
Digital VLSI System Design
Prof. Dr. S. Ramachandran

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture No. # 34

Xilinx Place and Route Tool

(Refer Slide Time: 02:27)

(Refer Slide Time: 02:33)

We were looking at the log file of Xilinx place and route and we will continue with same

now. and This is the Xilinx’s window which we had a look. We were in version 3 and

division 1 and we had run and it has successfully completed the place and route and we

were inspecting the log report. From here, we can see, you can base a what is called

utilities and 1 report browser there, if you click on this, you can get the report even after

you closed after running replace and route earlier.

(Refer Slide Time: 03:50)

You can click one after another and inspect all this report or we have already copied this

log file here and we were just mentioning that total equal and get for the design is just

1093 gates. Whereas, some additional gates are require for JTAG compatible IOBs and

that is about 4000 gates that you need. For larger design, this will be much larger when

compare to this and will just continue with this report. So, we already mention that what

is being reported to at this point of time is that the device is being mapped, and for that, a

constraint files or also created.

(Refer Slide Time: 04:10)

(Refer Slide Time: 04:21)

(Refer Slide Time: 04:33)

These the constraint file - pcf file - created by one of the phases of place and route. Here,

once again it reports nearly the number of clocks and number of slices; we have already

seen what slices are. In order to place and route it all iterative process and requires a

constraint amount of time as we had mention earlier, and this are all, I mean this will

keep going in a cyclic fashion. So, as we see here.

(Refer Slide Time: 04:56)

(Refer Slide Time: 05:16)

(Refer Slide Time: 05:41)

We can see here, the placer had tried already some 21,000 times. These are the first pass

and second pass more and so on. Huge iteration, even for a small design, just the

sequential seconds, and you can see further, and once this is only the placing that has

happened and once the placing is done, so, file is also created here called dot ncd which

will be requiring for back annotation, etcetera, later on. It says there are no errors and it

was also doing place and route and completely routed it says here.

(Refer Slide Time: 05:58)

(Refer Slide Time: 06:16)

You can even specify higher level of effort level from one of the menus in the place and

route and higher router effort level and placer effort. So, that also can be change as per

your requirement. So, more you do the iteration, more, I mean, better results will get in

times of frequency of operation. So, that is the advantage in over raiding the default.

(Refer Slide Time: 06:35)

Here, it gives the timing report. We have remember that we had already seeing similar

timing report in synthesis, during synthesis, and it was also pointed out that what was

obtained there is only refer estimate, only Xilinx place and route is more realistic. It is

close at to the real picture. We said is closer because unless you map it, put your FPGA

right on the pcb and run at your decide frequency and observe whether they are really

functioning as per your functionality that you have program, and that is the final deciding

a point for you. Even here, I mean in real practice, people have reported even a bettering

of the report, the Xilinx place and route gives. For example, it may be 10 to 25 percent a

better performance also we can get based on real experience.

(Refer Slide Time: 07:51)

So, what they give is a guaranteed speed of operation here. Normally, as I mentioned, if

they design is a quite huge, what synthesis will report will be much higher frequency

operation then they place and route. So, and once the place routing are completed

without errors, it will report here, and some timing error if saying because we had

specified I think 100 megahertz and it could not meet 100 megahertz. So, here also

timing error will naturally come, but this is not a handicapped. You can, once again the

tool will report how much frequency operation you could get and so on. So, based on

that we can see.

(Refer Slide Time: 08:51)

(Refer Slide Time: 08:57)

These are all the intermediate files, right now we need not be consider about it. Here

comes the frequency evaporation. We see it surprisingly hire here. As I mentioned for

smaller design, my observation is synthesis will be very conservative, for, but real

designs are all big, so, it will be the reverse. So, normally synthesis will report, say 100

megahertz, but place and route can give only some 80 megahertz; so, that is the usual

scenario. Whereas, here, it appears to be exactly reverse and I think we started with 1 16

megahertz and synthesis.

