Digital VLSI System Design

Prof. Dr. S. Ramachandran
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture No. # 36
PCI Arbiter Design using ASM Chart

We were looking into the PCI arbitration using ASM chart and basically, it is a design of
arbitration and not pertaining to an application such as video compression. Although, it is
for an illustration we mentioned about the video compression and sharing. This PCI bus
here or 4 masters namely, video grabber which will get the raw image data - it may be
PAL or NTSC sequence; or it can be SVGA format, any color motion picture can be

processed; say at 30 frames per second or 25 frames per second.

(Refer Slide Time: 02:32)

= e e e e e e

Tl il L F L 1=1 - siE 5 m [(EA N RN LR 1 -1

L

PCI ARBITRATION USING ASM CHART

FCIBUS

What we collect here using the PCI bus we communicate the raw data and to the codec
whose function is to bring about the compressionals and we have actually 2 here. 1 is
called encoder other is called decoder which brings about respectively the compression
as well as the decompression and as an abbreviation it is mentioned as codec. This is the
design that we will have to actually do using the Verilog and it can be an FPGA or ASIC
platform and there will be a first in first out memory in all these matters. So that,
whatever is processed here will be showed primarily and when it gets the chance in order

to communicate to out to another master for example, this raw data | want to

communicate here to the codec to start with, in order to bring about the compression. So,
what we do is, we make a request to a bus arbitrator which is our present design from an

independent masters.

For example, this can be a request 0 and this can be request 1, then request 2 and then
another which is the host. For example, a Pentium we have can be another master and we
assign priority to these and the top we will divide this into 2 groups. One is video
grabber and codec. We assign topmost to among the 2 groups and next group fire wire as
well as the CPU and among this, the topmost priority goes to the video grabber and once
again, among this second group higher priority is assigned for fire wire. And, fire wire is
a serial bus which can be connected up to 64000 and odd serial buses here. That means to
say, we can compress data here and then using the PCI we can send it over to the fire

wire which will in turn serialize the data and send it over the channel.

(Refer Slide Time: 06:04)

"
mF R RS [N =TT T

Lru Rt

[Host) Memary

Likewise, from any other computer we can get another motion picture concurrently and
then process here and the reverse process can take place here namely, the serial to
parallel conversion, then using the PC bus, once again communicate to the decoder port
which decodes that means, brings about the de-compressional as such and passes over to
the monitor which is the computer monitor that we have right here. Through an interface
called advanced graphic port here and as far as fire wire is concerned, it’s through put is

really very high and we can very easily use MPEG streams such as MPEG 2 which is the

fastest of the MPEG group. And, we can also have JPEG or JPEG 2000 for a stream
frame then MPEG 1 or MPEG 2 or MPEG 4 and so on and any other standards can also
be incorporated here. what all we need to do is only a redesign the bus arbitrator as well
as the core that we are developing for a particular application.

(Refer Slide Time: 07:17)

e e e e T e

Sl il BL - E L L= N — - RN N DT

#

o T e i | " T ——] 5 |

It’s a maximum data that it can handle at one-go is 16 kilo byte; that means to say, you
can communicate to and fro from the fire wire up to this much size and this is not a
handicap because, it will get a chance once again periodically as we will see right now
and this CPU has, | mean, is connected to the PCI bus what is called north bridge and

main memory is also connected to this; these are all the standard PC architecture.

So, in the case with AGP as well as the monitor and this is what we are going to design.
This PCI arbiter has as | mentioned, 4 masters requesting the use of PCI bus and they are
communicated by using the signals - request O through request 3 corresponding to the
video grabber will abbreviate this as shown on the top. This PCI arbiter looks into the
priority that we are going to see shortly and as per the priority it will allocate grant
signals to either this video grabber or codec and so on using the signal grant - grant 0
through grant 3 is meant for this.

(Refer Slide Time: 08:04)

- e e e e T e

Tl X I I T

A high resclution, coler motion picture such
as 1600x1200 pixzels can be processed with 64
bits, 100 MHz PCI (X) bus. Timing for wvarious
masters are as follows. Frame rate is assumad
to bs 30 F/esc,

Aagumption: Compression sffected = 10:1.

Transaction betwaan Pro CEmS LN TI

V@ => ViC ([Raw data) => 9.6 ma
{ Compressed data) => 1.0 ms

As far as the application is concerned you can have a high resolution color motion
pictures such as 1600 by 1200 pixels and this pixel resolution is very high and it
matches. | mean, it competes with the actual photographic prints and it is
indistinguishable from prints and so even this sort of motion pictures can be processed
with 64 bits and 100 megahertz PCI bus. Here, this 100 megahertz PCI bus is
nomenclatures PCl x bus (Refer Slide Time: 09:00) and if you want much lower
resolution, we can go either for PCI bus straight away a 64 bit or 32 bit or again speed
either 33 megahertz or 6 megahertz and the frame rate it can process at this speed that

you are going to discuss is 30 here.

(Refer Slide Time: 09:44)

T -
to ba 30 F/fasc.
hagumption: Compression sffescted = 10:1.

seaan

Vg -> VW { Raw data)

Vo => FW [Compressed data)
FW -> VW | Compreased data)
VC =»> AGP (Display Monitor)
{ Besconatructed wvideo data)

Total
Frame pericod

HaE#:

This is normally for the NTSC format, US format and parallel etcetera, you need to
comply only with 25 frames per second and assuming we have a compression of 10 is to
1. That is to say, if you have 10 gigabytes of storage for a particular motion picture so
what all we need is only 1 GB after the compression is effected in the codec that we have

seen here.

The compression is brought about here and this is a very conservative assumption
because, from my experience | have been seen even for I-frame processing in MPEG 2, it
gives 15 to 20 compression factor. Now, let us see different timings here for example,
from video grabber to video codec which is a raw data communication would take for
this particular resolution 1600 by 1200 color motion picture around a 10 millisecond and
from video codec after the compression is affected it will send it to the fire wire for
onward transmission or a serial bus and this also requires the PCI bus and that would
take only a 1 millisecond because, we have said 10 is to 2 is the compression factor. That

means, it takes just one-tenth of this raw data.

