Digital VLSI System Design

Prof. Dr. S. Ramachandran
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture — 42

Design of Arithmetic Circuits (continued)

We are looking into the verilog coding of multiplier algorithm; we are multiplying two
numbers of 11 bits and eight bits, say n1 and n2. We have also seen the definition of the
various 1/0s of the module multi 11s by 8s. We have also seen the wire listing. Right up
to this we were looking into different reg wire and reg declaration.

(Refer Slide Time: 3:06)

pll reqgd ;

812 _regd |
#1) regd ;
sl4 regld

sll . .regd ;
312 regd ;
sl) regd

I think we have gone this far last time. These are all for subsequent stages say, reg 2 then
reg 3 are all clock 2 and 3. All of which naturally the signals would be a registers because
we use in an always block.

(Refer Slide Time: 3:27)

a3la regé

831 reg7

resclt

always @ (nl)
began

Afinl(10] »= 1°DbO)
nl mag - ol(10:0)
else

nl mag = ~nll0o:0] + 1.

To start with, the final result will be in 19 bits and last bits will be signed. Here, we have
a combinational circuit to start with.

(Refer Slide Time: 3:38)

Af(nl(10] »= 1°bO)

ol mag = ol(10:0)
wlse

nl mag = *nlfl0:0] + 1 // Bvaluate twos coeplement

end

always # (n2)
bagin

AEn2[7) == 1'00)
n2 mag = n2l(7:0]
olse

n2 mag = ~n2{7:0] + 1 I/

Bvaluate twos complessent

What we are going to do is, as mentioned before, we will remove only the magnitude of
the two numbers nl1 and n2 in these two blocks. So we take this value only whenever nl

changes from one value to another. Now, if n1 10, which happens to be the sign bits is 0

that implies it is a positive number. So just take the nl as such and call it as nl
magnitude. This means n1 number is in magnitude form. So is the case for n2 magnitude,
which is basically the same here. If MSB, that is, the sign bit is 1 and else will be applied.
In that case, what we will do is take the two’s complement. This is nothing but two’s
complement. We have already seen that we can get a magnitude merely by taking two’s
complement and that is what is here. That is how we extract the magnitude of the two
numbers and then apply the algorithm here afterwards. These are all combinational

circuits.

(Refer Slide Time: 04:53)

assign nlorn2z = ((n]l == 11'D0) Ji(n2 == T'DO)) 7
1'B1:L'D0

2 18 zero, make final rosult +0
»

Pl = ol magi0:0] & f11{n2 mag(0]])):

// Compute the partial products

mag(10:0] & {11(n2 mag(l])]

{/ nl sultiplied by a2 bit ‘0', etg

aAss1gD mag(10:0] € {11(n2Z mag(2]))
Assign =ag(10:0] & (11(n2 mag(3]))

This is also another combinational statement wherein we inspect whether nl1 and n2 are
0s. Even if one is a 0 the final result will be 0. If you do not take this one you may get a
problem later on with a finite fixed point arithmetic which we are dealing with. Note that
all our arithmetic circuits that we have used so far including this multiplier and adder will
be fixed point arithmetic and not floating point arithmetic because floating point
arithmetic is more complex and would take more chip area. This is enough for the present
and hence, we use only fixed point arithmetic. This particular statement evaluates
whether it is a 0 or not. If the result is O, this will be a 1. That is what this statement

means. See, if n1is 0 or if n2 is 0, then 1 is put into this signal and this is a wire there.

Similarly, we evaluate p1. We mentioned before, we had already taken in our algorithm

pl through p8.

But how do you get this? So we have to look into this. What we saw in the earlier
example is we inspected the n2 number and let us say MSB happens to be 0 bits width.
We inspect the particular bits, if it is a 0, the partial product will all be 0 that is all the bits
will be 0 pertaining to pl, which is nothing other than nl. If it is a 1, the final partial
product will be same as nl. Whatever is the n1 number you will get exactly the same
thing. So in one case all of them will be Os and in the other case it will be the duplication
of this number. So either this number is got or 0 is got. This can be easily evaluated by
merely ANDing each of these bits which are concatenated. For example, we have taken
the n2 bits LSB alone. We are replicating, rather, we are repeating 11 times totally. Each
of these bits is under with each of the bits of n1 number. Naturally, if you AND, even if
there is one 0 at any point that particular bits will be forced to 0. That is how you get 0
here. If one bits happens to be 0 all 11 bits will be 0 because it is concatenation of all the
same bits. So, if the first bit of n2 is 0, naturally the final result will be 0 for all the bits.
That is what it is here. If it is 1, all will be 1 and therefore, you will get exactly nl

repeated and assigned to the p1.

(Refer Slide Time: 07:56)

assign pl ol =ag[10:0] & f11(n2 mag(0]]))
'/ Computa the partial producta
assign p2 = Bl mag(10:0) & [(11(n2 mag(l])]
// nl sultiplied by a2 bit

assign p3 2l mag[l0:(11(n2 magl(21})

0', ets
7 & 1
assign pd 1 mag{lo: & (11in2 _rnqi)]] -
assign pS 1l mag(l0:0] 6 (1102 magl4]))]
assign pé nl mag(lQ:0) & (11 2 ! gi{5])1) |
assign p7 pl mag{10:0] & (11{n2 magi6)l M “)
(3|

assign p8 nl mag(l10:0) 11{n2 mag(7])):

So is the case for all the partial product p1 through p8 here. That is what is shown there.