(Refer Slide Time: 09:49)

And here, for final use in FPGA, you need a separate file called bit file, and it is also

known as a bit stream. So, that comes as an extinction of bit, dot bit will be the extinction

use, and it is a Bitgen, it is a loading the design for this generation.

(Refer Slide Time: 10:16)

(Refer Slide Time: 10:57)

It also run for this called a DRC this is a Design Rule Check. So, if there are no errors

are warnings, it reports solve that, and here it is creating this bitmap as I mention, and

this is the output file, because our design happens with sequential circuits, it nearly takes

and appends this dot bit, and rights all this bit file here, creating bit. So, that is all to it for

the log file. We will just go through this comments summary which we have already

used. To your, just the second step, first step was to invoke the simplify and then in gone

to the design manager - that is a place and route - and we did not see the second step at

that time, and we are just mentioning how to start the implementation place and route,

and perhaps, we did not read this, so, I will just read this out.

(Refer Slide Time: 11:09)

Click on the dark arrow on the top, left to start the implementation of the place and route.

After it is completed, click on view log file and reports files to get implementation

details. We have seen the view log files so far, and reports file, I should browser. You

will literally get exactly the same thing expect for some more detail, such as what pins,

what signal are mapped on to what pins, and I will also be reported that, and some timing

report all that we will be getting. So, we will see those reports as well, files to get

implementation details.

(Refer Slide Time: 12:06)

If you are done, click to dismiss the implement status window. An output file called

sequential bits; this is what we have seen. So, circuits dot bit is created, and this file is

downloaded into the FPGA house on the target circuit board, while checking your design

on the hardware, later on. So, this will happen only at the later stages of your design

cycle. So, when the pcb is ready, only then you put on you are FPGA populate bare pcb

with different components including FPGA, and then, it will be ready for testing. At that

point of time, you can download this bit file into the FPGA, and normally, from the

development system you can you have provision to connect straight to the FPGA.

You need a special interface for that some serial interface or even a parallel interface.

This file is downloaded into the FPGA housed on the target circuit board while checking

your design on the hardware later on. This file is what is supplied by IP core developer

along with documentation. See, suppose you happen to be working for an IP core

company, so, you as a designer will had to prepare a document full document as to how

the user can use it, and then also you should give this dot bit file. Normally, this IP core

people will not give the source file, because they want to keep it to themselves and

unless the contract demands the otherwise.

(Refer Slide Time: 13:36)

And next step we will go on to Xilinx back annotation, and before this some of you

express the desire to see an optimized verilog files, that is dot vm file created during

synthesis or simply simplify. So, will see that, we will take up that first, and then come

back to this.

(Refer Slide Time: 13:58)

(Refer Slide Time: 14:43)

This is the main simplify window and use this sequential circuits test bench, and in order

to, I mean that is of little no difference between the original. We need to invoke the

model same in order to see whether this optimized file, dot vm file, of course, here,

makes, this is only a test bench. So, what is different is the optimize file is only the

designed file, but the test bench includes that particular file. So, you had to have this.

This is not really the correct way to do. Actually, should, what we should do is we

should go to the designed file, sequential circuits, and then add ((No voice from 15:35 to

15:38)) for time being we will retain that, let us see. So, will had to, what I am saying is

in the test bench, you go and include, earlier it was dot v file, designed file. Now, what,

optimized file instead of the designed file must be used. so this is what, it is here.

(Refer Slide Time: 16:33)

So, the, in the test bench, we have to include this dot vm, as I mention, this is a change

from design file which was just dot v to these a dot vm which was created during

synthesis. This is the optimized file, and we can even have a look at this file if you wish

later on. Right now, let us open the modalism, its already open I think, it is opened. We

are in the directory, let us use pwd to reveal what directory, d used run, d vlsi, etcetera,

etc, it is not etcetera. So, under this directory, I mean this dot vm has been created in

some other directory area, but I have already copied that into this directory, and in fact,

by directory we can find out whether it is, so, no, it’s already here, it’s here, it’s a huge

file some 42000 and odd. So, now, what we need to do is if you compile this once again,

so, in in this test bench we have replaced it with dot vm file, so, it will take this as design

file now and then compile.

