Digital VLSI System Design

Prof Dr. S. Ramachandran
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 41

Design of Arithmetic Circuits (continued)

We are looking at the design for adder or subtractor design in which we had added eight

numbers, n0 through n7.

(Refer Slide Time: 02:40)

ADODERR/ SUBTRACTOR DESIGN

,‘ﬂiv "
nl 11N
ol (1104
CAR RS
wvam [14:0]
LR RAREL

oS 1y

e (11w

" (110

We got the sum which is three bits more than each of these bits. The last bit is a sign bit as is

also the case with the sum.

(Refer Slide Time: 02:53)

Pipelined design partitic

LU AR

i _-_-,

§ 10104
nS 11104 wum [14.0]

™ 110)

nf (1o

e 110

We had seen that the whole thing was a pipeline and a partition for data width as well as the
functionality. In this example, the functionality happens to be same add or subtract. When we
take up bigger applications such as DCTQ, we will appreciate the functionality difference
coming in. We had three stages of pipelining here with the five internal registers used as

pipelined registers. Note that the last sum is not registered.

(Refer Slide Time: 03:30)

11110000 Data
10000 Retain first 1 followed Ly Os
00010000 Invert other bitas

Sign can be axtended by any number of bitas withoat
affecting the actual value

Sign extend moans duplicate MSE ([(8)«(1])

Extond
Sun

'
1111113131

We had seen how to take a two’s complement of signed number and these were the examples

we had considered earlier.

(Refer Slide Time: 03:42)

// Ndds eight 12 bit £ Jlemont noa., nd to n?
/ ¥ive pipeline atages rogistared # posadge clk

// Result, sum,. is in 12 bit, .2's complement (not
'/ registared)

mocdule” adderil2s (
clk
00,nl1,.n2 .03 .04 .05 06,07,
sam
r3

input
Anpat (11:0)
output [14:0)

Now, let us have a look at the verilog code for this adder subtractor. | will add eight 12 bit,
two’s complement numbers, n0 to n7. There are five pipeline stages registered at positive
edge clock. The resultant sum is in 12 bit, two’s complement not registered. There is a

mistake here. The sum must be fifteen bits.

(Refer Slide Time: 04:12)

module’ adderilds(
clk
~ ” -
. nl.n2.03.04.85.06.07,
sum
y 3

wire [7:0)
wire [7:0)

wire [5:0)

We will first have to declare the module. This is the module name we are giving. If you wish
you can designate as 8 into 12s as there are eight inputs; clock is one of the inputs and nO

through n7 are the eight numbers. So what we have here is that each of them is twelve bits

and that is why we declare this and clock is also declared. So also is the case with output in

which the sum is of width fifteen bits. That is the output listed there.

(Refer Slide Time: 04:53)

During the course of the other statements we will actually work out the arithmetic portion.
We will encounter many intermediate signals. Some of them may be with assigned statements
and therefore, they are declared as wire. The width of each is also declared here. For
example, we will be adding Isb as we had mentioned in the pipelined partition earlier. We
will also be adding msb with the carry of the Isb addition and so on. They all have to be

declared here.

(Refer Slide Time: 05:30)

I'n0_reql ;
| 8d regl |
7) n2 reql ;

). B3 _regl
| n(—dre-;l :
) nS regl
] né_regl ;
}y 87 reqgi

(7:0) =00 lsbregl
[7:0) 501 labregl

There are also numbers n0 through n7 that will have to be propagated which is not computed
at a particular stage. For instance, msb has not been computed therefore they have to be
registered and propagated through the pipe line in order to process when the time is right for
them. There are other similar next stage msbhs and Isbs listed here and they are declared as reg

and so is the case here.

(Refer Slide Time: 05:58)

reg [7:0] 503 lsbregl ;

reqg [5:0) s00 mabreg2
rog [f _mabreg?
reg : 502 mabrog?
rog [5:0] =03 mabrog?

req 0] »00 lsbreg2
reg :0) =01 lsbreg2

rog [6:0] s02 1sbreg2 :
reg 0) #03 lsbreg?

rog (7:0] s10 labreg3
reg [(7:0] sil lsbregld

req (5:0) 500 mabregd
rog [(5:0] s0) mabregd ;

s

This is the second stage. 1 stands for the second stage and 0 for the first stage.

(Refer Slide Time: 06:05)

] =10 lsbregl
) sll labreg3

] 200 mabregl .
] s0A “mab regl
502 mabreg3
5:0) sOJkrr.sbrqu

0} 510 lsbreg4d .
0) a1l labreg4

] 810 mabregd
} 511 msbrogd ;

510 msbreg5

Once again you can see 1 0 is second stage of msb registers. This completes the reg wire
declaration.

(Refer Slide Time: 06:20)

e e e e ——-

Cadw AL en -

ass:qgn

/ n0-n7 1lab need not bo regi

addition is already carriod

We also need some carries. That is for we are doing. The final result will be here. Actually,

the ultimate result will be in assigned statements. Therefore, that is not listed here but it had
appeared elsewhere.