(Refer Slide Time: 08:05)

is the first pipeline register, <lk (1)
5

pl_regl <
p2_regl <
3 _regl «
M _regl <
3 regl
T ’Vr.;,.q‘_ <
p7_regl <
8 regl <

::l_u;q‘. <= nll10}.
n2_regl <= a2(7)
nloxn2z rogl <=~ nloxnl2:

Now the first pipeline starts and when the positive edge of clock is encountered, this is
first pipeline register clock one. We will assign to registers the partial product that we
have got in using assign statements earlier. This is the pipeline register actually. So at
every point of time, at every clock, you will see a register within always block at positive
edge clock. Whatever comes within the positive edge clock always block and will all be
registers. That is the reason why given a nomenclature like this. 1 stands for the first
clock one so that you can readily find out to which stage a particular signal belongs.
These are all the partial products that we had using assign statements. That we will
transfer it to reg 1 when clock strikes; so also for the n1 and n2 sign bit. This is actually
nl, this 10th bits is sign bits so we preserve that as nl regl and n2 regl here for the sign
bits of n2. We also preserve whether it is a 0 or the product is 0 or not. We will have to
propagate this at every stage because you are will use this only at the fag end. If you
forget this statement naturally the whole system will be a black out; it will not work right.
So is the case with any statement even now. If a single statement is missing nothing will

work.

(Refer Slide Time: 09:40)

nd reqgl
nlorn2z regl <= nlornls

end
/ Pl regl, etc. moans pl, eta. are registered after //
positive edge of alk (1), alkx (2), -~t:
assign s1la(6:0) = pl regl(6:1) + p2 reqgl(5:0}

// LSB is added herxe
assign. sl2x(6:0] » p3 regl[6:1] + pd reqgl(5:0)

// Note thae left ghifta are taken care

So pl regl etc. means pl etc., that is what we have seen here are registered after the
positive edge of clock 1, clock 2 etc. So is the case for other clocks that we are going to

see shortly.

(Refer Slide Time: 09:55)

slla(6;0) = p) zm‘;l[b“.} + p2 regl|5:0])
// LSB is added here
ASS1gn Q) = p3 regl[6:1] + p4 regl(s:0)

// Note the left shifta are taken care

8133 [6:0] = pS reglis:1] » p&_rrcqlllx Q]

'/ for pl, P33, p5 and pv
0] = p7 regl(6:1) + P8 regl[5:0)y

'/ y'._r-rq:{'?], otc. wmill be

In the first stage, what we will do is we take only LSB, half the number of total partial

product. This is the very first line of the partial product we had. We also mentioned that 0

need not be added initially because you can straightaway put that particular result after
doing all the addition. That is why 0 does not come here. So we start with 1 through 6. P2
is one bits shifted left and added only then. That is what we do here. We said that in
verilog it is very easy; you do not have to do any shifting operation. We are doing in
addition, right within addition we can do the shifting also without any clock penalty. That
is the beauty of this verilog. Note that one we are taking the very LSB here 0 through 5;
total will be 6 bits; here also 6 bits and it is equivalent to having p2 is the second one. So
what we have is if you take this p1 number 6 through 1 then 0 bits also you assume and
this particular 0 after left shifting should align itself with 1. That is the reason why we
align 1 and 0 here. It is equivalent to left shifting by 1. This is the LSB addition and this 0
you should not forget to add at later stage. So you remember that p1 regl 0 bits which has
not been accounted here will have to be accounted later on. This LSB is added here and
note the left shifts are taken care of. That is what we had described here. And we have

s11 through s14 doing precisely the same set of operation but on different partial product

pl, p2, p3, p4, pS, pb, p7, ps.

(Refer Slide Time: 11:48)

/ for pl, P33, PS5 a

asaign sl4a(6:0) = p? ‘roqllé, 1) » psiru;l[!v 0]

// pl.xegli0), etc. will be
// processed at the clk (2)
/I sllx{6), etc, are the carry bits
alwvays § (posedge olk)
// This ia the second pipeline register, clk (2)
begin

slla reg2 <= sila // Store LSB partial sums

P1 regl 0 we have mentioned earlier etc., will be processed at the clock 2; s11a6 etc., are

the carry bits. This will be the carry bits resulting from LSB addition. We also have to

take care of this while adding the MSB. With the arrival of the next positive edge of
clock this is the second pipeline register clock 2.

(Refer Slide Time: 12:12)

begin

s1la rog? <= sila; // Store 1.5” partial sums
8l2a rog2 <=

8134 092 <

slda reg® <«

pl_reg2(10:7) <= pl reql(10:7)

/ Store MSB of partial products

P2 rogl{10:6]
ra,\:rr-]l [10:7)
;,(‘zc-ql[lﬁ 6)
p3 reglflo:7)
p6 _rxogl(10:6)

7 regl(l0:7]

What we do here is store LSB partial sums. We have already evaluated the LSB partial
sums and we need to store that here and put it in a pipeline register. This is how it should
propagate because we have not yet used the result and will be using it only later on. It
will only be used at subsequent clock pulse; till then you have to keep propagating. All
this would mean extra chip area but the goal is to speed up the entire operation we have
and this is the price we are paying for it. Similarly, store MSB of partial products. They
are all, p1 through p8. This is the MSB here. Note that we have used 6 through 1 there
and we have not yet used 0. We are now processing the MSB. What we do is merely
registering this in order to process.