(Refer Slide Time: 17:30)

So, let us see what it says, not to compile, design, compile, window opens, its in etc

window, and here, we need all files at the bottom, then only we can view this, and in

fact, we do not need that also, because it can be verilog itself. So, in which clear, after all

what we need is only sequences require test and the test bench. So, we will just double

click on this, and what happens here, in this window, when you double click here, you

see, give a big list, and I read it for you. So, you are already familiar with the synthesis

having created lut 4 lut 2 and fdc fdp, then once again lut d flip of for a fdp, etcetera, and

so many lut’s, then macs, buffer, input buffer, output buffer, it has taken all this and

compiled.

So, that is because we have mention in the test bench that vm. So, earlier, if it were dot v

do not have reported all this. So, that means to say it has right now taken your dot vm

which was optimize file by synthesis are the source file and next step is to load this

design file.

We do not need the compile here, so we will remove that and this is the load file and

once again same buffer all that primitives, its reporting here. I think towards the end you

have sequential and has got test. So, let us load this file.

(Refer Slide Time:20:12)

So, while loading also it has displayed all that primitive cells here and there are no errors

so, we can conveniently see the way from now. So, in order to see that, click view, then

signals, then again view, then wave, then final last option signals in design. So, it has

opened the wave file; it do not require the signals anymore. If you click on this, it will

run. So, it has run and swaps and as usual source file is opened at a swap at terminated,

so, you do not require this. So, this is the wave from that we have, and in order to

analyze, will take just one example, and in a similar fashion, you can analyze other

functionalities.

(Refer Slide Time: 20:25)

So, you remember we had this is sequence circuit, we had let us say a count, we had a

counter, this is simple counter which advances right from 0 through 255 and revolves

around that, and it can be reset for certain conditions when counter equal to 255 and can

be advance if A B C are each one. So, that is a simple counter. So, will just have a, I

have already preserve the wave from and has we had done before in paint. So, we will

just have a look at that.

(Refer Slide Time: 21:02)

(Refer Slide Time: 21:21)

(Refer Slide Time: 21:37)

So, this is the wave from which you already seen and analyze earlier. So, this is nothing

but starting of the counter, for example, this is reset clock A B C are the inputs, then a

reset counter here, then advance counter, then counter next in which only a next value

that indicates in advance, and this is the actual counter register. Notice that it is 0 here

this is forty i have already seen and if advance sink form 0 1 2 3 and so on and the this is

for advance being A B C being 1 here and this corresponds that, this we have already

seen. Now, what we need to do is we have already run the simulation capture the wave

form for corresponding to the optimized file.

(Refer Slide Time: 22:06)

(Refer Slide Time: 22:18)

(Refer Slide Time: 22:34)

So, let us see what it is and this is the optimized one. So, I have name the test sequential

count same rage one I have preserved and it is optimized, and this a timing, time base

may be different because I had done it a fresh, so, that may be different thing. Form that,

this was here, graduated like this, and here, it is closer, it is not closer, I mean wave from

is closed that means zoomed in, and you can see again this is the counter final count

value and A B C are the inputs here. You can just see all other wave form represent the

same reset 10 clock A B C here and you would notice one thing here. So, in, we have a

reset counter has before, but there is no advance counter.

So, I think in optimization it might have removed that signal, because the same signal

might be appearing elsewhere with some other name because we had conglomeration of

different circuits, so, that may be the reason. So, I could not find that signal advance

count. So, that is what I was saying, while optimizing, duplicate will not be created. So,

it will lift that one and use, I mean it will be map just one time and then reuse at different

points of time, and here, you can see again the counting advance sink here.