So, next step is we send it out on the transmission channel serial channel and
concurrently we may receive another motion picture from some other computer over the
fire wire and that can be once again routed to the codec. In this case, it goes to the
decoder and these both are compressed data as such and it again, takes only 1

millisecond because it is compressed fashion and once this is processed here it brings

about decompression in the codec. Using decoder inside that and then what we need to
do is, nearly send it to the display monitor. Why are this AGP here and this would again
be same size or the raw data because, what we have done here is reconstructed the video
data. That is how we can communicate on a network, PC network and up to a resolution
of 16 bus 1200. And, this is rather a theoretical research stage; so will add to see the real
implication when we really build the system and summing up all these you have only
21.2 millisecond whereas 1 frame time is 33.3 millisecond taking 30 frame per second
and we have lots of room left. So, another 12 millisecond are so far the host. To do
certain job such as configuration form JPEG to MPEG 1 or MPEG 2 and so on, or
intermediate processing, also needs to be done which will use host for purpose and

naturally, have lots of time available for the host in order to complete its task.

(Refer Slide Time: 12:40)

T

EAN LI NN T -y
.l

a =
T i N L = il ook BN

The order in whioch thes masters would recsive
access to the bus is as follows.

. Vides Grabbaz [VG)
. Video Codea (VC)

. Fire Wire [FW)

. Video Grabber [(VG)
. Video Codec [VC)

. CPU (Hoat) , and

So, this shows that, this scheme is a viable scheme; and let us see the, in order of | mean,
access to the PCI bus. This is the priority that we ascribe to different masters; for
example, we said the video grabber and codec are in the first group. So, we will give in
turn topmost priorities for the video grabber fallowed by codec and then we go to the
second group wherein, give only one of the masters namely, the fire wire which is higher
priority than the host. Once we have given a chance to the second group will come back
to the first group and give chance once again for both video grabber and codec because,

we need to process the raw data which cannot wait and we need to process it rapidly and

so is the case with the compression here and once we give this and naturally, the last

chance will be for the host.

As we mentioned before, host will not take much time for processing because, what all it
has to do is drive the menu to start with and then configure from one state to another
once in a way. What is topmost important is this video grabber followed by the codec
and that is the reason why we gave the priority like this (Refer Slide Time: 14:00); and
this is what we are going to implement in the bus granting scheme. Once we have given

to the second group we come back to 1 and continue forever.

(Refer Slide Time: 14:11)

B b s s e e

Tl EL O F L =i BT o - [(EA N RN L -

(Refer Slide Time: 14:53)

So, we will see how to make an ASM chart for this application such as bus grant. This is
rectangular - is a straight indicator and actual value is put here. We are going to use the
decimal value because, it will be easier for us to code it in Verilog and the descriptive
state is on this. And this implies, we are going to wait for any of the request to manifest.
So, as we mentioned before there are 4 masters and each of which is interrogated here
whether a particular request is, has been got by an arbitrator (Refer Slide Time: 14:32).
Well, we are questioning at this point of time and topmost priority is for the video
grabber and therefore we question that first.

Suppose, the video grabber has not settled its request, so we will go on to the a next what
is called a codec and followed by fire wire as well as CPU and if none of these requests
are pending, so we go back to square 1 that is a wait state and continue wait till someone
makes the request. Once request is got let us say, the topmost priority is the video
grabber because that is the first thing that will happen in this compression system
because, without grabbing the image there can be no further processing. So, naturally
this video grabber is the one which is going to make the first request and it would take
some time for it to process. | mean, dumping it’s data collected over the PCI bus on to
the video codec; so that would require some time. So, it will the request 0 will be
asserted for quite some time and till it is finished, the usage of the PCI bus and so long as
this request 0O is asserted, grant 0 must be asserted and that is the loop here and next is
this is also the entry point for VG state and if this is not asserted or it has completed its

request usage of the bus. So, naturally the next contending master will get the attention.
For example, we will see request 1, or request 2, or request 3, in that order; this is once

again the same priority as we have seen before here.

(Refer Slide Time: 17:06)

i e e e e e —— "
Fl #L F L 1= T s i E [N N N LY |6 5 M=LF S
4 a = o

¥
™
¥

(Refer Slide
Time:
17:52)

This state to which it goes after the request, is processed; it is asserted. It will be
indicated here; so that is 2 corresponds to 2 here; so that means, this is connected here
and once this is processed we go on to process the codec grant and this is request 1. I
suppose yes, once the request 1 is asserted we will grant the signal 1 and once again, we
stay here till this required v ¢ has processed its codec; has processed all its transactions
for current cycle. I mean, cycle means not the clock cycle; it may be several clock cycles

and once it has finished its job, it will de-asset request 1. Therefore, control will go on to

the fire wire and CPU and in case they have a request pending it will go to that
respective routine. If none of this are present, it will naturally go to the video grabber
because, all the 4 have been covered here and this is for fire wire grant. Once fire wire’s
request has come it will grant tech corresponding signal here - GNT 2 here. Once again,
so long as its request is asserted it will keep revaluing around this asserting grant 2 all the
time and once it has finished its job, it will naturally go to the first group because, this is

the after fire wire we cannot go to the host because only one is allowed in the second
group.

(Refer Slide Time: 18:54)

So, therefore the top next, automatically it goes to video grabber because that is the
priority on which we had designed our systems and if this is not present naturally, it will
go to the codec and thereafter, go to CPU. In case this is also not asserted and once again
if none of this is present, it will go to VG and do the checking of request for all the 4

masters.

Similarly, finally for this CPU, this is the host here when host let us say, it has come from
this path. It may come from any other branch also and suppose it has come here and
grant 3 will be asserted here and it will continue to be asserted. So long as request 3 is
asserted and once it has finished its job, it will go to the video grabber because this the

second group second 1 and naturally, it has go to the first group and once again the video

grabber being the topmost priority control passes on to this and it is a simple ASM chart

and for which we can see the code now.

(Refer Slide Time: 19:34)

! FCI Arbiter
modules poi arbiter(// Declars the design
£ modula.

alk ff List I/0 &,

/{ Declare tha Inputs

s A and Outputa of the

/F module.

