
Digital VLSI System Design
Prof. Dr. S. Ramachandran

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture No. # 36

PCI Arbiter Design using ASM Chart

We were looking into the PCI arbitration using ASM chart and basically, it is a design of

arbitration and not pertaining to an application such as video compression. Although, it is

for an illustration we mentioned about the video compression and sharing. This PCI bus

here or 4 masters namely, video grabber which will get the raw image data - it may be

PAL or NTSC sequence; or it can be SVGA format, any color motion picture can be

processed; say at 30 frames per second or 25 frames per second.

(Refer Slide Time: 02:32)

What we collect here using the PCI bus we communicate the raw data and to the codec

whose function is to bring about the compressionals and we have actually 2 here. 1 is

called encoder other is called decoder which brings about respectively the compression

as well as the decompression and as an abbreviation it is mentioned as codec. This is the

design that we will have to actually do using the Verilog and it can be an FPGA or ASIC

platform and there will be a first in first out memory in all these matters. So that,

whatever is processed here will be showed primarily and when it gets the chance in order

to communicate to out to another master for example, this raw data I want to

communicate here to the codec to start with, in order to bring about the compression. So,

what we do is, we make a request to a bus arbitrator which is our present design from an

independent masters.

For example, this can be a request 0 and this can be request 1, then request 2 and then

another which is the host. For example, a Pentium we have can be another master and we

assign priority to these and the top we will divide this into 2 groups. One is video

grabber and codec. We assign topmost to among the 2 groups and next group fire wire as

well as the CPU and among this, the topmost priority goes to the video grabber and once

again, among this second group higher priority is assigned for fire wire. And, fire wire is

a serial bus which can be connected up to 64000 and odd serial buses here. That means to

say, we can compress data here and then using the PCI we can send it over to the fire

wire which will in turn serialize the data and send it over the channel.

(Refer Slide Time: 06:04)

Likewise, from any other computer we can get another motion picture concurrently and

then process here and the reverse process can take place here namely, the serial to

parallel conversion, then using the PC bus, once again communicate to the decoder port

which decodes that means, brings about the de-compressional as such and passes over to

the monitor which is the computer monitor that we have right here. Through an interface

called advanced graphic port here and as far as fire wire is concerned, it’s through put is

really very high and we can very easily use MPEG streams such as MPEG 2 which is the

fastest of the MPEG group. And, we can also have JPEG or JPEG 2000 for a stream

frame then MPEG 1 or MPEG 2 or MPEG 4 and so on and any other standards can also

be incorporated here. what all we need to do is only a redesign the bus arbitrator as well

as the core that we are developing for a particular application.

(Refer Slide Time: 07:17)

It’s a maximum data that it can handle at one-go is 16 kilo byte; that means to say, you

can communicate to and fro from the fire wire up to this much size and this is not a

handicap because, it will get a chance once again periodically as we will see right now

and this CPU has, I mean, is connected to the PCI bus what is called north bridge and

main memory is also connected to this; these are all the standard PC architecture.

So, in the case with AGP as well as the monitor and this is what we are going to design.

This PCI arbiter has as I mentioned, 4 masters requesting the use of PCI bus and they are

communicated by using the signals - request 0 through request 3 corresponding to the

video grabber will abbreviate this as shown on the top. This PCI arbiter looks into the

priority that we are going to see shortly and as per the priority it will allocate grant

signals to either this video grabber or codec and so on using the signal grant - grant 0

through grant 3 is meant for this.

(Refer Slide Time: 08:04)

As far as the application is concerned you can have a high resolution color motion

pictures such as 1600 by 1200 pixels and this pixel resolution is very high and it

matches. I mean, it competes with the actual photographic prints and it is

indistinguishable from prints and so even this sort of motion pictures can be processed

with 64 bits and 100 megahertz PCI bus. Here, this 100 megahertz PCI bus is

nomenclatures PCI x bus (Refer Slide Time: 09:00) and if you want much lower

resolution, we can go either for PCI bus straight away a 64 bit or 32 bit or again speed

either 33 megahertz or 6 megahertz and the frame rate it can process at this speed that

you are going to discuss is 30 here.