(Refer Slide Time: 23:56)

(Refer Slide Time: 24:02)

Now, let us see what the, is there a clock. I think forget in the clock, or no, its there. So,

the clock is this wave from here and very last one is the counter here, and unfortunately

we cannot see both, can you? If the difficultly you can. So, now notice this here, see, this

positive edge of the clock, it is not happening, this counting; it is only after shift it has

happened. That means to say, here, after all this synthesis is aware of the delays, gate

delays, because it has snapped on to the actual primitives that Xilinx place and route is

ultimately going to use. So, whatever place and routes details supplied by Xilinx have

been incorporated. So, it may not be in depth, may be interconnection delays are not

fully accounted for and that is the reason why we need to go for Xilinx place and route.

(Refer Slide Time: 24:50)

(Refer Slide Time: 25:04)

(Refer Slide Time: 25:18)

(Refer Slide Time: 25:33)

So, you have some set of delay element of also coming to picture that why you are able

to see here. Let us see, compare this with the previous one. So, for example, so, let us get

to the clock. The clock is here, not to, it may be difficult for you to remember. Let us

take this here; some were here, just draw line here. This is the positive edge of the clock.

You can see, it is exactly align with the same clock, say any count change is exactly

align with the positive edge of the clock here, whereas, they dot vm has delay here that is

what we have seen here, is it clear? And the counting as usual progresses in this session.

Similarly, towards the end of the count, we can have a look and for both this.

(Refer Slide Time: 25:55)

(Refer Slide Time: 26:02)

(Refer Slide Time: 26:08)

(Refer Slide Time: 26:39)

See this is the original one, and this is towards the end. Once again you can see at this

edge, and when the count is 255, so, this goes high, so, that is a reset count is acting here.

Here, you see this advance count, but in optimize thing you are unable to see because it

has been optimize, it has been removed. The actual signal itself is not removed, but it

may bit preserved under some other name not as this name. So, you see here, right at

255, when the counter is 255, so, it gives one reset output, that is what we have for

resetting, is not it? So, as per this, you should rest when the 2 matches.

(Refer Slide Time: 26:49)

(Refer Slide Time: 26:59)

(Refer Slide Time: 27:07)

(Refer Slide Time: 26:27)

So, coming took this, it advancing, this is already seen earlier, and again it reps round the

counter and optimize on corresponding to that is this, the clock is here as before and all

A B C are all one here, and so, the reset count is advancing, that is the condition for

advancing. From that, we make out, all though at this advance count is removed in this,

and last one is the count register. I am early shown the last few counts, and once again

you can see this reset counter is active, when 255 is on, and notice the delay here also.

When 255 is occurred, only after slide delay here, this is happening because this is being

compact. Similarly, here, when you go on to the clock, rising at this here, and to 255

itself is maintaining the same phase shift here. So, this tell some in this fashion, you can

analyze any other circuitry that we have seen before or create an own design and

analyze.

We are looking in to the reports browser earlier appear to going for some diversion into

the synthesis dot vm file analysis that is after optimization. So, we will resume from the

place and route report browser. So, you have what is called utilities and you have a

report browser, if you click on this, so, you will have list of different report files. For

example, you want know; let us say we want to have place and route report.

So, this is the report. So, and then, if you want just mapping alone, you can click on this

map report. Then you have what is called translation report, navigation report, and then

pad report, IO pins, etcetera will be reported here. Some then delay report is a available;

then post layout timing report, and like this two other, in fact, then one more you have

called Bitgen report, and all these things are clubbed into one, we can say that log file

which is already inspected. I would rather leave it has an excise for we to go into the

depth of all these. Most of them will can way moral like same importation that you have

got from the log file.

(Refer Slide Time: 29:46)

(Refer Slide Time: 30:07)

Let us see one of this. See, for example, this a pad report, so, this is the pad report, and

IO pins will be reported here. The signal we had used in our design are A B C D, then

flip flop, and then state machine, those outputs, a counter and so on.