(Refer Slide Time: 20:16)

Bl
o e L F L
N,

input REQ3 ;

output

output

eutput

output

¢ f/ Deslare as registara

Lz

(Refer Slide Time: 20:23)

e G S T T S

t o g L -

I|'nutput_ GHTZ |

output @HTI ;

reg ¢ /f Declare as registers
Eag @HTL ;
ceg GHTZ

cag GHT3

[2:0] arbiter stats ;

So, we give a line comment here and indicating this PCI arbiter is a design and we give
the same name here for module and we declare the module here and collect all this 10s
here and separator by comas. And, we have clock reset; so active low and 4 requests here
- 0 through 3 and corresponding grant signal which will be output and this is what we
have listed here. These are all the inputs here and these are all the outputs here and in
addition to this, this output needs to be declared as register because, we will see that later

on that this will be covered in always posedge clock block has.

(Refer Slide Time: 20:34)

e e b e g —
& WL [
o

cag GHTZ

ag GHT3I ;
ag [2:0] arbiter state ;

always ¢ (posedge clk or negedge resst n)
begin

if (resst n == 0}

F r
HEGE o WE —

In addition to this, we have also the state indicated here and this arbiter state will call and
this is what we have seen here. Earlier in the rectangles we have put the straight say for
example 3 here or 4 here, this is what is implied there and will be using as we as used

earlier a case statement in order to process this rectangular boxes in a sum.

(Refer Slide Time: 21:13)

= e e e e e
o il L F L8 BT
L

e = e =

always § (possdge clk or negedge resst n)
bagin

if (resst n == 0}
begin

//Switch OFF all grant signals to start with.

begin

f/Bwitch OFF all grant signals to start with.

GHTD <= 0 ;
GENTL <= O
GHTZ <=
GHTI <=

=
]

1]
1]

f

arbiter state <= 0 ;

So to start with this is the first always block and it is recommended at posedge of the
clock and we have once again as we show all negative edge reset. If reset is present this
may be a system reset or a power on reset and if it is present, so what we need to do is
we will switch off all grant signals to start with. This is, mind you, this a wait state 0
state and averring we do not had turn on any of the grants here and arbiter state also

needs to be in the same state - wait state namely, O state.

(Refer Slide Time: 21:44)

Sl B wE

ff Initialize the state whan the
f/ system i3 resast,

and

alaa

case (arbiter state)
D:
bagin
ff8witeh OFF all grant signals.

e e e T -

CeAmelae - e ;
N [=FT.1] [lrﬂlt.r--u“]
0:
bagin
/ i&witch OFF all grant signals,
GNTD <= 0 ;
GHNTlL <= 0
GHTZ2 <= 0 ;
GHTA <= 0 ;

if (REQO == 1)

(Refer Slide Time: 22:26)

1o g L R

GHT2 <= 0
@TI<=s 0 ;
if (REQQ == 1)

ff 1f Video Grabber request is asssectaed,
// go to the Video Grabber state '1°.

arbiter state <= 1 ;

f// Otherwise, go to ths Video Codec

L LLEEH

We started with an ‘“if’; so we have an ‘else’ here and a group of statements were
encountered here. So, we need a ‘begin’, ‘end’ here and then we say ‘else’ and this is the
case | have been referring to and this case depends upon the arbiter state and this will be
0 1 2 3 4 corresponding to the 5 rectangles that we had and this is the O state and these
are all plain decimal as we have seen in earlier example also and in this state, it is
nothing but a wait state. So, we do not have to do anything except turn off all the grant
signals and now, we will examine corresponding to the very first interrogation block that
we encountered in the wait state for request that was a diamond there on the sum chart

and that translates here as an if statement here.

(Refer Slide Time: 22:57)

Tl g L& F

/f 1f Video Grabbar regquest is assarted,
{/ go to tha Video Grabber state “1°.

lIh1tlrFItltl om L g

// Otherwise. go to the Video Codesc

{f state 27,
alse if (BREQL == 1) F— —

arbiter state <= 2 ; m

/S Otherwise, go to the Fire wirce
HEE

If request 0 is encountered and this is corresponding to the video grabber and what we
need to do is, we had to take it to the state 1. We are presently in state 0; we will take it to
state 1 because, in state 1 only video grabber is granted. It is a corresponding grant 1
signal and otherwise, go to the next waiting master that is video codec which
corresponds to its state 2 and that is what we do here. else if statement is what you are
already familiar; that we use and if request 1 that is corresponding to the video codec is

asserted then take it to the arbiter state 2.

(Refer Slide Time: 23:27)

arbiter atate <= 2 ;
/f Otharwise, go to the Fire wire
/[stats 2%,
alse if (REQZ2 == 1)
arbiter state <= 3 ;
{f Otharwiss, go te the Hoat (CPU)

/f state “4°.

slse if (FEQ3 = 1)

(Refer Slide Time: 23:54)

O e e e e
Tl g L L
LB

W - g

{f Otherwise, go to the Host (CPU)

ff state 4",
alss if (REQ3 == 1)
arkiter state <= 4 ;
ff Otharwise, go to ths WAIT
/f state "0°.

alaa

(Refer Slide Time: 24:20)

e e b e T —
T g L [
i

IS atats *0°,
alee
arbiter state <= 0 ;

and

bagin

// Switch OFF all grant signals * -

P mmmesi bl ol T e s el

(Refer Slide Time: 24:33)

R e e e
Dol g L L

bagin

JF Switch OFF all grant signals
fF axecept that of Video Grabber.

GHTO €= 1 ;
GHT1 <= 0
GHTZ <= O ;
@Tice O

if (FEQQ w= 1)

ff If Video Grabbar request is still Il.'rtl* :
EEECEN &l

(Refer Slide Time: 24:47)

ir ‘:l:nlpt-.t.ll.lt of Video LGrabbar ..
GITD <= 1 ;
GHTL <= 0 ;
GHIT2 <= 0 ;
GHII <= 0 ;

if (REQO == 1}

ff If Video Grabber requeat is atill asserted,
ff remain in the Video Grabber state "17.

arbiter state <= 1 ;

If this is also not asserted, so we will naturally go for the next master which is fire wire
and once again, we use an ‘else if’ state and this time we use the corresponding request 2

for the fire to be asserted and if it is asserted we take the arbiter state 2, state 3 which

happens to be the state for the fire wire processing.