(Refer Slide Time: 06:36)

asaign s00 Rab[7:0] = n0[8:0)+nif6:0)
// A4 laby firet ~ #00 _1sb(7] is the carry

assign o0l 1ab{(7:0] = n2(6:0)}+n3(6:0)

/ n0=-n7 Llab need not be regiastéered aince
'/ addition 18 already carried out here

assign 50;‘_1.\1;;’7:0] = nd[6:0)+p51(6:0)

asaign s03 lab[770) = n6(6:0)+n7[6:0)

The first statement is as we mentioned before, in the first stage, we add two numbers at a time

n0, n1 and we add only the Isbs of this. For example, seven bits are only added and in parallel

that is concurrently, we add other numbers as well n2 and n3 and using this assign statement
and the result is put in this, assign statement is declared as wire. So this is nothing other than
a combinational output. Similarly, we have s01, s02, s03 arising from adding other numbers
S0 n2, n3, here n4, n5, and n6, n7.

(Refer Slide Time: 07:25)

assign s01 1ab{7:0] = n2(6:0})+n3[6:0)

// nO-n7 1sb need not be registered since
'/ addition 1 alreddy carzied out hore

assign #02 1ab(7:;0] = nd[6:0)+n5(6:0) ;

assign #03 lab(7:0) = n€[6:0)4n7[6:0)

always. § (posedge clk)

// Pipeline 1: clk (1) Regliater mab to continue
// addition of msb

We add using 4 adders concurrently so that this is at the first stage. In this, we add just the Isb
and we latch or rather register when the first clock arrives at the positive edge.

(Refer Slide Time: 07:31)

assign 303)ab(770) = a6[6:0)+n7[6:0)

always. § (popedge clk)

// Pipeline 1: clk (1). Register mab to continue
// addition of mab

beogin

n0_rogl(11:7] <= n0[11:7)

/7 Preserve all inputs for mab addition
/ during the clk{2)

] <= pl(11:7)

This is the pipeline 1 clock 1 register msb to continue addition of msh. Since we are not
adding the msb, we have to register it separately. That is what we are doing here. This is the

msb for all the numbers. Then propagate it for use in the next when the next clock arrives.

(Refer Slide Time: 07:51)

/7 Preserve all inputs for mad addition
'/ during the clk{l)

<« Bl[11:7)

2 regl{il:7] < n2[11:17)

:x‘._r-,\gl(‘.‘.:r} < 7]

M roglil:7] <« 1:7)
.'l':»k'-r]}[ll" < 71

:xﬁ__:.',-.,' D

We will do this before the next clock arrives.

(Refer Slide Time: 07:57)

800 lsbregl(7:0) <= 200 lsb(7:0])
. »
// Preserve all lsb sum
{/ 300 labregl(7] is the registored carry
// from lsb addition

801 lsbrogl(7:0] <= s01 lab(7:0)

802 lsbregl(7:0) <= 302 1Isb(7:0]

503 labregl(7:0) <= 203 1lsb(7:0)}

We also preserve the sum. This is the Isb sum and that has also been preserved here. So we

had four results by adding 8 numbers, that is why 0 0 through s03 will be the Isb results.

(Refer Slide Time: 08:18)

Before we add the msh, we should not forget to extend this sign before we add the msb. This
extension of sign is nearly a duplication of msb. This is the msb 11 through 7 and this is the
sign bit. We just have to duplicate here, and the whole thing is concatenation, that is, to say
first we write the duplicated sign bit here of this number called nO reg 1 that is registered at
clock 1 and the whole thing put together is a sign extension of the msb. We add the second
number to this and follow this same standard style with that too. For example, this is the
signed extended bit and this is the actual msb bit of n1 and we have to add to this, we should
not forget to add the carry resulting from the Isb addition which is available in this. This was
the last bit and final result of Isb addition and that should not be forgotten here, that is, to

make total addition; same is the case for other pairs of numbers.

(Refer Slide Time: 9:25)

711+801 labregl(7).;

nd regl(il:7))+

71 1+a02 labrogl(?)

AS sign s03 mab([5:0) & 9| né reglf{ii: 7))

13:7) 1+503 labregl(?)

always. § (popedge alk)

/ Pipelinae 2 clk (2) Rogistar msd to continue
addition of mab

For example, we have n2, n3, then n4, n5, then n6 and n7. So, in this case, s00, sO1 through
s03 are all assign statements. This is pre-computed because being a time consuming thing,
you want to speed up the system. Therefore, we pre-compute and only with the following
clock edge, we assign these values to another set of registers. We preserve the msb sum that
we have computed earlier and we use this same nomenclature in another register. This is
clock 2 so we just add reg 2 to discriminate from this one. This will have to be used in the
subsequent stages.

(Refer Slide Time: 10:15)

Here, we should also preserve the Isb sum because we have not yet made the total result of
the first stage. This completes the very first stage of addition that we have seen in the

partitioned pipelining approach in the diagram we have seen earlier.

(Refer Slide Time: 10:33)

In the second stage, we have four results that have come from the first stage s00 through s03,
and that we will add here. Once again we adopt the same strategy that we have done earlier.
We take the whole number and bifurcate into roughly equal numbers and call them Isb and
msb and first add just the Isb. This is what we do here. The Isb is added or the first stage s00
to the sO1 that was the second output of the first stage. So is the case with s02 and s03, which

are the other two outputs of the first stage.

(Refer Slide Time: 11:20)

0501).‘&-!0;'.‘[6 0)

[/AGd 1ab £irst — 310 lab{7] is the carry

aAssign 5‘.1_ 1ab(7:0)] = 532A1,1bru;?5{- Q]
4303 labrog2(6:0)

/ /800,501 labs need not be registared
//since addition is already carried out here
alwvays # (posedge clk)

/ Pippline 3: alk (J). Register sab to continue
// addition of mab

We designate these as s10 and s11. This is the Isb sum and this will naturally be the carry
resulting here to which we will add msb later on.