(Refer Slide Time: 09:44)

This is normally for the NTSC format, US format and parallel etcetera, you need to

comply only with 25 frames per second and assuming we have a compression of 10 is to

1. That is to say, if you have 10 gigabytes of storage for a particular motion picture so

what all we need is only 1 GB after the compression is effected in the codec that we have

seen here.

The compression is brought about here and this is a very conservative assumption

because, from my experience I have been seen even for I-frame processing in MPEG 2, it

gives 15 to 20 compression factor. Now, let us see different timings here for example,

from video grabber to video codec which is a raw data communication would take for

this particular resolution 1600 by 1200 color motion picture around a 10 millisecond and

from video codec after the compression is affected it will send it to the fire wire for

onward transmission or a serial bus and this also requires the PCI bus and that would

take only a 1 millisecond because, we have said 10 is to 2 is the compression factor. That

means, it takes just one-tenth of this raw data.

So, next step is we send it out on the transmission channel serial channel and

concurrently we may receive another motion picture from some other computer over the

fire wire and that can be once again routed to the codec. In this case, it goes to the

decoder and these both are compressed data as such and it again, takes only 1

millisecond because it is compressed fashion and once this is processed here it brings

about decompression in the codec. Using decoder inside that and then what we need to

do is, nearly send it to the display monitor. Why are this AGP here and this would again

be same size or the raw data because, what we have done here is reconstructed the video

data. That is how we can communicate on a network, PC network and up to a resolution

of 16 bus 1200. And, this is rather a theoretical research stage; so will add to see the real

implication when we really build the system and summing up all these you have only

21.2 millisecond whereas 1 frame time is 33.3 millisecond taking 30 frame per second

and we have lots of room left. So, another 12 millisecond are so far the host. To do

certain job such as configuration form JPEG to MPEG 1 or MPEG 2 and so on, or

intermediate processing, also needs to be done which will use host for purpose and

naturally, have lots of time available for the host in order to complete its task.

(Refer Slide Time: 12:40)

So, this shows that, this scheme is a viable scheme; and let us see the, in order of I mean,

access to the PCI bus. This is the priority that we ascribe to different masters; for

example, we said the video grabber and codec are in the first group. So, we will give in

turn topmost priorities for the video grabber fallowed by codec and then we go to the

second group wherein, give only one of the masters namely, the fire wire which is higher

priority than the host. Once we have given a chance to the second group will come back

to the first group and give chance once again for both video grabber and codec because,

we need to process the raw data which cannot wait and we need to process it rapidly and

so is the case with the compression here and once we give this and naturally, the last

chance will be for the host.

As we mentioned before, host will not take much time for processing because, what all it

has to do is drive the menu to start with and then configure from one state to another

once in a way. What is topmost important is this video grabber followed by the codec

and that is the reason why we gave the priority like this (Refer Slide Time: 14:00); and

this is what we are going to implement in the bus granting scheme. Once we have given

to the second group we come back to 1 and continue forever.

(Refer Slide Time: 14:11)

(Refer Slide Time: 14:53)

So, we will see how to make an ASM chart for this application such as bus grant. This is

rectangular - is a straight indicator and actual value is put here. We are going to use the

decimal value because, it will be easier for us to code it in Verilog and the descriptive

state is on this. And this implies, we are going to wait for any of the request to manifest.

So, as we mentioned before there are 4 masters and each of which is interrogated here

whether a particular request is, has been got by an arbitrator (Refer Slide Time: 14:32).

Well, we are questioning at this point of time and topmost priority is for the video

grabber and therefore we question that first.