(Refer Slide Time: 13:07)

pS regllo:7)
;:ﬁ-ruql[‘.C: |
= p7 regl(10:7)
p8_regl[l0:6)

_regl(0]. // Stoxe "0’ th bit sinte
3 regl(0]; // At is not yet prooessed
reqgl(0]);
<= pl reqgl;
// Alsg store sign bits and zoro status

<= a2 reqgl
<= plorn2z regl

Here also you can store Oth bits since it is not yet processed. We have seen that we have
not added Oth bits but we have to register that also. Otherwise, that will be lost and we
will process later on. Similarly the sign also will have to be propagated. Store sign bits
and zero status. That is what is here. nl sign bit, n2 sign bit, whether n1 or n2 is 0 or the

result is O that also is propagated.

(Refer Slide Time: 13:42)

/ M58 is added hare alomg with carry

asaign siib(5:0] = {1'D0, pl reg2{il0:7]) +
p2

reg2(10:6) + slla reg2(6]:

assign si2b[5:0] = (1'BO, P33 regZ2ll0:7]) +
pi_reg2{l10:6) ¢ s12a xeqg2(6);

assign sl3B(5:0] « |1'DO" PS5 regZi0:T7]) »
pé reg2{10:6] + sl3a rog2(6)

assign. sldbi5:0] = (1'BO, pT reg2(i0 4
PO regZ(10:6] + slda reg2(6)

& LSBa are coacatenated here.

There is a little scope for you to optimize. You have a look into that and see where you
can marginally optimize. | have not taken much trouble in optimizing; probably, left it to
the synthesis tool but you can do it and find out whether your manual optimization saves
any chip area. It will be very nominal, that is why | will not go into depths. So MSB is
added here along with carry. We have added LSB earlier and now we are adding MSB.
But LSB had resulted in carry so that is what we are adding here. That is this here. Once
again, these are the p1 and p2 numbers and we saw that in MSB we need to put one more
bits here. This may not be really necessary; you experiment with it. | had just put so as to
keep track of the number of bits. For example, it is 10 to 7 here; whereas, in p2 it is 10 to
6. We have seen why it is so. This is a one bits shift and so is the case for the other four
results obtained by adding pl, p2 in this stage and then p3, p4, p5, p6 and the last two
here.

(Refer Slide Time: 15:18)

MSBs and LSBs are concatenated here so this is the partial product. We have not
processed earlier as such said 0 bits. So in the partial product of pl we started only with
1, therefore, you should remember to put that here. So, what we do here is nearly arrange
all MSB and LSB and also the first bit which was not considered earlier. We have only
the final result of the first stage. We take this MSB; this is the result of MSB s11b. They
are all part of this. This is MSB we have seen. We need to put that result on the top here

first followed by the LSB result that we had computed earlier. This MSB and this LSB

we are concatenating. Concatenating is putting together as a single number. That is this

one. We should also concatenate the last bits that we have not processed which happens

to be the very same p1 LSB. That is how we get the result of the first edge.

(Refer Slide Time: 16:36)

assign, sidb{5:

assign

assign »13

assign sl

assign »l

always ¥

2190
R

3[(12:0)

4[(12:0)

(posedge

%, s‘f‘.{:m;'} [5:0),

- {a14),

clk)

0], pl_reg2(0})

th bit respectively

812a _rog2([5:0) ;;-"'._rrq."{f,‘?j

p '»‘ sog2(0})

alda reg2i{S5:0), p7 xeg2(0))

For the first edge, you have four such outputs. This is the first stage of addition that we

have seen in the diagram earlier for the algorithm. This is all precisely the same thing.

(Refer Slide Time: 16:46)

'/ This i3 the third pipeline regiater, clk (3).
// First stage rosults

begin

sl1 rcq}.<- all; // Store for further processing
812 rogdy <= 812
a2l regl <= all;
514 rog3 <= 814;

al_regl <= nl xreg2;
n2 regl <= n2 reg2
nlrwrn?:‘ro«;\ <= nlorpds reg?

Then the next clock, that is the clock 3; it is the third pipeline register. First stage results
are stored for further processing. s11 through s14, these are all the first stage results and
we store it in pipeline register and this being clock 3 we give this nomenclature. We

should once again store the n1 and n2 sign as well as the 0 results.

(Refer Slide Time: 17:17)

assign s21a{7:0] = 811 reg3(8:2) # 512 rogli(6:0);
»

// s21a{7)1is the carxy

assign s22a(7:0) = 813 regd[8:2) & 514 regli[6:0)

// LSB sum, 20d stage

always ¢ (posedge clk)

// This is the fourtl pipeline register, clk (4)

This is the second stage. Before the clock strikes, we will have to do the evaluation to
speed up the process. That is what we do here. Once again, we process only the LSB
here. In the second stage, as | mentioned before, this is the first row of the second stage
and 1 through O we will left shift the second number which is why we have 6 through O.
So, instead of 2 you have 0; corresponding thing is 2, which means that s12 is shifted by
two bits. That is the second stage we have seen in the diagram earlier. As we have shifted
two bits, naturally, for this 1 and 0, that is, two bits of LSB need not be added. We can
merely duplicate that thing later on. We add only other than those two bits. We add seven
bits here and this also naturally seven bits and outcomes eight bits result and this s21a7
will be the carry bits. So is the case for the next result. We have just two results in the
second stage. In the first stage, there are four results and in the second stage only two
results because two, two numbers are added, so four of them. LSB sum second stage is

got here.

(Refer Slide Time: 18:45)

B e I
o

alwayns {(posodge clk)
»

/ This is the fourth pipeline register, clk (4)

With the arrival of the positive edge clock this is the fourth pipeline register clock 4 and
we store bits not yet processed. These are all the bits not yet processed especially, the
MSB we have not processed; other bits, two bits, we have seen for s11 register we have

not processed 1 0. It was here, see s13. You can see all this here, 1 0 not used here. That

is what is here s13 1 0. So is the case for s11. And we have also not processed MSB.