(Refer Slide Time: 11:33)

//since addition is

Mways § (posedge cl

/ Pipeline 3; ¢l
addition of mat

begin

Now what we have to do is when the positive edge of the clock is encountered, that is at

clock 3; we will register msb to continue addition of msb later on.

(Refer Slide Time: 11:46)

nlo.lnbxqui“:.C-) 3 alO_lsb('Y.OZ >

// Prescrve all lab sum.

s8ll lsbreg3(7:0] 81l 1ab(7:0] :

200 msbreg3(5:0] < a00 mabreg2(5:0]
// Presarve all mab sum
801 pabregl[5:0] < a0l mabreg(5:0)

uJ."-mr-nyq.‘)[S 0] < A:‘?‘b\bruq'.’f,'x 0)

We have also to preserve this Isb sum because we need it at the end. We have here s10 and
s11. This is the second stage so there will be only two outputs here. This is msb so we need to

preserve the msh. That is Isb and this is msbh. We continue the addition.

(Refer Slide Time: 12:19)

02 mabregd|(5:0] «

503 mabreg3{5:0]

{50

301 mabregs

+al0 1
“ atage with sigm extension ang

s fgaored

As far as the msb is concerned we will add the msb in this fashion. For example, as this is the
second stage, we have added only the Isb earlier. We must continue adding the msb along
with carry that was generated in the Isb addition of the first stage output, which is this one
here. As usual we concatenate the sign extended bit as well as the actual number of msbs that

is. So is the case for the first output or the first stage and this is the second output so when

you add these together out comes this result which is also in assign statement being a
combinational output.

(Refer Slide Time: 13:04)

mab (6:0] "= (200 msbrogd(5)
sOO__:.a.bxch[S DR R L
{201 msbreg3(5],
80} mabreg3(5:01)
‘nlo—lubroqlﬂl

/ Add MSB of 2™ stage with sigm extengion and carry
/ An from LSS
210 mab({7) is fgnored

assign sll mab{6:0] = (802 mabreg3(5),
nﬂ:‘_..-.m.!nrﬁq‘![') 0) s
{503 mgbreg3(3)
303 mabreg3[(5:0])+
nllﬂlsbroq}:‘,] S

And note that we have added the carry here. That is what the comment says here add msb of
second stage with sign extension and carry in. This is carry in from Isb. The Isb carry out
becomes the carry in for this msb. It also results in 1 more bit, which is nothing but
duplication of the same sign bit. Therefore, we ignore that.

(Refer Slide Time: 13:26)

) (;’-41-.'."-.1-20 clkx

/ Pipeline 4 clk (4)
/ addition of mabd

begin

510 ladbrogd(6:0) <

We have msb, sign extended and this is also msb; once again sign is extended.

(Refer Slide Time: 13:43)

// 810 mab(7) is fgnored

assign sll mab(6:0] = (802 msbreg3(5],
802 mabreg3[5:0) |+
(203 msbreg3(%)
803 mabrog3(5:0])+
8ll lsbreg3(7)

»
always ¥ (posedge clk)

/ Pipeline 4: clk (4) Register msb to continue
/ addition of mab

begin

810 _lasbregd (6:0) <= 510 labregl(6:0)

There is also one carry resulting from the previous one. What we have seen earlier is for first
output, s10 and here we see for s11. It is exactly the same thing as that. Now we have added
Isb as well as msh. At the next clock edge, we will register the msb to continue addition of

msb. This is at the positive edge of the clock and this is clock 4.

(Refer Slide Time: 14:13)

:IO_vlnt-req(ZG 0} :JO_J;.[::(»(;J{S 0)
'/ Presorve all lsb sus

asll labregd(6:0 sll labreg3(6:0] ;

alO_nu\bxoq(f. 0 < alD_«mthGvO]

// Preserve all mad s
811 mabregd(6:0) < 81l mab(6:0)

end

Here, we also preserve the Isb that we have added earlier because we finally have to put them
all together, msb and Isb. That is the reason why we preserve. All these are preserving Isb and
this is preserving the msb. Note that in second stage we have only two outputs. Once again,
the last bit will be the carry or even the sign bit.

(Refer Slide Time: 14:44)

tage adastion
»
220 1

ab(7:0] = 530 labreg4(6:0)+
81l labregé(6:0])

//A44 lsb first - 320 1lsb(7] is the carry

always ¢ (posedge clk)

/ Pipeline 5: clk (5). Regiater mab to continue
// addition of msh

begin

In the third stage addition, this is the final output that nomenclature has. What we got from
the second stage was s10 and s11 and that was only Isb. Therefore, we add the two Isbs of the
second stage. Add Isb first s20 Isb7 is the carry. Here, this is the carry.

(Refer Slide Time: 15:15)

always § (posedge clk)

/ PMipelioe 5 clk (5) Register msb

/ addition of mab
,

begin

810 mabregS{6:0) <= 510 mabreg4[6:0

11 mabregS [(6:0) <=

At the arrival of next clock, that is, clock 5, register msb to continue addition of msbh. We just

transfer it to another register and note that only 5 is different from this. So we just preserve

all msh here and for s00 as well as s11.

(Refer Slide Time: 15:45)

addition of msbh

begin

810 mabregS{6:0) <~ 510 mabregé[6:0)

{ Prosezxve

wogd(6:0)

1
‘3

Addition of msb, preserve all msb and also the Isb sum. Finally, note that s20 is the output.

This is the one. This is last, Isb and msb are here and this is only a carry.

