once again, we are truncating here. This 

truncation is done right within the adder itself. You must also do the same thing when 

you do this design all by yourselves. This is the final DCT output. We have to get the 

DCTQ output from this. This is in twos complement. One more point is that this DCT 

12 bit has not been put arbitrarily but is the requirement for JPEG through MPEG 

standards. That is the reason why we adopt 12 bits here. 
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(Refer Slide Time: 31:53) 

 

This adder 14sr.v has six pipeline stages because one more stage is required when 

compared to 12s. This is because of registering the output. The next stage is to invoke 

the quantization matrix, which contains 16 divided by the quantization value. The 

inverse quantization value is being taken here and in order to increase the precision, 

as we have done before for C by multiplying it by 2 and then dividing by 2, here also, 

we adopt the same trick by multiplying it by 16 and later on we will divide by 16 so 

that the value is not changed as per the algorithm. In order to retrieve 16 by 

quantization value, what we need is address for the ROM so that you get the actual 

output qout, 16 by quantization value. cnt4 generated by the controller supplies this 

address here. 
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(Refer Slide Time: 32:55) 

 

After invoking that ROM, we need to multiply in order to get the DCTQ from DCT. 

One input for the multiplier will be the DCT, which we have already seen. qout is 

nothing other than the 16 by quantization value, which we have just seen in romq – 

that is being fed here. You will appreciate the feature of calling ports by name here, 

because now you can see all this. Right at the beginning, I mentioned that we have 

declared this as a wire. From this, it should be apparent. What we are doing here is we 

from one module we are connecting it to another module. It will have the very same 

name inside that module. Since we are making a physical connection like a wire or a 

net, it is called wire. You have a qout here, which is the ROM quantization table. That 

is this one. Finally, out comes the DCTQ and this also has eight pipeline stages. If you 

remember, we have seen the overall pipeline stages to be 45 in the architecture. We 

will understand this very clearly when we see the actual waveforms. 
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16 by quantization value is multiplied with the DCT output above to get the final 

DCTQ output. The result is divided by 16 in mult12sx8u module to get nine-bit 

DTCQ. Once again, these nine bits are dictated from the JPEG/MPEG standards. In 

order to conform to the standards, it has been taken as 9 bits. n1 is DCT, signed 12 

bits and this is also as per JPEG. n2 is unsigned 8 bit with the decimal point before 

MSB and it is the 16 by quantization value. The actual value starts after the decimal 

point and that is what is mentioned here. This DCTQ 8 through 0, which is 9 bits, 

conforms to JPEG/MPEG-1/MPEG 2 standards and ‘etc.’ probably stands for H261, 

263 and there may be other standards as well, maybe HDTV. 
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dctq_valid is asserted whenever dctq is valid and addr provides the address of the dctq 

coefficient. We have seen this before. Addr = 0 is the DC coefficient and addr = 1 to 

63 are all AC coefficients. The higher the order, the higher is the frequency.  

(Refer Slide Time: 35:20) 

 

Before ending this design, we have to invoke a controller, which we have seen the 

need for. It has various signals. When we take the details of the controller, we will 

describe all this. Once again, we call by the port names. We have already seen start 

pins, rnw, etc. These are all the outputs generated by the controller. There are 
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different counters, encnt2 as well as enable partial product register. Different registers 

are there.  

(Refer Slide Time: 36:01) 

 

This is counter5 or you can rather take it as an address register in providing the DCTQ 

coefficient address. This is the end of the top design module. You would have noticed 

an interesting feature that I explained right in the beginning – there is no logic in the 

top design module. It is merely calling the different modules that you have seen here, 

just calling the modules – adder or multiplier, as the case may be. I reinforce the 

statement that a good design practice is to avoid any logic on this. 

(Refer Slide Time: 36:42) 
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Next, we will consider some of the submodules that we have not seen before. One is 

for the partial product. This is called the dctreg2x8, which means that sixteen registers 

are really required. We can also program the width here. That is why n is put here. If 

you do not like this name, you can change it to partial product pp or something like 

that. A set of eight 11-bit registers, that is, qr0 through qr7, to store the partial 

products p of CX is created in this module. 

(Refer Slide Time: 37:20) 

 

 

This is the module declaration. It list qr0 through qr7 outputs here and these are all the 

inputs. din is what you have after the first adder, the 12s adder that we have seen. That 

is the partial product that we need to store in. At every clock, a new data will be 

coming in din, which we will have to route to one of these registers. For example, 
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with the arrival of the first clock, you will route it to qr0 and then divert the next data 

at the next clock to qr1 and so on. At the eighth clock, you will input into qr7.  