Suppose, the video grabber has not settled its request, so we will go on to the a next what

is called a codec and followed by fire wire as well as CPU and if none of these requests

are pending, so we go back to square 1 that is a wait state and continue wait till someone

makes the request. Once request is got let us say, the topmost priority is the video

grabber because that is the first thing that will happen in this compression system

because, without grabbing the image there can be no further processing. So, naturally

this video grabber is the one which is going to make the first request and it would take

some time for it to process. I mean, dumping it’s data collected over the PCI bus on to

the video codec; so that would require some time. So, it will the request 0 will be

asserted for quite some time and till it is finished, the usage of the PCI bus and so long as

this request 0 is asserted, grant 0 must be asserted and that is the loop here and next is

this is also the entry point for VG state and if this is not asserted or it has completed its

request usage of the bus. So, naturally the next contending master will get the attention.

For example, we will see request 1, or request 2, or request 3, in that order; this is once

again the same priority as we have seen before here.

(Refer Slide Time: 17:06)

(Refer Slide

Time:

17:52)

This state to which it goes after the request, is processed; it is asserted. It will be

indicated here; so that is 2 corresponds to 2 here; so that means, this is connected here

and once this is processed we go on to process the codec grant and this is request 1. I

suppose yes, once the request 1 is asserted we will grant the signal 1 and once again, we

stay here till this required v c has processed its codec; has processed all its transactions

for current cycle. I mean, cycle means not the clock cycle; it may be several clock cycles

and once it has finished its job, it will de-asset request 1. Therefore, control will go on to

the fire wire and CPU and in case they have a request pending it will go to that

respective routine. If none of this are present, it will naturally go to the video grabber

because, all the 4 have been covered here and this is for fire wire grant. Once fire wire’s

request has come it will grant tech corresponding signal here - GNT 2 here. Once again,

so long as its request is asserted it will keep revaluing around this asserting grant 2 all the

time and once it has finished its job, it will naturally go to the first group because, this is

the after fire wire we cannot go to the host because only one is allowed in the second

group.

(Refer Slide Time: 18:54)

So, therefore the top next, automatically it goes to video grabber because that is the

priority on which we had designed our systems and if this is not present naturally, it will

go to the codec and thereafter, go to CPU. In case this is also not asserted and once again

if none of this is present, it will go to VG and do the checking of request for all the 4

masters.

Similarly, finally for this CPU, this is the host here when host let us say, it has come from

this path. It may come from any other branch also and suppose it has come here and

grant 3 will be asserted here and it will continue to be asserted. So long as request 3 is

asserted and once it has finished its job, it will go to the video grabber because this the

second group second 1 and naturally, it has go to the first group and once again the video

grabber being the topmost priority control passes on to this and it is a simple ASM chart

and for which we can see the code now.

(Refer Slide Time: 19:34)

(Refer Slide Time: 20:10)

(Refer Slide Time: 20:16)

(Refer Slide Time: 20:23)

So, we give a line comment here and indicating this PCI arbiter is a design and we give

the same name here for module and we declare the module here and collect all this IOs

here and separator by comas. And, we have clock reset; so active low and 4 requests here

- 0 through 3 and corresponding grant signal which will be output and this is what we

have listed here. These are all the inputs here and these are all the outputs here and in

addition to this, this output needs to be declared as register because, we will see that later

on that this will be covered in always posedge clock block has.

(Refer Slide Time: 20:34)

(Refer Slide Time: 20:49)

In addition to this, we have also the state indicated here and this arbiter state will call and

this is what we have seen here. Earlier in the rectangles we have put the straight say for

example 3 here or 4 here, this is what is implied there and will be using as we as used

earlier a case statement in order to process this rectangular boxes in a sum.

(Refer Slide Time: 21:13)

(Refer Slide Time: 21:28)

So to start with this is the first always block and it is recommended at posedge of the

clock and we have once again as we show all negative edge reset. If reset is present this

may be a system reset or a power on reset and if it is present, so what we need to do is

we will switch off all grant signals to start with. This is, mind you, this a wait state 0

state and averring we do not had turn on any of the grants here and arbiter state also

needs to be in the same state - wait state namely, 0 state.