(Refer Slide Time: 16:02)

820 lsbreg5(6:0) <= 820 lab(6:0);

end

// A4 thisd stage MSE result and' concatenate
// with LSE result to get the final result

assign sum(14:0) = | ({510 mabregs(6)
810_mabrogS5(6:0114
{nllﬂr_&bxoqﬁ{G]
sll mabregS(6:0]}+
520 _lsbregbcy)
820 lasbregS[(6:0]);

We add the third stage msb result and concatenate with Isb result to get the final result. What
we have done so far is that we have added Isb of the second stage as well as the msb of the
second stage along with the carry that is resultant from the addition of Isb. Now we have the

total value available there in the form of two outputs namely, s10 as well as s20.

So the final result is addition of 2 numbers that results from the output of the second stage.
There is basically s10 and s11 and we have to sign extend as we have done before. That is
what we have done here. The very same thing is extended here. We have to add the msb to
that because we have not done the addition as set; we have done addition only for Isb. Having
done that one, that is, from this one we also have to concatenate the Isb because we have
added that previous stages and that also Isb have to be concatenated. These are the flower
brackets used for concatenation. Once again, concatenation here just it separate out, | mean to
sign extend so is this case sign extension of this number. So in the second stage msb, there
are two numbers, s10 and s11 are added with sign extension. To that we concatenate the Isb
because we have added this earlier. So out comes the final sum, 14 through 0. You can very
easily reason this out. For example, it is seven bits and concatenation eight bits; this is also
eight bits and we have 7 plus 1 equals eight bits here. If you add all these, this will be eight
bits, 8 plus 8 then plus 7 so you will get a total of fifteen bits. This completes the design.

(Refer Slide Time: 18:42)

define cliperiodby2 10

include "adderl2s banno.v'

module adderils teat {

We will look into the test bench for adder subtractor design. As usual, we want to run at say,
100 megahertz. So we define clock period by 2 and we need to have back annotated file for
adder. We declare the test module, which is this and we want to return only the final sum.

Note that we had used only assign statement for this sum and therefore, it is not registered.

That is why it is in 5 clock cycle. If you want to register it, you need one more clock cycle.

We do not want registration right now.

(Refer Slide Time: 19:18)

Once again, the sum is declared and the entire inputs clock, n0 through n7 is registered in the
test bench. Then, we invoke the actual design which is added 12s and instantiate and list 1/Os.

(Refer Slide Time: 19:29)

addorlls

clk(clk) |
no (nd) ,
nlial).
02 (n2),
B3 (n3)

nd (n4)
ns (ns)
né (n6) ;
a7(a7)
sum (sum)

For example, clock and n through n7 are inputs and final sum is the output.

(Refer Slide Time: 19:33)

2 RO
2'h0
12 'ho
2'850 3
hO
12'ho
ho

nl =« 12°heee

Then, we start the real testing process by initializing with begin and matching end. In
between at a different of points, we keep changing the various inputs. For example, all the
inputs are initialed to 0 here.

(Refer Slide Time: 19:50)

12'hWIfE
12'h7L8L

Let us say, we apply a different number at 17 nanoseconds. In this case, all fs mean all 1s. All
1s mean we have seen in two’s complement representing it is minus 1. We shall add minus 1
here. We shall add all Os here. After 20 nanoseconds we shall change again into a different

value.

(Refer Slide Time: 20:18)

12'hELE
- 12'hefye
12'hELS

n0 = 12'09
12'hILe
12'h7EE

12'h7ee
n4 12 'WILe
ns 12'h7LE
né 12'h7LE ;
n? 12'h7£L

20 nod = 12 "h800
nl = 12'h800

o o

It is 20, 47 or something which we will be clear when we look at the waveform. We have
initially staggered a bit here, 17 nanoseconds, just to make sure the data is stable before the

clock arrives.

(Refer Slide Time: 20:38)

12'h001

We change here every 20 nanoseconds. | earlier mentioned 100 megahertz but it is actually
50 megahertz because the loaded value is only 10. That is just half the time period; therefore,
it must be 20 nanoseconds time period. Hence, the clock will have to be 50 megahertz. We
change another set of data to 800 then all 1s. We will have a look back when we see the

waveform. Once again there is the difference 1 plus 1 minus 1 plus 1 minus 1. So you can

very easily compute the sum morally where possible. | have also jotted it down separately.

We can compare with that.

(Refer Slide Time: 21:22)

né = 12'h001
07 = 12'hELE

p0 = 12
12'h7Le
12 'hEL
12'h7LE ;
2'hH01
12" h£01
12'hi0)
128801

nle 1270
12'h555
2'haaa ;

We can, once again see one humber here and another number and so is the case with all 1 0 1

0 pattern and 0 1 01 pattern here.

(Refer Slide Time: 21:38)

12'h0
12' R0
12'h0
12°'80
<'ho
ho

12'h0

| think this is the final thing. Once again, we have all Os and after giving some quotient of

400 nanoseconds we stop. This completes the test bench and we finally have, in the test

bench, toggling of the clock. This is the statement that is responsible for making a free

running clock using an always statement.

(Refer Slide Time 22:00)

always

§ ‘clkperjodby? glk <

andmodulo

The module ends here. Before we go on to the simplifying results we will first see the wave

form.

(Refer Slide Time: 22:14)

‘N EEEREEE

. -
x e
= =
- -t
= e
> »
— cr
- s

AR

I will explain before zooming. We had earlier applied all Os and the sum must naturally be 0.
Let us see where that sum happens. All of them are Os and then all are just noted down. Let

me make sure that they are 8 into 0, then 8 into minus 1, 8 into 2047 and then minus 2048.