(Refer Slide Time: 30:12)

(Refer Slide Time: 30:42)

(Refer Slide Time: 031:17)

(Refer Slide Time: 31:21)

So, all these, these are all the pin numbers for that; pin number is here; pin name is also

given here. In this, you may have so many other pins along to the particular FPGA and

for programming, some reference, and some ready, and so on. There are so many pins

there even bcc ground all that will be there because its full listing of all the pins for

potening to that particular package, but we have used earlier; it is a device you remember

was 100 speed 8 and p q 2 40 a package. So, this all are the pins that you have already

seen here. So, pin 35, may be the, may be some rows, because its only 240 pin probably

it is a nearly is some dip type for, I do not remember really, and you can see some 237

pin number coming. So, it is a 240 pin package, so, naturally you should not see anything

greater than 240 here, and each of this signals weather it is an input or not weather it is

TTL compatible, or let us see.

(Refer Slide Time: 31:40)

This is not clear to me, and how much load it can take? Drive, so, drive means so much

load can be connecter up to this much, I think may be active load could be, and weather,

I mean what is the speed, weather it is slow or not, when is there a pull up here, and so

on. Then what is the voltage, any other constraint that we have here turns on.

(Refer Slide Time: 32:14)

So, we can see voltage. This is pad report. Similarly, there are other reports you can have

look at this. You have a question?

Should the level is TTL compatible, is not it?

Yes

Can you have other compatible level also?

Mouse, in fact, this pj as are basically mouse base version, so, they have what are called

TTL tolerant voltages; at the chip itself may be working at 1.5volts or 3.3 volts, and so

on.

(Refer Slide Time: 33:23)

So, no matter what supply voltage is and they will have compatible IO, so that any other

TTL or any other device c mos or mos can be connected. So, coming back to this design

manager here, so, as I mentioned you can use this utilities then click on report browser,

then you get, you can open one file after another and find out what they are. If you are

interested say Bitgen here and it may have look weather it gives any new information;

nothing much is there. So, except that, it reports saving bids stream in sequences circuit

bit here.

(Refer Slide Time: 33:43)

(Refer Slide Time: 34:08)

(Refer Slide Time: 34:20)

So, finally will see place and route map are all almost same has log file. Here, so, this is

timing file. So, naturally all timing are reported in this, in fact, log file contains almost

all of them here; same clock timing its reporting. So, you can have a look all by using, it

is not a problem, it also called timing analyzer. You can click various for various

constraints, etcetera, and you get corresponding delays and so on.

So, next what will constraint is, the back annotation. So, we need to back annotated

because, so for what we have done is only routed placed map on to particular device,

then placed and then routed it. We need to get information for timing, it say, for

example, you on get delays, so, you need to have this what is called back annotation and

dot v file created finally. So, for this you have couple of comments which we can

execute in dos mod, and not in the design manager, but state away from the dos mod you

can have.

(Refer Slide Time: 35:20)

This is little time consuming. There are comments here, I will have made into, I mean I

have incorporated in the comment summary and I will read out this one. You have a

question?

(Refer Slide Time: 35:33)

See, if a frequency, target frequency is achieved, I did not bother what initially get

frequency is at all get delays are, is not it?

So, if my target is achieved, I just did not bother about it, in that case.

In general, that is, the case, suppose you want to improvise, suppose, you have done and

deliver the product, they say that it is malfunctioning at particular time, then you need to

analyze. So, how will know that, had you analyze before, you would have got in to such

a mess later on. So, it is a good practice; as a design engineering, we should go through

the entire cycle, do not leave anything is a chance.

Ya

If they target frequency is less 100 megahertz

Yes

 It is a good practice to see that it work at straightly higher frequency or if a achieve 100

megahertz it is enough?

As I mention before this a tricky thing because, sometimes it is observed whatever Xilinx

as reported as maxim frequency of operation, normally, people have experience 10 to 25

percent better performance, but the some other have also experience the other way; so,

one cannot say best thing is to deal case by case. So, for every design, we will have to go

through that, but how can we get that one unless you have gone through the entire cycle.