(Refer Slide Time: 21:44)

(Refer Slide Time: 22:10)

(Refer Slide Time: 22:26)

We started with an ‘if’; so we have an ‘else’ here and a group of statements were

encountered here. So, we need a ‘begin’, ‘end’ here and then we say ‘else’ and this is the

case I have been referring to and this case depends upon the arbiter state and this will be

0 1 2 3 4 corresponding to the 5 rectangles that we had and this is the 0 state and these

are all plain decimal as we have seen in earlier example also and in this state, it is

nothing but a wait state. So, we do not have to do anything except turn off all the grant

signals and now, we will examine corresponding to the very first interrogation block that

we encountered in the wait state for request that was a diamond there on the sum chart

and that translates here as an if statement here.

(Refer Slide Time: 22:57)

If request 0 is encountered and this is corresponding to the video grabber and what we

need to do is, we had to take it to the state 1. We are presently in state 0; we will take it to

state 1 because, in state 1 only video grabber is granted. It is a corresponding grant 1

signal and otherwise, go to the next waiting master that is video codec which

corresponds to its state 2 and that is what we do here. else if statement is what you are

already familiar; that we use and if request 1 that is corresponding to the video codec is

asserted then take it to the arbiter state 2.

(Refer Slide Time: 23:27)

(Refer Slide Time: 23:54)

(Refer Slide Time: 24:20)

(Refer Slide Time: 24:33)

(Refer Slide Time: 24:47)

If this is also not asserted, so we will naturally go for the next master which is fire wire

and once again, we use an ‘else if’ state and this time we use the corresponding request 2

for the fire to be asserted and if it is asserted we take the arbiter state 2, state 3 which

happens to be the state for the fire wire processing.

So, in the case for host processing whose state is 4 and its corresponding request is 3

here and that is what is here, is plain exactly same what we have seen before and if this is

not encountered so we have it covered I think, all the states and what we need to do is go

back to wait state 0. If none of these are encountered and corresponding state is 0 here,

that is what is the arbiter state is for and there must be an end because we started with

‘begin’. We are processing only for case 0 and similarly, we had process for case 1 right

up to case 4. So, for case 1 we need to switch off all other grand signals and switch on

only 1 signal that is, grant 0 because, this happens to be the for a video grabber. This one

important thing we should not forget to switch off all the unwanted grants and once again

we look into the request 0 which corresponds to the video grabber state and whether, if

the request is still pending which indicates that it has not yet finished the usage of the

PCI bus and it should continue to being state 1.

(Refer Slide Time: 25:23)

(Refer Slide Time: 25:46)

(Refer Slide Time: 25:57)

In state 1 of course, we will be in same condition here where in grant 0 is continued to be

asserted here and once it has finished its job, we need to check for request 1. This was

request to 0 corresponding to the video grabber; corresponding to the video codec it is

request 1 and corresponding state is 2. So, if this is asserted, go to the state 2; if this is

also not asserted, so check for the fire wire status, its corresponding request is 2 and take

it to the respective state 3. And so is the case for the host, which case it’s state is 4 and

we have seen that the same VG VC are given the priority first and then go out to the

second group and in that give only 1 priority. We have just followed the ASM chart and

ASM chart anyway reflects the priority that we have already assigned and naturally, the

code must follow suit.

(Refer Slide Time: 26:25)

(Refer Slide Time: 27:03)

(Refer Slide Time: 27:32)

(Refer Slide Time: 28:06)

If we have already covered for all other conditions here, as far as video grabber state is

concerned and if nothing else is remaining, we will say ‘else’ and then take it to state 1.

The state 1 is the same we are in - state 1; so it continues to be in that state. So, in state 2

we had to grant 1 here and these are all exactly same here and you can see that it is in if a

request 1 is made. Video compressor request is still asserted, remains in the video codec

state here in 2 and if otherwise check for fire wire which is state 3 as well as the request

is 1 and otherwise, you will check for the CPU and request 3 and state 4 corresponding.