We, once again, have eight numbers and 8 into 1, then 1 minus 1 minus 1. This should give
you 0 and that is noted down as 4 into 1, minus 1 into 4 and then comes 4 into 2047. These
are all plus values. We can take this minus out so minus 4 into 2047. Naturally, this should
give a 0 again. So | have just noted down as 4 into 2047 minus 2047. The next value is minus
1366 plus 1365. This same thing happens in pairs here. That is noted down as 4 into minus
1366 plus 1365 which gives a sum of minus 4. Finally we have all Os, that is, 18 into 0. So |

will zoom this here.

Let us say we have already seen that there are 5 pipelines inside so naturally the result must
be manifest only after 5 clock cycles. Let us have a look at whether it is shown. The result
starts here, becomes 0. You will see this result clearly after zooming. Right now, just be
content with the waveform that you get. 1 pulse here 2, 3, 4, and 5. After 5, after a further
delay of almost 5nano seconds or more, the result manifests here. This is because of back
annotation. | would have got it right at this edge without back annotation; delays will come
into the picture because of back annotation. | get the result only after the delay. Clearly, it is
after the fifth clock pulse and that is what we have designed for. | will zoom it and see what
the results are. So these are all the 8 numbers that we have already seen explained. The final
line is the sum. The very first sum is 8 into 0 as | have mentioned here, so 8 into 0 is 0. That

is what is here.

(Refer Slide Time: 25:03)

The next one is 8 into minus 1 and the answer must be minus 8 so that is also here. It appears

as something else because the cursor is there, it is actually minus 8. And the next one is 8 into

2047 so it should yield 16377. That is also correct. The next one is 8 into minus 2048 and the
result must be minus 16384. That is correct. We have one more waveform. | will also zoom

this which will continue from the previous one.

(Refer Slide Time: 26:02)

This is the last data. All of them are Os and the first one is clock. The final sum is here. We
have already seen minus 161384 just overlapped so that you will have continuity in
visualizing this. The next one is 8 into 1 as per my list and it should give us a sum of 8. That
is what it is here. The next one is 4 into 1 minus 1 into 4 that must produce 0 and that also is
there. There is one more 0 here. Let us find out whether it is shown. The next value is 4 into
2047 minus 2047 and that naturally produces O that is what is here. The next value is 4 into
minus 1366 plus 1365 and this is 4 into minus 1 that is minus 4. So that is what you have.

(Refer Slide Time: 26:50)

Finally, 8 into O must produce a result of 0. That is what you have here.

(Refer Slide Time: 27:08)

1D O 7 SN (B S

This proves that the addition is working and all of them are signed numbers. We will have a

look at the simplicity results for this.

(Refer Slide Time: 27:22)

Performance Summary

LR R R R

Worst slack in design: 1,136

Requested Estimated
Starting Clock Froquency Froqueacy

100.0 M=z A12.8 M=z

. —— e — . ——

Requested
Poriocd

It works at clock of 112 113 megahertz. This is the symplify synthesis result.

(Refer Slide Time: 27:24)

Resource Usage Report for addaerila

Mapping to part: xovelOehgleO<8
Cell uvaaga:

81 uses

88 ysea

1 uses

214 uses

1 uae

96 uses

15 uses

We have mapped as usual on the standard device for the reason mentioned earlier and this is
the design. Various internal primitives are all listed and finally a number of LUTs are listed
here.

(Refer Slide Time: 27:41)

1/0 Registor Dits
Register bits not including I/Os

Global Clock Buffors: 1 of 4 (25%)

Mapping Sumsary
Total _LUTS 25 (0%)
»

Mapper suvocessful!

It takes only 95. Although it says O percent, it cannot really be O there and it is a fraction less

than one percent. So that is the synplify result.

(Refer Slide Time: 27:53)

Dosign Susssary
Number of errors
Mundor of
Number of

Nuader of Slices contaiping
unrelated logic

IOB Flip Flops
Nusbor of GCLEs
Number Qf GCLEICES

Here come the Xilinx place and route results and you have all the slices, flip flops, LUTs
listed.

(Refer Slide Time: 28:00)

of S6CLX1CEs

Total oquivalent gate coynt for design
Aditional JTAG gate count for I0Bas

Mapping completad

Timing sumsary

Timing erxrors: 4 Scoxe: 3037

What is our interest is the number of gates stands by; it says two input NAND gates and it

comes to around 8000 gates for a single adder which adds eight numbers of 12 bit signed
numbers.

(Refer Slide Time: 28:16)

Timing susmary

Timing errors

Constraints at , .0 nets, and 469
connectionas (100.C

Design statiastics

Minimum period 6.563ns (Maxtmum frequoency:

152,369z)
Minimum input arrival time before clock '4.256ns
Minlimus output srequired Cime after clock 11.083ns

Now, surprisingly Xilinx report much have higher frequency say, 152 megahertz.

(Refer Slide Time: 28:30)

dotoctod 0 errors and 0 warnings
Creating bit map
Saving bit stream in “"adderlilds. bit

ing bt mask
Saving-mask bit stroam in “adderlils.mak”
Bitstroam gesaration is complete

It also produces the dot bit output bit stream output.