As I mentioned, n is programmable and so you can do this by having a special C-like 

instruction here. We can declare any variable here and assign some known value. For 

example, width has been assigned as 11 decimal here and this is by declaring as a 

parameter. Once you declare this, instead of writing 11 at every point of time, we 

need to only write width. That is what we see. This is the output width and that is for 

register size. If you take 11 here, 11 minus 1 is 10, so 10 through 0 are the 11 bits for 

the qr registers. Similarly, din must also have the same width and that is why this is 

put here. These 0, 1, 2, 3 are addresses for the register – to point to the respective 

register. That is done by this signal, which must be 3 bits in order to have total 0 

through 7. 

(Refer Slide Time: 39:06) 

 

Once again, we have declaration of reg and width is given. We use all these registers 

in the always positive edge clock and this is the clock that we are referring to. In this 

block, what we are going to do is simply assign the din value to different registers, 

depending upon the right address. The right address is also one of the inputs. If the 

address is 000, then we take whatever is the input at din and merely copy into the q0 

register. Like this, q0 through q6 will be used for different addresses. We can do all 

this only as long as this chip is enabled – enreg is one of the inputs. This, in turn, is 

from the enable counter2. Only if it is enabled, this will take place. With the arrival of 
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the first clock, the right address will be 0, and with the next clock, it will be 1. Each 

time, it will go through one of these cases. Hence, the case statement is used here. 

(Refer Slide Time: 40:12) 
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Like that, you have q0 through q6 arriving at different clock cycles one after another. 

Finally, you will have q7 also assigned but not here – towards the end. I will explain 

why this is being assigned here. Instead of putting this for this statement with this 

alone. We have done some more thing, which will take some more registers for this. 

The reason is as follows. On the arrival of the seventh clock cycle, this has been 

written and with the eighth clock cycle, the last partial product is written.  

If this partial product that we have written continues to be in the same q0 register, 

with the arrival of the next clock, that is, ninth clock, this q0 will be overwritten and 

the partial product will get lost. We need to avoid this. Remember that we need the 

partial product for the computation of the next stage for which you need eight further 

clock cycles. This means that this partial product will have to be stable for the next 

eight clock cycles. That is possible if you write it at this stage into another register 

called qr0.  

Right at the eighth clock cycle, we transfer all this q0 through q6 content into a safe 

register here as well as transfer the last thing, which we have not done before into this. 

With the arrival of the next clock, this q0 will be overwritten, but not qr0. qr0 will be 

overwritten only with the next cycle, after all the eight clock cycles. Thus, if you 

examine, this will be available for the next stage computation to the tune of eight 

clock cycles. This completes that DCT register.  

(Refer Slide Time: 42:02) 
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Next is the DCTQ controller. These signals are listed here. We have different inputs: 

reset, start, hold and ready and these are all the outputs. rnw is to switch from one 

RAM to another inside a dual RAM. When dctq_valid is to be given, all that is 

covered here on the counters.  

(Refer Slide Time: 42:29) 

 

So also the address for the DTCQ coefficient is given. Address is same as cnt5.  

(Refer Slide Time: 42:37) 

 

We declare here all the inputs as well as the outputs. 
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(Refer Slide Time: 42:42) 

 

 

So also the counters and their widths. 
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(Refer Slide Time: 42:49) 

 

The registers are declared here regarding the outputs. 

(Refer Slide Time: 43:00) 

 

As mentioned before, we have five counters and they also need enabling. So, we 

declare them as reg here.  
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(Refer Slide Time: 43:09) 

 

 

We also need intermediate results, which we will cover later. These are all the signals 

that we use for that. We also need pre-incremented signals using assign statements. 

They are declared as wire here. The actual cnt1_reg is this, which is pre-incremented 

here. That is what is done here and that is what is done here, including the DCTQ 

coefficient address. 
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(Refer Slide Time: 43:43) 

 

We should enable the very first counter only if this condition is met. It must be 

disabled when this condition is met. The first condition is we give the start, signaling 

that DCTQ process must begin. After a delay, this start_reg1, which we will cover at 

the last, always blocks in the controller. If it is 1, this is equivalent to start being 1, 

with the clock cycle delay. If it is 1, as long as it is 1 and the cnt1_reg is 0, which 

signals that it is yet to start, we are right at the beginning. Only when these conditions 

are met, we will enable the first counter. The same counter is disabled if the last of the 

block is processed. For example, start [44:33] has become 0, in which case when the 

counter value is 63, only then we disable the counter. Otherwise, we do not. Note that 

it is for 0 as well as for 63 – not any other combination. 
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(Refer Slide Time: 44:50) 

 

We have a set of always blocks here and they are all identical. First, we initialize each 

of these enable counters – 1 through 5. If it is hold, we just do not disturb the 

contents. We enable this only when a particular condition is met. We have already 

seen this condition before. Only then, we enable the counter. Otherwise, if the disable 

condition (we have also seen that before) is met, then we will disable this. Putting a 0 

into this is equivalent to disabling. We will see exactly the same thing. Otherwise, do 

not disturb here for all the other counter enables.  