So, in the case for host processing whose state is 4 and its corresponding request is 3
here and that is what is here, is plain exactly same what we have seen before and if this is

not encountered so we have it covered I think, all the states and what we need to do is go

back to wait state 0. If none of these are encountered and corresponding state is O here,
that is what is the arbiter state is for and there must be an end because we started with
‘begin’. We are processing only for case 0 and similarly, we had process for case 1 right
up to case 4. So, for case 1 we need to switch off all other grand signals and switch on
only 1 signal that is, grant 0 because, this happens to be the for a video grabber. This one
important thing we should not forget to switch off all the unwanted grants and once again
we look into the request 0 which corresponds to the video grabber state and whether, if
the request is still pending which indicates that it has not yet finished the usage of the

PCI bus and it should continue to being state 1.

(Refer Slide Time: 25:23)

e L&

'// If Video Grabber request is still asserted,
/f remain in the Video Grabber stats °1°.

arbitar stats <= 1 ;
{/ Otherwise, go to the Video Codec
!/ mtats 27,

olse if (BEQL == 1)

arkiter state <= 2 ;

/f Otharwise, go to the Fire wire

(Refer Slide Time: 25:46)

e e S e N

Pl Bl WE &

¥y scace "&£ .

alsea 1f (REQL == 1}

arbiter state <= 2 ;

/f Otherwise, go to the Fire wire
ff stats 37,
else 1f (REQZ == 1)
arbiter state <= 3

// Otharwise, go to the Host (CPU)

L1

(Refer Slide Time: 25:57)

= e e e e

o g L &

arbitar state <= 3 ;
{f Dtherwise, go to the Hoat (CPU)
/f state "4' .
alass if (REQI == 1)

l.rh:l.l:-l:_-ta.t-l <= qd

// Otherwise. go to the VG

{f stats ‘17,

L L LN

In state 1 of course, we will be in same condition here where in grant 0 is continued to be
asserted here and once it has finished its job, we need to check for request 1. This was
request to O corresponding to the video grabber; corresponding to the video codec it is
request 1 and corresponding state is 2. So, if this is asserted, go to the state 2; if this is
also not asserted, so check for the fire wire status, its corresponding request is 2 and take
it to the respective state 3. And so is the case for the host, which case it’s state is 4 and
we have seen that the same VG VC are given the priority first and then go out to the
second group and in that give only 1 priority. We have just followed the ASM chart and

ASM chart anyway reflects the priority that we have already assigned and naturally, the
code must follow suit.

(Refer Slide Time: 26:25)

arbitar state <= 4 ;
£/ Otherwise, go to the VG
/f mtats *1°,
alse

arbiter state <= 1 ;

YPGB L == 4

If Video Compressor request is still
asserted, remain in the Video Codeaac
stata 1",

arbiter state <= 2 ;
Ctherwise, go to the Fire wire stats "3'.
wlsa if (REQE == 1}

arbiter atate <= 3 ;

Otherwise, go to the CPU state "4 .

(Refer Slide Time: 27:32)

e g b i g —
o WL &
T
WANM Ak LREME = L)

arbitar states <= 3 ;

/f Otherwise, go to the CPU state ‘4°.
alas if (REQI == 1)
arbiter state <= 4
f/ Othsrwise, go to the VG state ‘17,
elas

l::b:l.t-:_-tltl <= 1 r

(Refer Slide Time: 28:06)

B e b e e e
o e L F L
¥
arbiter state <= 4 ;
/f Otherwiss, go to the VG state “1',
alae
I:I.'h:l.l'.lll.'".tlt-l <m 1 -

and

bagin
/f Switch OFF all grant signals

f i mwmnmd Tioes ot s

If we have already covered for all other conditions here, as far as video grabber state is
concerned and if nothing else is remaining, we will say ‘else’ and then take it to state 1.
The state 1 is the same we are in - state 1; so it continues to be in that state. So, in state 2
we had to grant 1 here and these are all exactly same here and you can see that itisin if a
request 1 is made. Video compressor request is still asserted, remains in the video codec
state here in 2 and if otherwise check for fire wire which is state 3 as well as the request
is 1 and otherwise, you will check for the CPU and request 3 and state 4 corresponding.

Once again, if none of this is present go to the state 1; so we always go to the video

grabber state that was the right side end of the ASM chart that we have seen because we
have examined all the conditions. So, no other condition is persisting and therefore, we
go back to the VG state that is what we have seen before and once again, that is an ‘end’.
Once again, that is a ‘begin’ and there will be an ‘end’; this is corresponding to the fire

wire state.

(Refer Slide Time: 28:14)

L1 FELLL -
bagin
{/ Switeh OFF all grant signals

// sxcept Fire wire.

GHT0 <= 0 ;
GHTL <= 0 ;
GNTE = 1
@2 <= 0 ;

if (REQ2 == 1)
pf:_":--If Fire wire request is stil]l asserted, #_ I

-

. e e s | e | e |

(Refer Slide Time: 28:26)

g B

GNTE <= 1 »
Tl <=m 0
if [(REQ2 == 1)

If Fire wire requeat is still
remain in the Fire wire state

arbiter stats <= 3 ;

Otherwiss, go to the Video Grab

_mtata *1°

(Refer Slide Time: 28:37)

B e e e e e
TE g L & F L BT &

P R AR k]l R FAEW WLLW Bl

arbitar stats <= 3 ;

!/ Otherwise, go to the Video Grabber
/S atate ‘1",
ealse if (FEQO == 1)
arkiter state <= 1 ;
f/ Dtharwise, go to the Video Codec
!/ state 27,

LT LN

(Refer Slide Time: 28:57)

B e e e e e

P T
arbiter state <= 1 ;
Dtherwise, go to the Video Codes
state “2°.
alse if (REQL == 1)
arbiter state <= 2 ;

Otherwise, go to the Hoat (CFU)

state ‘4",

mlmes 1F MAEOY == 11

(Refer Slide Time: 29:05)

e

Tl L [

arbiter_state <= 2
ff Otherwise, go to the Hoat (CFU)
ff state *4°,

alse if (REQ3I == 1)
arbiter state <= 4 ;

ff Otharwise, go to ths VG state “1°.