(Refer Slide Time: 28:35)

nl 10N
resalt [1N:94

nl |79 —_—

bl

pipecline
vagoes

Next, we will consider the arithmetic circuit and will consider multiplier design. This is a
new algorithm developed by the speaker for the sake of implementing on FPGA as well as
ASIC yielding as high a through put as possible. This is primarily because | was designing a
DCTQ and all the compression algorithms which demand a very high through put. We will
have to process some very high resolution picture colors such as 1024 by 768 resolution. All

this necessitates heavy pipelining and also a massively parallel circuit.

Mention may be made that FPGA, ASIC are primarily massively parallel and highly
pipelined. These are all important characteristics of an FPGA, ASIC field when compared to
the microprocessor and dsp processors, wherein, you do not have this much massive parallel
sum or heavy pipelining. We get a very high throughput because of those two that is a
parallel sum and pipelining on the high end. This particular multiplier is simply a sign
multiplier for multiplying two numbers of this dimension for example, 11 bits. This arises
from DCTQ application point of view. One number is here and another number is eight bits,
7 through 0 and we nomenclature it as multiplied 11s into 8s and the final output will
naturally be the sum total of all the bits, that is, 18 through 0, which is 19 bits. You have 11
and 8 so it should produce 19 bits and that is what it is. Before we go into the details of the
algorithm, let me make a mention that this multiplication is done primarily as a magnitude.
Therefore we will first separate out the sign from the magnitude and apply the algorithm only
for the magnitude. We can deal with the sign separately which turns out be a simple

exclusively or getting and finally before we consider the algorithm, let us take an example.

(Refer Slide Time: 31:07)

Consider tha gvaluation of producty of twg signed
oumbors :

- 130944
Binary, signed represaentation:

01111111112 x 10000000 = 1000000000010000000

1l (magni tude) x n2 (magnitude)

We want to evaluate the product for two numbers, let us say 1023 into minus 128. This
happens to be the last possible value in each of these two numbers; this corresponds to n1 and
this corresponds to n2. The algorithm works primarily on magnitude and all those signs are
automatically incorporated. Internal evaluations are all in magnitude. Let us take this

example. If you write this in the binary fashion you will see all of them are 1 and 1 will be the

msb being a negative number. If you evaluate this you see that it is 128, 4 plus 3 is seven bits

here

(Refer Slide Time: 32:12)

10000000 = 1000000000
1l (magnitude) x 02 [(magnitade)

10000000

00000000000

00000000000
00000000000

. The 8th bit naturally waits for 128 and final result will be this in two’s complement fashion.
This corresponds to minus 130944 and as mentioned before we will take only the sign of this
number, which is this. This happens to be exactly the same and for 128, minus and plus
happens to be the same. This being a positive number, automatically the same number is put
for magnitude. So we can evaluate the magnitude nearly by taking two’s complement of any
number. For example, you can take a two’s complement of this and then out comes the
magnitude of this number. We can identify this number as negative number by inspecting the
msb which happens to be 1. Now how do we compute? Multiply in the usual way.

We are going in to the algorithm now. When we take two numbers, we take the first bit and
then multiply all this and then put here. It happens to be all 0 here because we are going to
multiply with 0 and out comes 0. So is this case for all other O bits and every time we shift by
1, this is what you do while hand computing and the final one is 1. Therefore, the same gets
duplicated and with, of course, one bit shift. You just add in the usual fashion, add bit by bit
along with the carry and finally this will be the result as far as the magnitude is concerned.
Let us nomenclature each of these partial product which is the multiplication of nl with
single bit of n2. The Isb bit will be first and all other bits will be in this fashion.

(Refer Slide Time: 33:44)

01131111111 10000000

00000000000

el

P2
)
4
P
P
P
P

.
S
6
]

Out comes this result. This is in magnitude form whereas what we have put here as in two’s
complement which signifies a negative number. This and the last number are actually
equivalent. So we can find it out from this. For example, if you take two’s complement, as |
mentioned earlier, you will get the magnitude straight away. We are not bothered about the
negative number because what you are interested is only evaluating the magnitude. So we
apply the two’s complement. We just start inspecting till you encounter 1. Retain all the
numbers as it is and then invert all the other bits. If you invert all the other bits, all this will
become 1 and this will become 0 and then seven 1s will be generated. Apart from this, 1 and
seven 0s and apart from that we have 9 bits. Is it same? Extra 1 is there maybe because of
sign extension. Or is there a mistake on the top? You cross check this. Even if there is a 0 not

the result will be same anyway. | may have put one extra 0 by mistake.

(Refer Slide Time: 35:21)

resadi] 1504

IL {® dk %

The algorithm goes like this. It is pictorially depicted. We have once again used bit
partitioning as well as functional partitioning. It happens that the functionality will be
basically add or subtract. This is in three stages as we have seen in the adder before. The only
thing extra is that we need to do left shifting of 1 bit or 2 bits or 4 bits. | will explain the
typical case of this new algorithm. Now what we had seen in this previous example is P1
through P8 has been partial product. In the verilog code that we are going to consider we will
see how P1 through P8 are arrived at. For the time being it is sufficient if you just add the P1
and P2 straight away. When you do this one, we have four such adders that will add two
numbers at one stroke so you will have all partial product results concurrently. That is what
we said before that FPGA or ASIC design is characterized by a massively parallel circuit.

When you see DCTQ, you will be astounded by the parallel sum that will be built in. It is also
highly pipelined, in the sense, that there are so many pipeline registers internally. For
example, two registers are hidden inside and that is the reason why clock has been input
there. In this case, two more here, again two more, and in fact, if you see a clock, we have the

very first clock.