Therefore, there is no need for you to propagate these through pipeline registers.

(Refer Slide Time: 19:28)

"
A e e e —-
LA IR P S 98 = DT - L

813 xeg3iil

sl) regdii: o)

So also is the s21a, which is store of LSB second stage partial sums. You have already
computed LSB and that is the second stage; that partial sum is also to be stored and we

put it in another pipeline register. So is the case for s22a, which is the next output of the

second stage.

(Refer Slide Time: 19:51)

B e o

N O BN en -

We should also not forget these n1 and n2 sign bits as well as the final result is O or not.

We now add second stage MSBs with carry.

(Refer Slide Time: 20:10)

stage MSEs with carry

10) = {2'b0, 211 regd[12:9]) +
12 reg¥(l2:7] « s21a regi(7);

0] » (2'D0; 513 regi(12:9])) +

814 rogd(i2:7] « a22a xegi(7)

assign i 0] = {s21b(5:0), a2ia regé[6:0)],
all regé(l:0))

/7. IMSB, LSB, [1:4))

/ Result will never eoffect s21b(6)

What we are doing here once again may or may not be required. You can just experiment

here. It is there for the sake of completeness. Probably an optimising tool such as

simplify will do it automatically and even if you put some extraneous thing do not really

bother much about optimizing at your step.

This is MSB here and this is s11. The second stage outputs are s11 and s12 and once
again we are doing a shift because what we are trying to do is only MSB addition. So the
same two bits shift is applicable for MSB as well because this is still part of the stage. We
add two numbers s11 and s12. Similarly, this is s11, s12 and s13, s14 are there in the
second stage for MSB. So we need to add with carry of the LSB. That is what is here. Out
comes this result and this will be a final sign bits. Let us have a look on being done here.

(Refer Slide Time: 21:30)

(2°'D0; 813 regd(12:9)) +
814 rogd(i2:7] « a22a regi(7)

assign s21[14:0) = {s21b(5:0), s2ia regé([6:0)
all regé(1:0))

// .(MSB, LSB, [1:0))
»
/ Result will never effect a21bi6)
// whith is always ©

assign s22{314:0) = {(822bf5:0), s22a regi(6:0],
ll'!ﬂxcq"{l 0))

always # (posedge clk)

So, this is MSB, then LSB and then 1 through 0. We have merely added the MSB; we
have not put it together. So we need to put them together to form one result. That is what
is here, and that will be 14 through 0 bits say, 15 bits. This is got from s21 6 bits, s21 is
seven bits and then finally s11. These are all the numbers that we have not processed
earlier. The LSB two bits so that is what is here. This was the LSB result earlier and this
was the MSB result. Another point you will note is that we have used 6 through O;
whereas, here we have only used 5 through 0. The reason is that this has a duplicate sign
bits or it is a duplicated bits; it will not affect the last bits; it always remains at 0. You

will realize this when you really take an example and work it out. That is the reason why

this one gets affected. In fact, we do not have to remove it physically; the synthesis tool
will automatically take care of it. However, if you can spot it out, you can do it right in
your code itself. That is what | have spotted out here with an example. Therefore | just
limited to this. Otherwise, do not worry about that because the synthesis tool will
automatically do the optimisation. So we put the MSB of the second stage addition and
LSB of this, followed by concatenating and also not forgetting the last two bits that we
have not processed earlier. This makes up the second stage complete result. The result
will never effect s21 6 bits, which is always 0. This is what we have already seen so just
as we had s21, we will have s22 here. This is precisely the same as what we have seen

before for the other two outputs of the second stage.

(Refer Slide Time: 23:54)

813 regd([1:0])

always # (posedge clk)
'/ This is the fifth pipoline register, alk (5).
begin

a2l regld <= s21; // Storxe. for fTurther processing
822 _rog5 <= sk2

nl zegS O= nl vogé;
n2_ regs <= 02 regé
nlornlz regs <= njorn2z rogé

So far we have seen clock 4 and what happens. This is the fifth pipeline and we need to
once again store sum of these values. For example, s21 and s22 are what we have just
now processed of the second stage partial sum. We also need to store the 0 value or the
two sign bits and then process further.

(Refer Slide Time: 24:22)

assign s3la(8:0) = 231 reg5[11:4) « 222 reg5(7:0)

/ 3rd stage LSE computed here

always § (posedge clk)

/ This is the sixth pipeline registe

begin

rog6(id:12]<= a2l xegS5(14:12);: // Preaccve MSH
<= 822 reg5114:8)
o= 321 reg5{3:0)
<w 233la //3rd atage LS8

This stage is the third stage; at this stage LSB is computed. In this third stage, the final
output is going to be this whereas, the second stage output, which is this one is being
taken. In this case, note that we will shift for the third stage by four bits. That is why 3
through 0 not being used and we need to once again take from 0. This O corresponds to 4
because we need to left shift 4 bits. This has to two reg, same as s22. When you do this

one, outcomes LSB process which we will register when clock 6 arrive.

When the clock strikes we should also preserve MSB from the previous stage because we
have not yet processed and propagate through some other register here. That is what we
are doing here. This is the third stage LSB also registered here. We have just now
processed LSB there and we should once again take care of the two sign bits as well as

the O results registered here.

(Refer Slide Time: 25:35)

asaign a3lb(7:0) = {(4'bO, 821 rogf(i14:12))
522 rogblid:a] » s]l:_rog':(bi.