If you bypass at just because you want to make a quick but there it, so, I do not really

click, you have to go systematically step by step, so as to not to prolong your agony later

on, it is better if you sort it out right at the inception stage. In fact, well, what will coding

I have mention that technological dependence you may give some gates even assuming

synthesis tool keeps in intact.

So, even then, you have to go through all that and find out whether the delay, total delay

is really up to the mark. There may be some critical paths which you may take it light

now and later on that may blow out in to a big problem.

So, it is always better to do it. After all, we are going to do only once in life time of for

the product, so, why do not you do it completely. Hardly it is going to be couple of days,

not more and will continue with the will sort rather the Xilinx back annotation and the

purpose of back annotation to incorporate the gate delays and then go on to the simulator

and see actually the gate delays shown as a way form there. In the timing diagram, you

can see the real delays, and we have already seen in the synthesis tool in the wave form

analysis prior to this that slight timing is effected in that even after optimization.

So, in place and route it must be more so. So, I will just read out this one. Open a dos

command window. You need to open a separate dos window because we want to execute

in dos command, and it is just a couple of, mean commands, only you need to run, but it

is time consuming, therefore, I have, whatever is the logging of that window I have just

preserved it here and we will go through this as step by step. After going through the step

by step, I have actually run it just few minutes back and captured on paint and will see

that version. Here it is says open a dos command window. Change to the directory where

your Xilinx place and router results files are located. Obviously, you have to going to

that directory because from elsewhere you had to give the entire path. So, it is a good

practice to just change your directory to the place where your P and R results are.

(Refer Slide Time: 41:07)

In the dos prompt, key in the in the following command and execute to convert dot ngd

file to dot nga file. So, this are all intermediate files generated. As I mention there are

just two comments, one of which is already p ping here, and the purpose is to have two

poses and get the back annotated dot v file. So, first phase is this here and I will just read

this. Make sure that dot ncd and dot pcf files of the design are present in the current

working directory.

See, well, running the Xilinx place and route, we had already got this files in that. So, I

thing it may be one of this here. If you have a look, this is that revulsion one window and

you can see that dot ngd here and that is what we have one here. So, ngd file to nga file

we need to convert. So, this is being done by this commend. So, make sure that dot ncd

and dot pcf, this is a constraint file, that was also created, it is fundamentally the input is

uca file, you remember, we had used as an input here and are the pca files are the design

or present in the current working directory. So, make sure about that. Very first

command for this is ngd anno, so, anno is annotation. So, it is first phase. So, I did not

remember the expansion for this one. It is just it, you get the back annotated file with is

commend.

As I mention there are only two commands here, and here, the options are, I mean you

had to identify output files that is how identify here. What do you want to create here is

an dot nga file, that is why, that was what is the indicated earlier, and some minus p

optional so seq_ckts, I thing it is for indicating it is pca file. pca pcf constraint file

created by Xilinx place and router and that need to be given along with dot ncd file. The

output is nga file and if you run this command and I will show after both our covered.

(Refer Slide Time: 42:17)

Then next step is, second phase is, you take this nga file which was created here and then

convert in to back annotated dot v file by executing the following command. Here, you

have ngd to verilog, ver sense for verilog, so, you want to create a back annotated file

which is nothing other than dot v file, so also a verilog file. That file I have named it like

this just to discriminate bit in that origin design and the back annotation. In case you are

putting all this in the same directory, suppose you have forgotten this, it will lower right

that origin file. So, have a make it habit to indicate, if this is to long, you can say b a r

whatever, and then it sorts from nga file which was created then the previous step and

that it takes as input and create simply this here.

(Refer Slide Time: 43:26)

So, it is just into two phases we should say and we should also make sure, sorry,

sequences circuit that sdf file is also created are in this process. This sdf file is the one

which as a delay information is called standard delay format. So, this also created here

and that is also important. The next step is make a new directory and copy back

annotated files. We have just dot v file dot sdf file created on the and also the test bench.