Once again, if none of this is present go to the state 1; so we always go to the video

grabber state that was the right side end of the ASM chart that we have seen because we

have examined all the conditions. So, no other condition is persisting and therefore, we

go back to the VG state that is what we have seen before and once again, that is an ‘end’.

Once again, that is a ‘begin’ and there will be an ‘end’; this is corresponding to the fire

wire state.

(Refer Slide Time: 28:14)

(Refer Slide Time: 28:26)

(Refer Slide Time: 28:37)

(Refer Slide Time: 28:57)

(Refer Slide Time: 29:05)

(Refer Slide Time: 29:27)

(Refer Slide Time: 29:54)

(Refer Slide Time: 36:06)

So, here also we switch off all grant signals and give grant only for grant 2. This

corresponds to the fire wire and once again, we remain the same state so long as the fire

wire request is still made asserted and we continue to be in the third state. That is what

we are here and in this state if this is not encountered or if it has finished the usage of the

bus, the fire wire has finished the usage of bus then, what we need to do is go back to

video grabber and that is what we are doing here (Refer Slide Time: 28:38). Otherwise,

go to the codec here; we have to examine request 1 and take to state 2 here. Otherwise, to

the host here; request 3 and state are corresponding to this video; this host is it host on

this fire wire and this is for the host here. If request 3 is still asserted remains in this host

condition state for processing the same and once it has finished its job, the request 3 will

become 0; then this will not be valid. So, control goes to the first group; top priority it is

a video grabber here and corresponding state is 1 there and actually, we are in fire wire

state. Examine different masters and here this is the state corresponding to the host and

as you shell once you enter this state, you need to grant only 3 here which correspond to

the host and de-asset all other grants.

(Refer Slide Time: 30:22)

(Refer Slide Time: 30:44)

(Refer Slide Time: 30:50)

So long as this request 3 is still asserted and you need to remain in the same state always

granting 3 here and naturally, it will be in state 4 and if it has completed this job this will

go low and it will go to this condition here which is going to be the video grabber state

and corresponding state is 1 here and this is the completion of case. We have covered all

the aspects as mentioned in the ASM chart and we also need to take care for the do-not

cares and tries it that may be encountered and corresponding in this arbiter state. So, in

which case you need to take it a safe state; let us say, the wait state here (Refer Slide

Time: 31:22) or you can video grabber state also you can also take it to.

(Refer Slide Time: 31:35)

(Refer Slide Time: 31:43)

We started with case therefore, there is an endcase here and it was in ‘always’ block and

there was a ‘begin’ at the start and their corresponding ‘end’ is this. We started with the

module which is the design for the PCI arbiter and naturally, we will have to end with an

end module; so we will look into the test bench for the PCI arbiter.

(Refer Slide Time: 31:58)

(Refer Slide Time: 32:07)

(Refer Slide Time: 32:25)

(Refer Slide Time: 32:54)

(Refer Slide Time: 33:19)

(Refer Slide Time: 34:00)

So, in this case let us say, we want to run at 50 megahertz therefore, we say clock period

by 2 is 10 and we need to include the actual PCI arbiter design and that is what is this

statement is for. This is a test bench; so, we have to declare the test bench module name

must be mentioned here PCI arbiter and the code test.

The same nomenclature we have been following all through, has been adopted here too

and we have to naturally term it as a module here and being a test bench, we have seen

that inputs are all reg and these inputs for the different request corresponding to video

grabber, video codec, fire wire and host, these are all request 0 through request 3. This

will have to be declared as register and which means, holding the value and so also the

case for the other input such as clock - system clock as well as, the power on reset. We

have also seen in the test bench, whatever output we have, naturally, the grants signals

are the outputs here and they are grant 0 through grant 3 and they must be declared as

wire because, we may have several such modules called here and we need to

interconnect them. So, this interconnection implies it is a net or wire; that is why we

declare it as wire and it has bench. Once we have done this, what we need to do is

instantiate this design. This is the design; here we say arbiter and this instantiation we are

doing and this happens only once and therefore, there will be just u1.