// 3rd atagé MSB cooputed here

asaagn a3l{17:0] » {(s31b[5:0], s31a reg6(7:0),
321 rog6[3:0]))

/ Put MSEB, LSH and (3:0] bits togethor

// Note that the 3rd atage result will nover offect
23Ab([6:5),; which is always 0

always § (posedge clk)

So far, we have processed the LSB; we need to process MSB. Once again, we use assign
statements and process. As usual, we have put four Os here although you need not do it.
We take the MSB of the first number and MSB of the second number as well. This is
taking care of the 4 bits shift. It is taking care of it and you can cross check. You can see
from here 14 through 12 is 3 bits plus 4, it is seven bits. To this, we add the carry
resulting from the LSB addition which we have done earlier. That is also to be done

without fail. This will give you the third stage MSB computation.

You concatenate all the results put together. We have earlier done LSB computation and
we are doing the MSB. We have to put them together by concatenation. That is what we
are doing here. This one s31b is put here. Once again, these two bits 6 and 7 will be Os, so
we are not using that. Therefore, we optimize 5 to 0 by hand right here. Then, we put
together the MSB results and the LSB results. What we have is concatenate of 3 through
0, 4 bits we have not used earlier for s21. That is what we are concatenating here. All this
put together will be the final multiplier output which are not yet registered. This puts
MSB, LSB and 3 to 0 bits together. That is what we have done here. We have to note that
the third stage result will never affect 6 through 5. That is what we have seen here; this is
always 0. With the arrival of the positive edge of the clock, this is the seventh pipeline
register at clock 7.

(Refer Slide Time: 27:57)

always # (posedge clk)

/ This is the seventh pipeline register, clk (7)

Degin

nl reg? <= nl reg6;// Store intermediate results
n2_reg’ <= n2 regé

s3) ‘rog’ <= 331;

alorn2z Jyog7 <= alorn2: rog6.

ond

assign res sign = al regi*n2 reg?
o

We are once again storing all intermediate results. For example, sign bits, that 0 and also
the results. This is the result from the third stage that we have just computed. This is the

3, 1 that we have concatenated the MSB, LSB as well as the unused four bits earlier.

(Refer Slide Time: 28:45)

PR e e e e -

r‘ou.ox LR -

0] = (rea 8ign) ¥ (1'b1
A'DAYi:Al

always ¢ (posedge clk)

/ Thia 13 tha aighth ¢

So, s31 is the final result. That is what we need to register which we will process at the
arrival of the next clock. Before that, we do the computation if there is any. Let us see

what we are doing here. First, we said we have been propagating all along this nl sign
bits as well as n2- second number sign bits for all. If you take the exclusive OR you get
the final result. For example, this is an exclusive airing which is simple in logic because
you know the simple multiplication rules. Say, if you multiply plus into plus, you get
plus; minus into minus is plus once again. As long as both the sign bits are the same
whether it is plus or minus the result will be plus. If one is plus and the other is minus
you get a minus; minus is represented as 1 in binary number, so 0 is the positive. So when
exclusive OR two numbers, for example, 00 which stands for plus into plus, out comes
exclusive airing is 0. Similarly, if you exclusive OR 1 and 1, it will be 10. You have to
drop the carry 1 so what you get as the result is only 0. In this case also, minus into minus
is plus; similarly, plus into minus, if you put 1 exclusive OR with 0O, it will give you 1. So
1 is the final result which will be put here and that naturally is a minus sign because 1
stands for this sign and 0 stands for the positive number. That is what we are evaluating
here. That is mere exclusive OR here of the sign bits of the two numbers n1 and n2 which

we started multiplying; 1 means a negative number.

The final result is here. We said in the diagram before the partitioning and diagram. So 18
through 0, we have mentioned that is the final result, which is the product of two numbers
nl and n2. We have done the entire algorithm that we had computed using this verilog
code. So far, this handles only the magnitude as mentioned before and we have just
evaluated the sign of the number. Based upon this sign bits we will manipulate the final
result by reflecting the two’s complement or the number straightaway. For example, if
the sign bit is 1, if the final result is 1, which means a negative number, we take two’s
complement which we have seen earlier. By taking two’s complement of a signed
number you get a magnitude; if you take the two’s complement of the magnitude you will
get the signed number, not exactly, we had to force the sign bits separately. That is what

is being done here.

By concatenating the last bits to be the 18th bits, we have to force it 1 because you know
at this stage that this number is going to be a negative number. If it is negative, this will
be 1; if it is 1, this is the MUXs realization. So, the MSB will have to be 1. That is why

we force here. So we need to take the two’s complement in order to get the magnitude.

Earlier, | said that incorrectly; the sign bits will have to be separately dealt with. Here, we
just take the two’s complement of s31. (Refer Slide Time: 31:57) s31 is actually the result
in magnitude form. The entire result is 17th through 0.

That is what it is. So you have to take the two’s complement and also append 1, that is, a
signed bits; this is for the negative number as long as this is 1. If it is 0, that is, a positive
number result is positive number. We have only to take that s31 which is the result and
add one more bits because that was only leight bits and the result must be 19 bits.
Therefore, we append 0 implying that this is the positive number. So this is clear here.
That is one statement here and another here. This statement is executed if this is 1
otherwise this is assigned to this final result. Either this is assigned or this is assigned
depending upon the sign bits here. So, here we have appended 1 because this is going to
be a negative number and we have appended O which is positive number. Either this 1 or
this O will reflect as reset 18, that is the MSB. This tells you how we take care of the sign
bits as well. We are nearing completion of this design for the multiplier. We have seen
that it follows the exact algorithm that we have developed earlier. Finally, we want to
register this output for the DCTQ application. That is the reason why we have one more
positive edge of clock which is the clock 8. We nearly assign this final value that we have
just evaluated depending upon the sign bits is also taken care of. What we have not taken

care of is whether n1 or n2 is 0.