AID1ITEL STATE <= £ |
/f Otharwise, go to the Hoat (CFU)
f/ state ‘47,
alse if (PEQY == 1)
arbiter state <= 4 ;

ff Otharwise, go to the VG state "1'.

alaa

arbiter state <= 1

(Refer Slide Time: 29:54)

e e e T N i

o L& F L]

// Otherwise. go to the VG state ‘1°.

alae

arbiter state <= 1 :

and

beagin
{fSwiteh OFF all grant signals esxcept
/fthat for the Host. ; 2

=

(Refer Slide Time: 36:06)

i il i (s e [l
il Bl W &
i

and

q:
bagin

ffBwitoh OFF all grant signals exoept

ffehat for the Hoat.
GHTO <= O
GHTL <= 0 ;
GT2 <= 0

GHTI <= 1 ;

So, here also we switch off all grant signals and give grant only for grant 2. This
corresponds to the fire wire and once again, we remain the same state so long as the fire
wire request is still made asserted and we continue to be in the third state. That is what
we are here and in this state if this is not encountered or if it has finished the usage of the
bus, the fire wire has finished the usage of bus then, what we need to do is go back to
video grabber and that is what we are doing here (Refer Slide Time: 28:38). Otherwise,
go to the codec here; we have to examine request 1 and take to state 2 here. Otherwise, to

the host here; request 3 and state are corresponding to this video; this host is it host on

this fire wire and this is for the host here. If request 3 is still asserted remains in this host
condition state for processing the same and once it has finished its job, the request 3 will
become 0; then this will not be valid. So, control goes to the first group; top priority it is
a video grabber here and corresponding state is 1 there and actually, we are in fire wire
state. Examine different masters and here this is the state corresponding to the host and
as you shell once you enter this state, you need to grant only 3 here which correspond to

the host and de-asset all other grants.

(Refer Slide Time: 30:22)

1f (REQ3 == 1}

ff IE CPU request is atill asserted,
{f epemain in the CPU stata *4°.

arbiter state <= 4 ;
!/ Othsrwise, go to the VG state ‘1'.

alae

3? If CPU request is still assert
/f remain in the CPU state “4°.

arbiter state <= 4 ;
// Otherwise, go to the VG state
alas
l.rh-:l.bl:_-t-i.t-l <m 1
and
dafault: ..rh:i.t-lr_!tit.l <m 0 ;

UL LN

(Refer Slide Time: 30:50)

arbiter state <= 1 ;

and

default: arbiter state <= 0 ;

ff Otherwise, remain in the WAIT state.

So long as this request 3 is still asserted and you need to remain in the same state always
granting 3 here and naturally, it will be in state 4 and if it has completed this job this will
go low and it will go to this condition here which is going to be the video grabber state
and corresponding state is 1 here and this is the completion of case. We have covered all
the aspects as mentioned in the ASM chart and we also need to take care for the do-not
cares and tries it that may be encountered and corresponding in this arbiter state. So, in
which case you need to take it a safe state; let us say, the wait state here (Refer Slide

Time: 31:22) or you can video grabber state also you can also take it to.

(Refer Slide Time: 31:35)

/f Otharwise, ramain in the WAIT stats.

andoase

//TEST BEMCH FOR THE FURMCTIGHAL
ff OF PCI AFBITER

L LELH

ety

o s e i | " | e —— | o |

(Refer Slide Time: 31:43)

e e b e e —
e B [
i

f/TEST BENCH FOR. THE FIRICTIOMAL TESTING
// OF PCI ARBITER

‘dafine slkpericdby2 10

ff 10 ne is the half time period (50 MH=z).
“ineluds “poi arbiter.v”

ff This is the design file.

We started with case therefore, there is an endcase here and it was in ‘always’ block and
there was a ‘begin’ at the start and their corresponding ‘end’ is this. We started with the
module which is the design for the PCI arbiter and naturally, we will have to end with an

end module; so we will look into the test bench for the PCI arbiter.

(Refer Slide Time: 31:58)

o e e e e
o e L F L
LA

‘defina clkpericdby2 10
A/ 10 ne is the half time pericd (50 MHz).
"include “poi arbiter.v”

ff This is the design fils.

module po i arbiter test ;

{/f Declare the test module.

L LLEEN
=]

(Refer Slide Time: 32:07)

L4
FRTTEFar e Ptk ks W W
—

f/ This is the design filas.

modules poi arbiter test ;

ff Declacre the test module.

£ag REQO : // Declare &ll inputs of
// the design as
ff cegisters.

; // Declare all inputs of
f/ tha deaign as
{f cegisters.

(Refer Slide Time: 32:54)

e e b i e
T g L [
v

{// Declare Bus Grant ocutputs

Wires GHTO
WiE® GHT1

Wire GHTZ2

(Refer Slide Time: 33:19)

pei_arbiter wull

// Instantiate the design module.

// Connecting ports by name.

.REQO (REQO) . ff Inputs.

-REQL (REQL) ,

A PR A

(Refer Slide Time: 34:00)

B P s e

BTN -

SETD (GHTO) . #§ Cutputs.

L

-GHT1 (GHTL) .
GHT2 (GHT2) |
-GHT3 [GHT3) |,
elki{clk) , {/ Inputs.

. Ell.t_h [reaas l:_l‘:]

So, in this case let us say, we want to run at 50 megahertz therefore, we say clock period
by 2 is 10 and we need to include the actual PCI arbiter design and that is what is this
statement is for. This is a test bench; so, we have to declare the test bench module name

must be mentioned here PCI arbiter and the code test.

The same nomenclature we have been following all through, has been adopted here too
and we have to naturally term it as a module here and being a test bench, we have seen
that inputs are all reg and these inputs for the different request corresponding to video
grabber, video codec, fire wire and host, these are all request O through request 3. This
will have to be declared as register and which means, holding the value and so also the
case for the other input such as clock - system clock as well as, the power on reset. We
have also seen in the test bench, whatever output we have, naturally, the grants signals
are the outputs here and they are grant 0 through grant 3 and they must be declared as
wire because, we may have several such modules called here and we need to
interconnect them. So, this interconnection implies it is a net or wire; that is why we
declare it as wire and it has bench. Once we have done this, what we need to do is
instantiate this design. This is the design; here we say arbiter and this instantiation we are

doing and this happens only once and therefore, there will be just ul.

(Refer Slide Time: 34:15)

e e e e W e

Tl g L L

initial
bagin
REQD
FEQL =
REQZ =
BEQ3 =
// At time zerc, let the ceguest inputs be

ff active.

&;uTnih1111?- alk. and resst n.

e e s e e

Sl Bl WE &

A active.

/f Initialize clk, and reset n.
alk = § ;

resst n = 1 ;

#60; reset n = 0; // At 60 ns, apply Rasat.