(Refer Slide Time: 37:04)

LA LA SH

. ‘ -
vesalt | 1504
531
£ A

S22
ok (%) <k (%)

k(D) oH
(S VSR
k() k@)
Hegter
Register 1 SH \MSEH Wermlt
Kesudt

In fact, the very first clock will register this P1 through P8 and then nO and n1 are the actual
inputs that will be registered first and followed by this registry. Only with the arrival of the
next clock pulse do we reckon it as first clock in order to do the internal processing. We need
1 through 8 clock pulses. There are pipelined registers internally. There are three stages of
addition and there is also a shift here. That is happening inside here and shifting is very easy
in verilog. We have only to take the relevant bits and therefore, the whole multiplier is
reduced to mere addition and nothing more, primarily addition because two’s complement,
sign is taken care of by mere addition. So, the algorithm turns out to be very straightforward

and simple.

(Refer Slide Time: 38:15)

011111111110000000 . (magmi tude)

We have earlier seen that the partial products are P1 through P8. We add these two and
concurrently we add these two, these two and these two, by the 4 adders of the first stage that
we have seen. Out comes the result. While adding this one, note that we do not have to add
this first bit because you know that there is no matching number here. It is equivalent to
having a 0 here. When you add 0 and 0 you will get 0. It happens to be 0 in this example. But
do not jump to the conclusion that all of them can be done in this fashion; it is applicable only
for the first bit. There may be other numbers where they will all be non-zero, including this.
Even if it is a non-zero, that is, 1, if you add 1 or 0 to O you will get the same number.
Therefore, we do not add this. What we do is take the entire things bifurcates by 2 and call it
Isb and msbh. Add just the Isb at every clock and then add the msb at the following clock as
we have done before in the adder case. We will follow the very same pattern and at every
stage it will be the same. The subsequent addition will result from this. That result will be
added in the second stage. Naturally for eight numbers you will have only four outputs

because there were only four adders. Those four outputs will be taken two at a time.

Once again, in the second stage of addition, add two numbers at a time and out comes one
result. There will be two such outputs. We will add those two in the third stage resulting in
one final sum. All these would be registered at different points of time. In total, we have eight

clocks and, therefore, eight pipeline stages inside. Hence, eight pipelines register as well.

(Refer Slide Time: 40:12)

resadt | 1504
sS3
L] ,

S22
ok () ¢k %)

ki) RS
LY H VS H

Let us say, s11 through s14 are the intermediate results arising from the first stage of the
addition. We did not say what this Isb 1 is, so P1 and P2. (Refer Slide Time: 40:34) If you
take the example of P1 and P2, if you inspect these two partial products, what we see is this:
P2 is staggered a bit so as good as left shift by 1 bit. That is precisely what we are doing for
P2 and not only for P2 but also for P4, then P6, as well as P8. So you will see left shift by 1
bit as far as the first stage of addition is concerned; P2 is left shifted by 1 and only then added
to P1. This is clock 1, corresponding to which there will internally be a register which will
register the sum of Isb alone. What we have seen is the total number is bifurcated into two
say, roughly half, one we call Isb and the other we call msb. So, we add only the Isb and carry
will result which we will add with msb of these two at this second clock. Then concatenate 2
to make one complete S11 sum there. Like this, we will have four such results.

We will add these two and this time, in the second stage of addition, we have to shift left by
two bits; I will explain why in a minute. Similarly, S13 and S14 are added up and once again
this S14 is shifted left by two bits and then added up. Once again, this Isb will be added first
in clock 3. There is an extra 3 because the bit precision has now increased internally and it
will increase progressively. So we want to give a little more quotient. Therefore, we spend
one more clock. You can experiment with this to see whether we can reduce the clock and
there may be some scope for you to reduce. You may get even six pipelines instead of eight
and you can experiment with it. In fact, this is not really required because what we will do is

pipeline the whole, not only the multiplier but also the entire process. Even a complicated

algorithm can be totally pipelined. All these pipeline delays will only be a onetime affair.
Therefore, we are not really bothered about extra pipelines. The higher the pipelines you do,
the higher will be the throughput, that is, the speed of operation will be much higher. So that
is a desirable thing and, of course, you have to pay a price for additional pipeline registers.
That will only be a marginal increase so you are free to use as many pipelines as possible. We

will explain why these two bits here. We take the sum of the first stage.

(Refer Slide Time: 43:30)

031131111110000000 . (magnitede)

If you look at this example, once again what we do is we add this and out comes this result.
We add this and there will be a result here. You are trying to add those two results. So,
naturally, the first result is taken as such whereas the second result is shifted by two bits,
because if you see the second group, it is shifted by two bits from the first group. This is the
first one and the corresponding first partial product is this one. Therefore, there is a one and

then two shifts here. Therefore, the second stage of addition will have two shifts.

Likewise, those two, when added in the second stage, will produce one more output.
Similarly, you will get one more output from this. So note that, in the last stage, there will be
two inputs and those inputs are staggered by four bits because it is the result of these four,
first here and these four here. So, when compared to the first one, in this second group you
have four bits. So the third stage will be four bits shifted and that is how it is. This is the
specialty of this Novell algorithm for the multiplier. (Refer Slide Time: 44:48) There are
scores of other algorithms. You are free to look into this and you can make a comparison. In

fact, all algorithms are good enough and you are free to use any of them. Once you use this

pipelining approach, it does not really matter which particular algorithm you use; what is
important is how efficiently you use it. You can see two bit is shifted before the partial
product first stage and final stage when you add the two numbers. Once again, there is a left
shift of two bits here for this second number so, in this case here, when we add these two
numbers, the second is shifted by two bits. This is the second stage input. For the final stage,
we see that it is shifted by four bits for the reason we have explained earlier. Finally, the

result is in 19 bit as we have seen before. This explains the algorithm.