(Refer Slide Time: 33:52)

"/ This is the aighth pipeliné rogister

begin

Af (nlornlz reg7 == 1°'b1)

. :
y & N
rosult{if:0) <= 19'b0. -

olse

result{in Q) o= ras;"// This is the final Tosull
// (product of two nmumbers)
// in twos oceplement

Earlier we had 0 flag propagating all through implying whether the final result is 0 or not.
The final result is 0 if n1 or n2 is 0. So that has also propagated and based upon that one,
if it is 1, the result is 0; so forth result is 0 by this statement. Otherwise, that is the else
statement. Assign the same result that we have just computed using that assign statement
res, this is what we have. The actual sign number is available; that is the usual normal
number, whereas, if the result is 0 you can assign separately.

You can also try dispensing with this 0 flag. You can remove that everywhere right from
the beginning and find out if there are any problems. If there is no problem, you can settle
for that changed code. If you find any problem, you may have to stick to this. So I will
leave it to you as an exercise. This is the final result, product of two numbers in two’s
complement. We started with n1 and n2 sign numbers, one was 11 bits and the other was
eight bits, so out comes 11 plus 8, 19 bits. That is what it is here, eighteenth is a sign bits.

This completes the design of the multiplier.

(Refer Slide Time: 35:29)

include “multilsxSs banho.v

mocdule multiliaxss test

output [18:0) result;

Let us have a look at the test bench. Suppose it is 50 megahertz operation, we need a 10
here and we need to include the back annotated designed files which is mult1ls into 8s.
Of course, we do not add the back annotation for the normal design. This particular test

bench is a module, the name of which is declared.

(Refer Slide Time: 35:53)

SN BRER L O
.

You want only the final result, that is the product and that is what is listed here. We
declare all the inputs which happen to be simple clock, n1 and n2. Although the
algorithm is quite complex the result will be easy to analyse. We have seen that this is 11
bits, tenth bits being sign. So is the case with 7 which is also signed. This is eight bits for

n2. We invoke the designed multll s into 8 s.

(Refer Slide Time: 36:22)

multllisx8s

clk (alk) ,
nlinl)

n2(n2).

result (result)

This is the module name. It will be the same despite back annotation because we start
only with this name with dot v extension for the design. We get a back annotated file
from that as we have used here. We use the back annotation there because we want the

final to get delays incorporated. We have listed all the ports by name.

(Refer Slide Time: 37:00)

initial

begin

»
clk = 1'b0
al = 1000
n2 = 8'h0 ;

19 %
17 nl = 11

Once again, to process the actual test patterns, we need to apply different test patterns
input. We started at 0 time. We have an initial, that is, begin and an end will be there. We
stagger by a few nano seconds so that we apply the clock only after the data stabilizes
which is why we need to put 17 instead of 20, so that the data is applied before the clock
arrives at 20. That is the implication here. You would have noticed this all through the
design. The very first inputs are clock; clock has to be initialized because we are going to
run the clock and that also has to be initialized to 0. Later on, the clock will keep on
toggling as a positive going pulse; n1 and n2 are the two numbers we have already seen,
11 and eight bits respectively. We are forcing them 0 to start with. Later on, every 20
nano seconds, with the exception of this, we change the data; in this case, triple 5, then 5,

this corresponds to 0 1 0 1 and so on.

(Refer Slide Time: 37:58)

Then we apply 2aa aa; there is no signtity for each of this number and they are all not an
exhaustive test as we have seen in adder also. If you wish, you can do more exhaustive
tests among the test benches. But what have been done is that all the n points and
strategic values are checked by this combination. Similarly, there is another, all as here

and then 7 f f 8 O different combination; similarly all these

Once again | have noted all this down on paper. All these numbers are merely test
patterns testing for different input values and last one is O and then 7f. There are hex
decimal, | think the waveform gives both hex decimal and decimal, if I am right. Let us

see what it has in store for us.

(Refer Slide Time: 38:45)

§ cliperioddy2 clk <= -clk ;

endmodule

We give some more questioning for processing further say by 400nano seconds. This
may not really be required. It can be 100 or even less. Finally stop. This completes the
test bench with final statement of always; wherein as usual, you toggle the clock here.
This is the end module; we have symplify results. We look at the waveform before we go

to this result.

(Refer Slide Time: 39:33)

Before | zoom, | will just explain what this is. We have seen totally eight pipeline stages
which are the clock 1 through 8. Naturally, the results will only manifest after the 8 clock
pulses. Let us first have a look at whether it is shown. We have a waveform and 3, 6, 7,
the eighth clock is here. Naturally, the final result must be delayed a bit because it is a

back annotated file. In fact, there is a cursor mark for the first output here.

The very first output, as you see here, is 0. I will zoom in to it in a minute. What we have
applied here is | will just read out different combinations of inputs. For example, as |
mentioned before, | have nl duplicated. In one case, it is in hex decimal and lower ones
are hex decimal which you can easily compare with the test bench we have just seen. The
corresponding decimal too can be had by using the format that we have seen earlier while
looking into the Modalsim tool and using which we can have the very same waveform
copied and then the format changed. That is why | have got it here. So this is nothing
other than this is only in a different format. So it is very easy to change the format the
way you like and it will be easy for us to deal with decimal numbers rather than hex
decimal numbers. You can trust the simulation tool to do this conversion automatically. |
have verified this to be correct. You too can verify independently if you wish. Let us see
this. 0 into 0 must be the 0 and that is the result after the eighth pulse which we had
already seen. So this result is correct. | have listed all this here. | will read this as well so
that you can have a look. So, the second number is | will just read out from here and
cross-check this paper. First is 0 into 0, next is minus 63 into 85, then 6682 into minus 86
and minus 1 into minus 12 8, then minus 683 into minus 1, then minus 1 into minus 127,
reading from this paper you can cross check; then, minus 683 into minus 127, 682 into
minus 127, then minus 1 into 0 and you will get some more in the subsequent waveform.