#20 resst n =1 ; // At B0 ns, let the

(Refer Slide Time: 35:41)

T R Y e e i

o e L F o

#60 resat n = 0: // At €0 ns, apply Reasst.

#20 resst nw 1 ; /S At B0 ne, let the
Feaet
[/ be removed.

; // At time 480 ns, let the
// cequest input ba 0.

: FF At time 560 ns, let tha
// request input ba 0. * 2

=]

If you had several such designs called again, you need to only change this to u2 u3 and
so on and once again, we have seen this connecting force by name and so that we can
relocate any other order. These are all the inputs that we are listing here; followed by the
outputs and inputs are also mentioned here. As | mentioned before, you need not separate
out all the inputs and outputs and it can be any order and that is the beauty of using ports
by name — nomenclature. So, the test bench is initialized at these points. Once you
initialize it means, the time element is 0 here. So, we start with initial forward by ‘begin’
because there are going to be multiple statements here and at the end there will be an end

and so the comment says a time 0, let the request inputs be active.

So, what we are going here is so we will make all the request 1. So, that means to say
there are 4 masters and all the 4 masters are asserted. So, let us see what is the back
connect wave forms we will see what will be given the grant. So, in spite of the fact that
all the 4 are asserted and we have also to initialize clock and that is what we are doing
here because, we are interested in posedge of the clock. We naturally start with 0 and this
is a de-asserted reset condition because, it is an active load here. This n stands for
negative or you can just say | also there implying it is active low. It is de-asserted here
and we assert reset at after 60 nano seconds. So, that means to say for 20 nano seconds
we are applying the reset pulse and that means, once again this is restored to normal
condition which is not reset. So, once the reset is withdrawn, it is not processing from

here onwards and let us say at after the lapse of 400 nano seconds and that is 480 to start

with because, we have to add 60 plus 20 from O state and at 480 nano seconds what we

do is earlier it was a request 0 so also, the other request where asserted that is 1.

(Refer Slide Time: 36:26)

; ff At time 480 na, let tha
// request input be 0.

; ff At time 560 na, let the
// request input ba 0.

REQ2 = 0 ; /f At time &40 ns, let tha
{/ eequest input bae 0. 4

REQO = 1 : // At time BOO ns, let
ff tha reguest input ba
f/ asserted again. i By

(Refer Slide Time: 36:47)

REQ2 = 0 ; f/ At tima 640 na, leat tha
/f request input ba 0.

FEQO = 1 ; // At time B0D na, let
/¢ the request input ba
// mssearted again.

#200 REQ3 = 0 ; // At tims 1000 ns, lat
{f tha reguest input ba 0.

#1200 /f Bun long encugh to test
ff all possibilities,

(Refer Slide Time: 37:08)

Bl e b e e —
T g L [

R L L

#200 REQ3 = 0 : // At time 1000 ns, let
f/ the regquesat input be 0.

f/ Bun long snough te teat
f/ all possibilities,

f/ and stop.

Now, we are deliberately making these changes here at a 480 we will make it request 0
low; that means, withdraw the request. In other words, it has finished using the PCI bus
and at 560 nano seconds we withdraw request 1 and so on request 2 and after at 800 nano
seconds let us say, this is the top priority. That video grabber request and we assert it to
once again here and when we view the wave form, we will come back to this. so, that we
will see where we are and after further time 1000 nano seconds, we de-asset request 3
and what has been happened here is, we have only tested partially it is not full-fledged
test as such and may be 7, 8 conditions we are checking from this and we will continue
to run for some more time it need not be 1200 can be 100 or 200 it only is a cumulative

here.

(Refer Slide Time: 37:35)

wnd

always
olkpariodby? alk <= lalk ;

ff Toggle to get a fres running oclk.

andmodule

Once we are through with the testing you can just stop here; so | made it little longer
here just to have some question here and so next 1 is we need to run the clock. So, that is
possible only if you toggle a particular signal we call this clock we initialize it to 0
earlier at 0 nano second and this is being toggled by inverting and assigning it to the
same signal and this happens every time after the elapse of this much time this we have
set as 10 nano seconds. So, at every 10 nano seconds time clock is made as its inverse so
if it is O it will become 1 every time nano second; that means to say every 20 seconds it
will output 1 clock so that transforms to 50 megahertz and that is how we get the 50

megahertz.

(Refer Slide Time: 38:30)

o g L

Synplify Resulis

Synplicity Verileg Compiler, wversion 7.1,
Build 1568R, built Apr 18 2002

Copyright (C) 1934-2002, Synmplicity Inc. All
Rights Rassrved

#I::"D: \u.--r"-.:.—:.nhw::Llu-g_llt-.lt"n.dvlu_d--_w*

CLLEEH

Synplicity Verilog Compiler, version 7.1,
Build 158R, built Apz 18 2002

Copyright (C) 1994-2002, Synplieity Ine. All
Fights Resarved

8I::"D:huser\ram\verileg latest'dvlsi des veri
logipei_arbiter.v”

Varileg syntax cheack successfull

Sslecting top level module poi_ arbater

ﬂ..-*.l.p.-a-lq‘ P P T I S .

(Refer Slide Time: 38:45)

ol & - 2

r] Yy -
1D Zuser\ram\vaer J.-J.D'g_l.l-t.lt Wavis 1_E|l-_“FJ+

loghpoi arbiter.v”

Vearileg syntax check succsasful!

Selecting top level module poi arbiter
Synthesizing module poi_arkiter
#H:"D:\user’\ram\verilog latest'dvlsi des weril
oghpai arbiter.v":53:0:53:5|Trying to axtract
state machine for register arbiter state
Extracted state machine for registear

arbiter_state

We started with module there must be an end module for the test bench as well and these
are all the results for example, synthesis results using simplify is reported here and this is
the PCI arbiter dot v is the actual design and its reports verilog syntax is successful.
Remember, earlier what we had done is; so if this the ASM chart we have given 0 1 as
the condition here 1 then 2 corresponding to the grants of the 4 masters that we have and

this is the fourth master here and thisis 0 1 2 3 up to 4 in decimal.