(Refer Slide Time: 45:33) 
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Once again you see in the design that there is only one signal in one always block. 

This is a good practice and I hope you will follow the same. If you take hundreds of 

signals in one always block, you will get drowned. It is a good practice to have just 

one signal and very rarely violating that if the need arises, which we may see later on. 

Similarly, it is the same for reset, hold, etc. It has to be cleared if cnt1 is to be 

disabled.  

Remember that we need a partial product to start with and so, the dctreg we have used 

should be active. Only when the actual cnt1, which starts right from the beginning 

when the start is given, is 14, it will be the right time for enabling the cnt2 as well as 

dctreg. That is what we are doing here and that is for 14 decimal. Likewise, we will be 

doing for the different pipelines we have covered earlier. This is for the dctreg. We 

will understand this very clearly when we look at the waveform. 
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(Refer Slide Time: 46:53) 

 

This is to enable cnt3. Everything is the same, except that this is being done for 20. 

This is for CT and ROM CT access here. cnt3 is enabled, when cnt1_reg is 20 – 

decimal, of course. ROM CT has two pipeline stages and therefore 20 is arising.  

(Refer Slide Time: 47:17) 
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Similarly, for cnt4, it is exactly the same, except once again, it is a different value 

here, for 35. This is at the quantization ROM. When the quantization ROM must be 

enabled is governed by this 35 of cnt1. 

(Refer Slide Time: 47:44) 

 

Similarly, when DCTQ must be valid is determined at 44. It is exactly the same thing 

that we have seen before. You have seen in the architecture that we had totally 45 

clock cycles delay. This counter starting from 0, 1, 2, 3 up to 44 is exactly 45 and this 

explains why there were 45 pipeline stages.  
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(Refer Slide Time: 48:06) 
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This one is for the actual counter. The counter is also exactly similar to enable, except 

that when the counter is enabled, it will be incremented. So, cnt1_next was actually 

cnt1_reg plus 1 – pre-incremented, which we have seen before. We assign that only 

when cnt1 is enabled and similarly for all other counters. Once again, you can see 

reset, hold, and we increment only if encnt2 is high. The same is the case for cnt3 – 

increment only then. 

(Refer Slide Time: 48:44) 
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So also for cnt4 as well as for cnt5. That is for cnt5. 

(Refer Slide Time: 48:54) 

 

We need to differentiate between the very first block of processing and subsequent 

blocks of processing. That is possible only by having one signal here. It is just a single 

bit. Initially, it is initialized to 1 with power on here. This is meant for changing the 

rnw signal. Suppose you have written the very first block. After that, we have to 

change this rnw signal only after writing the very first block.  

Having written it, we change it at that point of time and also switch over to a different 

rnw value, so that we can take in the next block of data and start processing the first 
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block of data. That is what we are doing here. This depends upon the start being 1 

here. Similarly, this is for the ending of the block. When one block is completed, 

completed in the sense that the data has been consumed, DCTQ is not yet output. 

Only the data has been consumed as far as one block is concerned. If you read cnt1 as 

63, it means it has just consumed. Start must be continuing to be 1. Under this 

condition, what will happen here?  

(Refer Slide Time: 50:21) 

 

This is the condition. What we have to do is we have to invert not only rnw but also 

force this cnt_0 to 0 because for subsequent blocks, this is forced to 0 and therefore, 

this will not come into this category. In the future, it will not come into this category.  
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(Refer Slide Time: 50:51) 

 

This was for the end of the block, which we have seen before. If it is the end of the 

block, we merely invert it. In the previous case, it was to differentiate between the 

very first block and subsequent blocks, corresponding to cnt1 being 0 – that is why 

that trick was played there. This is done as a routine affair here.  

(Refer Slide Time: 51:14) 

 

Similarly, we create a ready signal. For this, the condition is start must still be 1. cnt1 

is 1 because after this, we want to take an action. We will continue with this in our 

next lecture. Thank you. 
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(Refer Slide Time: 51:31) 

 

 