(Refer Slide Time: 34:15)

(Refer Slide Time: 35:05)

(Refer Slide Time: 35:41)

If you had several such designs called again, you need to only change this to u2 u3 and

so on and once again, we have seen this connecting force by name and so that we can

relocate any other order. These are all the inputs that we are listing here; followed by the

outputs and inputs are also mentioned here. As I mentioned before, you need not separate

out all the inputs and outputs and it can be any order and that is the beauty of using ports

by name – nomenclature. So, the test bench is initialized at these points. Once you

initialize it means, the time element is 0 here. So, we start with initial forward by ‘begin’

because there are going to be multiple statements here and at the end there will be an end

and so the comment says a time 0, let the request inputs be active.

So, what we are going here is so we will make all the request 1. So, that means to say

there are 4 masters and all the 4 masters are asserted. So, let us see what is the back

connect wave forms we will see what will be given the grant. So, in spite of the fact that

all the 4 are asserted and we have also to initialize clock and that is what we are doing

here because, we are interested in posedge of the clock. We naturally start with 0 and this

is a de-asserted reset condition because, it is an active load here. This n stands for

negative or you can just say l also there implying it is active low. It is de-asserted here

and we assert reset at after 60 nano seconds. So, that means to say for 20 nano seconds

we are applying the reset pulse and that means, once again this is restored to normal

condition which is not reset. So, once the reset is withdrawn, it is not processing from

here onwards and let us say at after the lapse of 400 nano seconds and that is 480 to start

with because, we have to add 60 plus 20 from 0 state and at 480 nano seconds what we

do is earlier it was a request 0 so also, the other request where asserted that is 1.

(Refer Slide Time: 36:26)

(Refer Slide Time: 36:47)

(Refer Slide Time: 37:08)

Now, we are deliberately making these changes here at a 480 we will make it request 0

low; that means, withdraw the request. In other words, it has finished using the PCI bus

and at 560 nano seconds we withdraw request 1 and so on request 2 and after at 800 nano

seconds let us say, this is the top priority. That video grabber request and we assert it to

once again here and when we view the wave form, we will come back to this. so, that we

will see where we are and after further time 1000 nano seconds, we de-asset request 3

and what has been happened here is, we have only tested partially it is not full-fledged

test as such and may be 7, 8 conditions we are checking from this and we will continue

to run for some more time it need not be 1200 can be 100 or 200 it only is a cumulative

here.

(Refer Slide Time: 37:35)

Once we are through with the testing you can just stop here; so I made it little longer

here just to have some question here and so next 1 is we need to run the clock. So, that is

possible only if you toggle a particular signal we call this clock we initialize it to 0

earlier at 0 nano second and this is being toggled by inverting and assigning it to the

same signal and this happens every time after the elapse of this much time this we have

set as 10 nano seconds. So, at every 10 nano seconds time clock is made as its inverse so

if it is 0 it will become 1 every time nano second; that means to say every 20 seconds it

will output 1 clock so that transforms to 50 megahertz and that is how we get the 50

megahertz.

(Refer Slide Time: 38:30)

(Refer Slide Time: 38:38)

(Refer Slide Time: 38:45)

We started with module there must be an end module for the test bench as well and these

are all the results for example, synthesis results using simplify is reported here and this is

the PCI arbiter dot v is the actual design and its reports verilog syntax is successful.

Remember, earlier what we had done is; so if this the ASM chart we have given 0 1 as

the condition here 1 then 2 corresponding to the grants of the 4 masters that we have and

this is the fourth master here and this is 0 1 2 3 up to 4 in decimal.

(Refer Slide Time: 39:29)

(Refer Slide Time: 39:45)

(Refer Slide Time: 40:05)

Now, let us see what this tool does. So, this is what you had here and these are all the

usual reports. What it says here is what is important here is, it is trying to extract state

machine for registrar arbiter state and says it has extracted state machines for an arbiter

state. So, what it means is it inspects although we have given 0 1 corresponding these are

all the states here and we had as for 0 1 2 3 and 4 that is what we have seen the ASM

chart.