The very first result is 0 and that is what O into 0 is which is correct.

(Refer Slide Time: 42:22)

I will zoom this for you to see it clearly. So that is what we have seen here, 0 into 0

minus 683 into 285, 682 into minus 86 and so on. This is in hex decimal and this is in

decimal.

(Refer Slide Time: 42:42)

The final result is here and that is available only at eighth clock pulse. Each clock pulse is

50 megahertz and 20nano seconds so you get the result at around 160nano seconds. That

is what the result is 0 here. If you go into the second waveform, | will zoom out
straightaway. As far as the inputs are concerned what we have seen is minus 1 into 0
earlier that is what is here and to continue that minus 1 into 1 gives plus 127, then 0 into
minus 127. | hope they are there. Yes it is there. The final results start with O that you are
seeing and different results are here. We will cross check with the hand computed thing.

First, 1 will zoom in to this one so that you can see. This is decimal result here. We will

just zoom this.

(Refer Slide Time: 43:43)

e v+ < w

You can see here. First is Oresult, then minus 58055, then minus 58652, then 128, 1683,
127, then 86741, minus 86614, then 0, then minus 127. It is probably not there in this.

(Refer Slide Time: 44:07)

We will see the next waveform. | will zoom out straight away. This is basically the same,

0, minus 27 you have seen.

(Refer Slide Time: 44:20)

1Ny 9 olle v+ <l e

The final results for 0 into minus 1 must be 0. That is what is here. The next one is 0 into
127, which merges with the same 0 so it continues to be 0. This is the final result we had

and the result was delayed by eight clock pulses because of eight levels of pipelining.

This establishes the working of the algorithm. We will just have a look at the symplify

results, what it has to say for this multiplier.

(Refer Slide Time: 44:50)

Reserved

3 D:\useri\ram\vorileg latest\dvis: des verilog'\mmltl
lsxiis.v ')
Verilog syntax check succesaful!
Selecting top 1 1" module multiiaxss
Synthesiting e multllaxBs
IN:SD: \useri\ram\verillg latest\dvlsi
ax8s.v 346:0346: 5 |Found soqShift nlornlyx,
widthel
N:"D:\user\ram\varilog latest\dvliai deos verilog'\mltil
sx8n.v° 346:0:346: 5 |Found seqgShift nl, dapth=6, widthwl
IN:TD\user\ram\verilog latest\dvisi des werilog\mltll
sx8an.v" 1 346 346:5|Found meqgS t n2 depthe6, -
wrilog lat visi deos verilog
S |Register bit slda reg2(6] is always

This design is multl1s into 8s.

(Refer Slide Time: 45:00)

AR AL

Worst aslack in design: 12.009

Ragquested Estimated
Starting Clock Froquency Froqueacy

25,1 M

Requosted Estimated
Period Period Slack TYpe

20.000 7.991 12.009 inferred

. T T T ——— £ W T ———_— " —

Resource Usage Report for moltlisxés

It works at 125 megahertz here and this is the symplify result.

(Refer Slide Time: 45:03)

Period

20.000 7 12.008 inferred

—— T ————— P — T — T —— . — - —_
Reacurce Usage Reaport for multilsx8s

Mpping to part: xcysllehg240-9
Cell usage ’
MUY L 100 uses
XORCY 109 yses
MUXCY § usos
FDR 105 uses
4% 209 uses
1 use
1 use

We have selected the same device as what we are going to use for DCTQ later on.

(Refer Slide Time: 45:07)

105 uses
209 useon
1 Use
1 use

I/O primitives
IRUF 19 uasén

osyP 19 useos

BUFGP 1 use

SRL primitives
SRL16 9 Esos

1/0 Ragister bits
Register bits not including I/Oas

This gives all the primitives cell usage.

(Refer Slide Time: 45:11)

SRL primitives
SRL16 9 uses

I/0 Register bits
Rogister bits not including I/0s

Clock Buffers: 1 of 4 (25%)

Mapping Susssary
Total " LUTs:. 181 (1W)

Mapper sucoessful!

Finally, it gives number of LUTSs for this design rather, high for a multiplier and it is 1
percent. It is more than the full adder that we had designed earlier. Of course, the designs

are totally different. You cannot make a comparison.

(Refer Slide Time: 45:31)

Nusbar used as Shift registers
Nusber of bonded I0Es 38 out of
IOB Flip Flops .
Number of GCLEs 1 out of
Nuasboer of GCLXIOBs 1 out of

Total equivalent gate count for design
Aditional JTA0 gate count for IORs

Mapping coepleted

Timing susssary

Timung errors: 0 Score 0

Constraints cover 2328 patha, 0 nets and 896

Xilinx place and route results are here. You see that slice etc., reported there. What is of

interest is the number of gates. In the full adder, we had some 8000 gates and we have

just 7000 here, although LUTs are different; the gate count is what determines the chip

area.