(Refer Slide Time: 45:43)

/ Sigoed mmltiplication of two
/ nZ (B-bDat). *

' nl (Partial product X for examplia) is the
// multiplicand, and is signeod

1, CT for exagple) is the signed
in twos complemont

/ This module has pight pipeline stages to 1
@ spood tnput 1 no registored

We will look into the verilog code for this algorithm. We have two numbers nl and n2; nl is
11 bit and n2 is 8 bit. Both of them are signed numbers. Internally, we will remove this sign
temporarily and then apply the algorithm only on the magnitudes. Having got the final
results, we will sandwich the sign bits later on at the fag end. Here we have nl and n2, which
are 11 bits and eight bits; 11th and 8th bit will be the sign bit. This particular thing, as |
mentioned before, is for DCTQ application. In the DCTQ application, we need to evaluate 8
by 8 matrices. For example, CX is a matrix we will have to evaluate and it will create some

partial product which is what is being used as n1. And this is multiplicand and is signed.

In this case, second number is a cos term. So in DCTQ, it is a cosine transform that we will
evaluate. We need some cos term for that and these are all stored in the ROM table, the
design of which we have already seen before in the ROM design. We had also mentioned that
it was with the end goal in mind that we had taken all these examples such as ROM, RAM,

Dual RAM and also the adder what we have seen as well as the multiplier that we will be

trying to look in to. All these applications are with the end view of using in DCTQ
application which is for video compression used for JPEG and MPEG. This is the signed
multiplier and we have a multiplicand and multiplier and the final result which is sum is an
evaluation of three matrices CX and CT. We had assumed CX is already available and CX

can also be evaluated by using a similar multiplier which we will consider later on.

(Refer Slide Time: 48:14)

/ Result (CX)CT is in twos complesant

/ T™hia module has pight pipaline stages to incxs
the spoed - lr.eut is not registered

module multilisxis (
clk,
nl
n2,
rosult
)

input clk
input (1070) ml
Anput {7:0) n2
output [(16:0) result ;
e

This result is in two’s complement. Now, we will see the actual design. This module has
eight pipeline stages to increase the speed and we should make a mention that input is not
registered; straightaway, it may be registered elsewhere. For example, these are all the inputs
supplied from the ROM table or from the dual ROM table that we have already seen. If you
remembered correctly, you could see that there are registers at the output for both dual ROM
as well as RAM, which we had seen in the design before. Because the registers are already
there we do not have to register the inputs. So we can take them straightaway. This is the
module name that we have declared here. So, module multiplier 11 into 8, S stands for sign.
This is the module design name we have given; implying that it is signed eleven bit. We have
clock as input. Then there must be two numbers as inputs, n1 and n2 and the final result is

also listed.

(Refer Slide Time: 49:20)

reault

All I/Os are listed and widths are also mentioned. For example, input here, then n1 and n2 are
inputs, eleven bits and eight bits, final result is nineteen bits. Whether there are two numbers
nl and n2, whether it is a O or not, we have a separate flag for that. That is what is declared
here. We have seen that the partial products are of eleven bits. We need to declare them as

wire as they are all evaluated as an assign statement.

(Refer Slide Time: 50:04)

In the case of first stage addition, we have seen S11 through S14. They are also
combinational to start with, especially the Isb portion. Even the msb portion will be primarily

an assign statement and later on we will be registering in the succeeding clocks.

(Refer Slide Time: 50:20)

You can see that so many signals like this are used.

(Refer Slide Time: 50:38)

a2lb ;
220

a2l

222

alla
a3lb ;
a3l

Fos sign
res .

That is for the first stage and this is for the second stage here.

(Refer Slide Time: 50:45)

s3la
[{7:0) aldlb ;
{17 =09 231

FO8 3ign
(16:0) res

nl mag
B2 mag ;

And this is for the third stage.

(Refer Slide Time: 50:52)

res sign
ros

1 =
nl _=ag
n2 mag
1 regl
vy _rq-(;‘

p]r regl

,’“:I‘L\’I'.
P3 regl
;:b;r(-ii
P7 reogl ;
pi.regl

slla reg2
8125 rog?

You then have a final result. This sign is also required; we have to keep track of it because we
are evaluating the magnitude using the algorithm. The magnitudes for the two numbers nl
and n2 are declared as registers which we will be evaluating. We also declared other register
which happened to be in always block and they are all at different clock. For example, we
give an extra reg 1 for any registering you do for partial product at clock 1. That is the

nomenclature we adopt.

(Refer Slide Time: 51:30)

Similarly, for other pipeline stages, when clock 2 strikes you will have intermediate results in
reg 2 and so on.

(Refer Slide Time: 51:42)

nl regl
nl_reg2
nl _regl
nl _regé;
nl_rxegs
nl regé

nl reg?

n regl.
n2 - rog2
nr_rnqj,
n2 reogé;

“ktnqb

We also need to propagate the number sometimes, nl as well as n2.

(Refer Slide Time: 51:53)

I rogl
: 7-: g2

rogl;

n2 regé;
”f:cq&
n2 ¥ ogt
02_r637,

nlornls pegl

And what they are, we will see when we start analyzing the code. We will continue with this
in our next class. Thank you.