Now, although we have as for this it requires only 3 bits here that means 3 flip-flops are

required. Whereas, the tool has assigned different manner say for example, what it has

done is the original rules what was requested was this and what we designed was this

state actually what the tool after optimization is different. Now, it has taken 5 bits

although it has increased number of flip-flops it has he would recognize this as 1 hot

machine, you can see there is only one entry here in hot machine. All the states should

have just 1 entry there. So, 1 here next is 2, here this decimal weight if you take and 4

here then 8 here 60 and so on so corresponding to all this.

(Refer Slide Time: 41:17)

So the tool has that much intelligence to map it to more better optimization and from that

point of view the tool must have allocated this and if you see the simplified optimal

coding we would precisely see what has been cooperated here. Before we go on to the

details of this, what we will see is the wave forms after back annotation. See for

example, I will just explain before zooming here we have a reset here and that is applied

at this point of time. So, you remember that at 60 nano second so we had and here it is

mark 50 nano second and each will be duration is 5 nano second. There are 10 here and

50 by 10 is a 5 nano second here and this corresponds to around here. So, that is 60 nano

seconds that is what we have here; exactly 60 nano seconds and it remain for 20 nano

second and there after it goes high.

So, the system starts working only at the following edge of the posedge of the clock that

is at this edge and so here we had, will zoom this, you aim for that we had all the 4

requests made. So, you can see this wave form just on the top of the number employing

that they are all 1 although it is showing 0 it was click at some other point that is why it

is showing 0. But, actually what you should see is this is always on the top of the

member; so, which means all are them are (()).

So all are 1; we started with the 1 and let us see where the first grant is who will be given

the first grant. Say, for example, here these are all the grants; 4 grants here and this is the

initialization state and where in it is made 0 here and very first grant, video grabber grant

is awarded here and that is because this request 0 will be sent only at the posedge of this

clock. That is at this point after the reset is removed and the grant will be automatic; I

mean will be issued only at the following edge of the clock because it cannot change

instantaneously. This, we have seen here before in mono shot also same thing; so, it

should happen here because it is back annotated at file we should get the grant even

delayed from with respect to this edge. For example, you can see here, so this is

corresponding to this point somewhere here where as it is here. So, this will be around

some 5 nano seconds or so. We will see in next wave form; so grant 0 is a asserted here

and this what here design PCI arbiter has done and all the 4 requests were made here and

naturally, it changes state here from 0 to 1 because 1 corresponds to the video grabber

state in which case grant 0 is given here.

So, in the next wave form what we have is so grant 0 which is high here and request 0

has gone low here which will be sent only at the posedge clock and it will take effect.

Grant will be removed; grant 0 will be removed only at the following posedge of the

clock and once again, because it is a back connected thing you see a time delay here and

you can see this grant 0 is removed at this point of time; that is the delay is also

mentioned here that is 5.4 nano seconds.

Here, grant is always late whereas the state itself now you see that because of simplified

overriding our states after state 1 2 which has gone to state 4. So, that is what we have

pointed out before and here the actual state changes much faster this is only 1.768 menu

second and with reference to the postage of the clock and this grant 0 is withdrawn here

and grant 1is avoided here and request 1goes low here. Therefore, after the second clock

from there and once again after delay a 5.4 nano second and grant 1 must go low this is

corresponding to the request 1 going low here and simultaneously, without any time log

you see even at this point you can see that grand 0 is withdrawn grant 1 is immediately

given. So, this is the case for grant 1 and grant 2 and going to this third wave form you

see here after 4 we have got a 8 here in this case grant 2 is de-asserted and grant 3 is

issued here because grant 3 was already waiting for quite a long time and request 2 is

also gone here. In the last wave form you can see request 3 going low here and in

between in the earlier wave forms request 0 has been asserted again. Therefore, it is high

here and although top priority has come here unless the lowest priority has passed

completely, its usage of the bus it would not release the bus.