(Refer Slide Time: 45:54)

Timing susssary

Timing errors: O Score: 0

Conatraints cover 2328 paths, 0 nets, and 896
connections (100,08 coveraged)

Design statiatics

Minisum period 12.132na (Maximum froquency

Minimuss Lnput Arrival time before clock
Minjmum cutput required timeo after clock

You can go through the same exercise with other algorithms that you may be learning
such as Waugh algorithm, then Booths algorithm, there are so many algorithms. You can
take some of those algorithms and make a comparison with this new algorithm that has

been done by the present designer.

(Refer Slide Time: 46:16)

Running DRC

DRC detocted 0 errors and 0 -warnings
Creating bit map

Saving bit stroam in X?.’.l".'.‘.'.'-l".'. it

Creating bit mask
Saving mask DIt stream in "multlilisfis. . mak”
Bitatream geberation is complete

Unfortunately, the frequency falls after the Xilinx place and route but it is still quite high,
82. It also creates a bit stream as output for you to load into the actual fpga in order to test

on the hardware or cell as an ipcore if you happen to be ipcore designer.

(Refer Slide Time: 46:36)

Code and teat for.adding -two asigned numbars of
width 16 bits each in the following mannoar

(1) Add all the 16 bits at a time without any
pipalining

(A1) Add only 4 bits at every pipeline
stage. Repeat for § bitas.

Analyze and tuse the optimum number of pipeline
stages An order to get the best posgible spoed of
implesentation. Which of these three designs,
vialds the best porformance ih terms’ of spobd/chip
area?

S
Inploment and test Verileog code .for adding cight

Before we wind up this arithmetic circuit there is an assignment for you. | will just read it

out and explain. Let us see what the assignment says. Code and test for adding two signed

numbers of width sixteen bits each. We have earlier seen twelve bits. Now | want it
worked out for sixteen bits and not eight numbers but just two numbers this time in the
following manner. You have to do it in this fashion: Add all the sixteen bits at a time
without any pipelining. Earlier we have done pipelining as far as the data bus width is
concerned by taking the LSB and then pipelining functionality as well. I want it done
without any pipelining; just add straightaway and merely register it if you wish. Find out
how much delay it can give. This is only for two numbers. If you wish, you can do this
same thing for eight numbers and compare this result with the adder that we have already
done. This is sixteen bits at a time. Do this same thing for two numbers addition using 4
bits at a time as well as eight bits at a time. In fact there are three different problems and
this is another problem. This is another problem. You have to solve them independently.
Add pipeline stage. So before doing that one, first analyze and use the optimum number
of pipeline stages in order to get the best possible speed of implementation. So from the
speed point of view, we are doing this partitioning of data bus, say, four bits or eight bits
or sixteen bits. You repeat all this so that you will know where you stand as far as the
speed performance is concerned as well as the chip area is concerned. Which of the three
designs yields the best performance in terms of speed and chip area? That is what | have

explained just now.

(Refer Slide Time: 48:37)

Implement and test Verilog ocode for adding eight
signed masbers, each of width 14 bits on similar
lines as the 12 bits adder/subtractor desaign shown
carlier. Use six stages of pipelining. The final
output ‘sum’' ouast ‘be registerd

»

Implomant and test Verilog oocda for multiplying twe
nusbexs for the following specifications

1 A8 unsignod'S bit, and B2 “As signed § bit
L is sigeed 12 bit, and n2 is unsigned 8 bhit

Use the multiplfor algorithm presented carlier.
Design each of the above with eight pipeline stages
to increase thoe speed. Inputs are not registered.

We have a second assignment. In fact, the first assignment is actually three for you. The
second one is to implement test verilog code for adding eight signed numbers and we
have done this before, each of width fourteen bits instead of twelve bits that we had
added earlier. Evaluate this on similar lines because we will use this particular exercise in
our DCTQ algorithm which I will not explain. I am depending on you to work out for
fourteen bits. This is exactly the same thing as what we have designed earlier for twelve
bits. That is what it implies. Each of width fourteen bits on similar lines as the twelve bits
adder subtractor design shown earlier; use six stages of pipelining. In this case, the only
difference is that we earlier had in the twelve bits addition only five stages of pipelining.
The final result, the sum, came only as an assign statement and we did not register. In this
case, the final sum will have to be registered. This means that after fifth one you have to
add one more clock after the assign statement for the sum. So you add one more register
for that pipelining. Add that as a sixth register and that completes this sum. So this is the

one that we will use.

Similarly, we will have a multiplier and that is this exercise, which once again is
mandatory because we will use these multipliers in DCTQ register which I will not
explain. So the problem is exactly like the multiplier that we have considered in this
lecture. Implement and test verilog code for multiplying two numbers for the following
specifications: nl is unsigned eight bits and n2 is signed eight bits, and nl is signed
twelve bits and n2 is unsigned eight bits. The difference is that this is a separate
multiplier from this so you need to do two independent multipliers: one is eight bits
unsigned and the other number is signed eight bits. This is an eight into eight multipliers;
one is signed and other is unsigned and which is signed is also mentioned here. Similarly,
we need twelve bits into eight bits. What we have seen in this lecture is 11 bits into eight
bits. Here it is different and this is also different. We need both of these for our video
compression algorithm. That is a DCTQ algorithm which we will see later on. Be
prepared when we come for that by solving all these assignments, especially this and the
14 bits 8 numbers adder; those two are the ones that we will use. Use the multiplier
algorithm presented earlier; design each of the above with eight pipeline stages to
increase the speed; inputs are not registered as usual as in the case we have seen. You see

that there are once again 8 pipelines register and take care of this. This is exactly the

same as the multiplier presented in this lecture. We have completed arithmetic. We will

see design applications later on. Thank you.