(Refer Slide Time: 39:29)

e e e e e

1Y N T & WY

r:-'.l'-d--l.-l\-!.-l-lﬂ L .-l."\-'“-:- e et
Synthesizing module poi arbiter
#H:"D:\usachram\verileg latestidvlisi des wveril
ogipei_arkbiter.v":53:0:33:5|Trying to extract
state machine for register arbiter state
Extracted state machine for register

arbiter state

Stats machins has 5 reachable states with

original ancodings of:
000

(Refer Slide Time: 39:45)

= e e e e
Tl g L L 1=
L

i A A A e i A D - Al ke
arbiter state
State machine has 5 reachable states with
original sncodings of:

Q0o

001

010

011

100

Encoding atate machine

work.pel _arbiter (verileg)-
lrhitlr_ltjtivh_lrhit-r_ptlt.[l:ﬂ]

original gode => new code
000 => 00001
Q01 -> 00010
010 -> 00100
011 => 01000

Now, let us see what this tool does. So, this is what you had here and these are all the
usual reports. What it says here is what is important here is, it is trying to extract state
machine for registrar arbiter state and says it has extracted state machines for an arbiter
state. So, what it means is it inspects although we have given 0 1 corresponding these are
all the states here and we had as for 0 1 2 3 and 4 that is what we have seen the ASM

chart.

Now, although we have as for this it requires only 3 bits here that means 3 flip-flops are
required. Whereas, the tool has assigned different manner say for example, what it has
done is the original rules what was requested was this and what we designed was this
state actually what the tool after optimization is different. Now, it has taken 5 bits
although it has increased number of flip-flops it has he would recognize this as 1 hot
machine, you can see there is only one entry here in hot machine. All the states should
have just 1 entry there. So, 1 here next is 2, here this decimal weight if you take and 4

here then 8 here 60 and so on so corresponding to all this.

(Refer Slide Time: 41:17)

So the tool has that much intelligence to map it to more better optimization and from that
point of view the tool must have allocated this and if you see the simplified optimal
coding we would precisely see what has been cooperated here. Before we go on to the
details of this, what we will see is the wave forms after back annotation. See for
example, 1 will just explain before zooming here we have a reset here and that is applied
at this point of time. So, you remember that at 60 nano second so we had and here it is
mark 50 nano second and each will be duration is 5 nano second. There are 10 here and
50 by 10 is a 5 nano second here and this corresponds to around here. So, that is 60 nano
seconds that is what we have here; exactly 60 nano seconds and it remain for 20 nano

second and there after it goes high.

So, the system starts working only at the following edge of the posedge of the clock that
is at this edge and so here we had, will zoom this, you aim for that we had all the 4
requests made. So, you can see this wave form just on the top of the number employing
that they are all 1 although it is showing O it was click at some other point that is why it
is showing 0. But, actually what you should see is this is always on the top of the

member; so, which means all are them are (()).

So all are 1; we started with the 1 and let us see where the first grant is who will be given
the first grant. Say, for example, here these are all the grants; 4 grants here and this is the
initialization state and where in it is made 0 here and very first grant, video grabber grant
is awarded here and that is because this request 0 will be sent only at the posedge of this
clock. That is at this point after the reset is removed and the grant will be automatic; I
mean will be issued only at the following edge of the clock because it cannot change
instantaneously. This, we have seen here before in mono shot also same thing; so, it
should happen here because it is back annotated at file we should get the grant even
delayed from with respect to this edge. For example, you can see here, so this is
corresponding to this point somewhere here where as it is here. So, this will be around
some 5 nano seconds or so. We will see in next wave form; so grant O is a asserted here
and this what here design PCI arbiter has done and all the 4 requests were made here and
naturally, it changes state here from 0 to 1 because 1 corresponds to the video grabber
state in which case grant 0 is given here.

So, in the next wave form what we have is so grant O which is high here and request 0
has gone low here which will be sent only at the posedge clock and it will take effect.
Grant will be removed; grant 0 will be removed only at the following posedge of the
clock and once again, because it is a back connected thing you see a time delay here and
you can see this grant 0 is removed at this point of time; that is the delay is also

mentioned here that is 5.4 nano seconds.

Here, grant is always late whereas the state itself now you see that because of simplified
overriding our states after state 1 2 which has gone to state 4. So, that is what we have
pointed out before and here the actual state changes much faster this is only 1.768 menu
second and with reference to the postage of the clock and this grant 0 is withdrawn here
and grant lis avoided here and request 1goes low here. Therefore, after the second clock
from there and once again after delay a 5.4 nano second and grant 1 must go low this is

corresponding to the request 1 going low here and simultaneously, without any time log
you see even at this point you can see that grand 0 is withdrawn grant 1 is immediately
given. So, this is the case for grant 1 and grant 2 and going to this third wave form you
see here after 4 we have got a 8 here in this case grant 2 is de-asserted and grant 3 is
issued here because grant 3 was already waiting for quite a long time and request 2 is
also gone here. In the last wave form you can see request 3 going low here and in
between in the earlier wave forms request 0 has been asserted again. Therefore, it is high
here and although top priority has come here unless the lowest priority has passed

completely, its usage of the bus it would not release the bus.

So, only after the release of the bus this top priority can get and that is what is happening
here. It is released here; second clock h and once again 5.4 nano second delay grant 0 is
avoided here and simultaneously, grant 3 is withdrawn here and this completes these

checks the functionality write up to the back annotation.

(Refer Slide Time: 47:18)

e e e e e e

T g L [

(Refer Slide Time: 47:29)

e e e e e e
o e L& F o
N,

Mapping to part: EoW
Call usage:

I/O primitives:
IBUF 5 uses
oBUrE 4 usaes

(Refer Slide Time: 47:47)

G
o il ey L N F L8

LB

BUFGP

I/0 Regiater bita: 4
Ragister bits not including I/O0s: 5 (0%}

Global Clock Buffers: 1 of 4 (25%)

Mapping Summary:
LuTs: I8 (0%)

We have been looking into this; 1 2 4 8 16 are the states assigned by the synthesis tool
and you will be surprised to see it is reporting very high frequency of 242 megahertz all
though we have request for 50 megahertz. This is because we have selected the fastest
available device in vertex each series and values and lowest capacity which is 50000 and
lowest package and highest PDF and that is the reason why you get some 242 megahertz
there and it has taken (()) 10 number of LUTs here. So, the design is so compact and

probably optimization has done a good work there.