So, only after the release of the bus this top priority can get and that is what is happening

here. It is released here; second clock h and once again 5.4 nano second delay grant 0 is

avoided here and simultaneously, grant 3 is withdrawn here and this completes these

checks the functionality write up to the back annotation.

(Refer Slide Time: 47:18)

(Refer Slide Time: 47:29)

(Refer Slide Time: 47:47)

We have been looking into this; 1 2 4 8 16 are the states assigned by the synthesis tool

and you will be surprised to see it is reporting very high frequency of 242 megahertz all

though we have request for 50 megahertz. This is because we have selected the fastest

available device in vertex each series and values and lowest capacity which is 50000 and

lowest package and highest PDF and that is the reason why you get some 242 megahertz

there and it has taken (()) 10 number of LUTs here. So, the design is so compact and

probably optimization has done a good work there.

(Refer Slide Time: 47:59)

(Refer Slide Time: 48:02)

(Refer Slide Time: 47:08)

(Refer Slide Time: 48:25)

And, Xilinx place and route results for same or number of slices, etcetera it reports and

you can see the gate count here. It is just 132 gates and if you want JTAG compatibility

of IOBs then you need to sacrifice more gates here and here. You will be surprised to

find 242 megahertz reported by synthesis tool, is enhanced to 294 megahertz here. But,

actually this will be misleading because this only a small portion of the total design.

(Refer Slide Time: 48:56)

The total design is when you make the entire codec and put everything in the same chip

or multiple chips. So, that will be the true picture in which case this may come down

crashing to anywhere from 50 megahertz to 100 megahertz. Finally, it will generate this

bit stream and this is what we will be using for downloading the hardware or few are in

open core - IP core supplier will be supplying only this along with the documentation.

(Refer Slide Time: 19:17)

So, finally we have some assignments for you. What we have done is I will just read out

these assignments. Add a 4 bit counter to monitor the bus activity after a master is

granted the bus. So, if the master fails to avail the bus within 16 clock cycles withdraw

its grant and allocate the grant to the waiting next priority master. This means, you have

granted to a particular master which has requested and even after 16 clock cycles it has

not made use of the PCA bus.

So, what should we do? We should remove the grant for this and without even warning

because this is the penalty made thing agreed protocol for all the masters. So, you

include a 4 bit counter in your design; so that you count 16 clock pulses after it is granted

and if no activities found on the bus which will be reported by another signal which we

press you it is available to you and then process this.

(Refer Slide Time: 50:20)

(Refer Slide Time: 50:50)

(Refer Slide Time: 51:21)

Also, add a 16 bit counter that keeps track of the maximum allocated time elapsed which

is different for different masters. So, if the time a master is granted use of a bus, so once

master has taken the bus and started using, there is no guarantee that it will surrender the

bus after elapse of its time. So, you need to keep track of that also for which you need

one more counter and design this as well after the elapse of time. Program for a master

using a bus currently; withdraw the grant and allocate the bus to the waiting next priority

master. And, here in design, we consider only the encoder portion for as far as bus grant

is concerned, I have not taken into account the decoder aspect and video codec; actually,

decoder to the AGP this is for display monitor and a motion picture is displayed on the

monitor using this. AGP communication is not incorporated in the above design that is

what is said. So, you have to include this into your design; that means, you may have add

one more bus request signal and in order to do this and naturally this calls for

amendment of the ASM chart; the design as well as the test bench to incorporate all the

above changes.

The test bench described earlier is by known is exhaustive because, we have a 4 request.

So, the total combination will be 16. Whereas, we have seen the test batch we have

hardly used some 6 or 7 types of test. So, you look into that aspect and whatever is not

covered in the test you make it full fledged. Therefore, include all possible permutations

and combinations of inputs to test the design completely and I hope, you will make a

sincere attempt to solve these problems. If you have any question you can ask.

Thank you very much.