(Refer Slide Time: 47:59)

= e e e e

T g L [

¥ilinx PER Results

Dasign Summary:
Numbar of acrors:
Humbar of warnings:

Hunbar of Slices:
Te8 1%
Henkbar of Slices containing
unrelated logic:
] 0%
MHumber of Slioe Flip Flops:
1,536 1%
Huembear of 4 input LUTas:

HAE
=

(Refer Slide Time: 48:02)

SILEIRTTET e
NHumbar of warnings:
NHumbar of Slices:
T68 1%
Humbar of Slices containing
unralated logic:
] 0%
Humbar of Slice Flip Flopa:

1,536 1%
Humber of 4 input LUTa:
1,538 1%
Numbar of bonded IOBs:
84 -]
108 Flip

(Refer Slide Time: 47:08)

B e e b e e

iﬂp__l_-:l. L L = '_!'_'ﬂ n = . 1 k- T
L Fiopa:

4

Humbar of GCIKa: 1 out of
4 25%

Humber of GCLKIOBS: 1 out of
q 25%
Total sguivalent gate count for design: m
Additional JTAG gats count for IOBs: 480

Mapping completed.

Dasign file: poi_arbiter.nod
Fhysical constraint file: p-u:i,__lrh:i.tlr.puf
Device,speed: xovSle ﬁ 3
"Eg,r.:.mv 1.65 2001-12-19) i

Constraints cover 45 patha, 0 neta, and 48
gonnections (84.2% coverags)

Design statistics:

Minioum pericd: 3.401ins {Maximuam
frequency: ZE4T0SINES)

Minimim input arrival time bafors olock:
2.6Tlna

Minipum ocutput required tims after clock:
£.415ns

Analyesis completed Mon Aug 04 15:36:28 2003 i -

L LLL
U

And, Xilinx place and route results for same or number of slices, etcetera it reports and
you can see the gate count here. It is just 132 gates and if you want JTAG compatibility
of 10Bs then you need to sacrifice more gates here and here. You will be surprised to
find 242 megahertz reported by synthesis tool, is enhanced to 294 megahertz here. But,

actually this will be misleading because this only a small portion of the total design.

(Refer Slide Time: 48:56)

Opaned constraints file pei_arbiter.pof.

Mon Aug 04 15:36:32 2003

Running DRC.

DRC detectesd 0 srrors and 0 warnings.
Creaating bit map...

Saving bit stream in ~FELlArDIEEEIELE" .
Creating bit mask...

Saving mask bit stream in "poi arbiter.msk” .
Bitstream gensration is complete.

The total design is when you make the entire codec and put everything in the same chip
or multiple chips. So, that will be the true picture in which case this may come down
crashing to anywhere from 50 megahertz to 100 megahertz. Finally, it will generate this
bit stream and this is what we will be using for downloading the hardware or few are in

open core - IP core supplier will be supplying only this along with the documentation.

(Refer Slide Time: 19:17)

R aien s
Assignmant:

l. Add a 4-bit ocounter to monitor the bus
activity after a master is granted the
bus. If the mastsr fails to avail the bua
within 18 elock coycles, withdraw its
grant; and allocats the grant to the
wairting next priority master.

2. Add a 16-bit counter that kesps track of
the maximum allocated time alapsed tuhﬁ

e o SCRERRE L TOE LA RSN B A
L]

. Wi s —

So, finally we have some assignments for you. What we have done is I will just read out

these assignments. Add a 4 bit counter to monitor the bus activity after a master is

granted the bus. So, if the master fails to avail the bus within 16 clock cycles withdraw
its grant and allocate the grant to the waiting next priority master. This means, you have
granted to a particular master which has requested and even after 16 clock cycles it has
not made use of the PCA bus.

So, what should we do? We should remove the grant for this and without even warning
because this is the penalty made thing agreed protocol for all the masters. So, you
include a 4 bit counter in your design; so that you count 16 clock pulses after it is granted
and if no activities found on the bus which will be reported by another signal which we

press you it is available to you and then process this.

(Refer Slide Time: 50:20)

e e e e e

g AlEE - & Y

Walting next priority master.

2. Add a 1l6-bit counter that kesps track of
the maximim allocated time elapsed (which
i different for different masters) sSinas
the time a master is granted the use of
bus. After the elapse of time programmed
for ths mastsr using ths bus ourrently,
withdraw the grant and allocate tha bus to
the waiting next priority master.)

3. Video Codec (actually tha decoder) to *

(Refer Slide Time: 50:50)

the waiting next priority master.

» Yideo Codec (actually the deccder) to the
AGEF (display monitor) communication is not
incorporated in thes above design. Inolude
the same into your design.

. Amand the ASH chart, the deaign and tha
test bench to incorporate all the above
changes. Tha test bench desoribed earlier
is by no means exhaustive. Therefore,

includs all |poasible parmutation *i

(Refer Slide Time: 51:21)

-—
e e b e g "
TIrr LT - BT = . * .
L3 L a

inoorporated .1.-n tha above dasign. Im:lud.vl'
the same into your design.

. Amend the ASM chart, the design and the
tast banch to incorporate all ths above
changes. Tha test banch described sarlisrc
is by no mesans axhaustive. Therafore,

include all posaible permutation and

combination of inputa to test the design

complataly.

3

Also, add a 16 bit counter that keeps track of the maximum allocated time elapsed which
is different for different masters. So, if the time a master is granted use of a bus, so once
master has taken the bus and started using, there is no guarantee that it will surrender the
bus after elapse of its time. So, you need to keep track of that also for which you need
one more counter and design this as well after the elapse of time. Program for a master
using a bus currently; withdraw the grant and allocate the bus to the waiting next priority
master. And, here in design, we consider only the encoder portion for as far as bus grant
is concerned, | have not taken into account the decoder aspect and video codec; actually,

decoder to the AGP this is for display monitor and a motion picture is displayed on the
monitor using this. AGP communication is not incorporated in the above design that is
what is said. So, you have to include this into your design; that means, you may have add
one more bus request signal and in order to do this and naturally this calls for
amendment of the ASM chart; the design as well as the test bench to incorporate all the

above changes.

The test bench described earlier is by known is exhaustive because, we have a 4 request.
So, the total combination will be 16. Whereas, we have seen the test batch we have
hardly used some 6 or 7 types of test. So, you look into that aspect and whatever is not
covered in the test you make it full fledged. Therefore, include all possible permutations
and combinations of inputs to test the design completely and I hope, you will make a
sincere attempt to solve these problems. If you have any question you can ask.

Thank you very much.