So, if you had these three files, we can go to the next step; let us see what the next step

is. Here, I will read it again: make a new directory and copy back annotated files dot v,

and dot sdf, and the test bench sequence circuits and score test dot v into the same.

(Refer Slide Time: 44:06)

So, then, before going to this here, will, for to the next step, will just have a look at the

window. So, in fact, this was what is the actual window which had run the this two, but

you can read here this on is the ngd anno minus o that is the very first command, and

this, after it has finish all this, it has given some warning also which will going to about

some gsr and gts, will going in to that shortly and after that, it has completed this. The

second command was given here, that is ngd to where that is a verilog, from nga to the

back annotated file. Here, once again its go through, this is a time consuming operation

here, it may take some 5 minutes or more, being a small file, but even that is quite a

subtraction time here, as for a presentation is concerned. Here, it reports that verilog stf

file sequence back annotated dot stf file is created here, that sort it.

(Refer Slide Time: 45:09)

(Refer Slide Time: 45:18)

I have, I think this is the one. The very same thing copied here and that is what you see

here. The very first command was: so, this ngd, anno, minus o, sequence, all that, we

already seen. Say that nga then minus p option pcf ncd, this is the command we had

given. So, web items here; it is a basically the same copy, and you can see that pcf file is

being loaded here, and what device, all that is reported here. It is saying annotating nga

image and so on and drc cheek is also run and here is a warning as I mention here, some,

here we have be very careful; it is not big thing gsr and gts will just comment it out later

on.

(Refer Slide Time: 45:44)

(Refer Slide Time: 46:18)

(Refer Slide Time: 46:32)

The next step, height itself, nearly I warning there, and second command is here, ngd

where two sequence circuit dot nga, then this is the back annotated file here. So, it is

reading the file, then specialize flattening, specializing design completed, all that its

report here. Once again some warning is there, so, we had to look into warning, should

not just take it light. It says, on block sequences circuits, some of them are missing or

something its saying. Re-constraint because there are some missing bus signal here. So,

any way we are going to take this one into the model simulator and verify the

functionality. So, we do not had to read in-between lines. So, finally on sdf file is created

here, writing into that, its says and that is completed its says, and then a net list, verilog

net list, that is dot v, this is the file which we need is created here. Once again some

warning is given here, and finally, its say some its completed. Its only reminding of some

procedure; so, this warring is not a serious thing.

(Refer Slide Time: 47:32)

So, now, what will do is, will go back to the summary and continue from where we left.

Here, I readied out: edit sequential circuit back annotated dot v file and comment out two

statements on as follows and save it.

So, we need to identify to this one that was the last warning we saw there, that is what

earlier also it have given. So, what we need to do is, they last one he suggest another

alternative, so, I have taken some other alternative. So, in this alternative, what I am

doing is, I am going to the back annotated file, editing that one, and nearly comment it

here, and terminating this, after this, originally this was not there. So, this was equated

here; so, only two statement.

(Refer Slide Time: 49:12)

In order to do this one, you can use find and locate that particular file, it is here. So, you

can use find, and then, I just miss, it was already there, I think I do not to say. This is

back annotated file, once again you can see lut four, etcetera, all the primitives are there,

time scale, all that are here. If you want you just say find - wire gsr - it will find it again,

that g 1. So, if you just want this here, so, you can just, see, these are the two statements

which I have already commented. Only after this step, we can go for the next step. A

next step is, in addition to this, you had to go to the test bench, and then change, we had

use dot v m for that earlier, you remember for that is synthesis, instead of dot vm, it

should be this back annotated file. So, it is exactly same thing we are going to do here,

and again after this run the model same, that is the next step here.

(Refer Slide Time: 49:48)

So, we need little more time for this, and that will cover. It is a hardly another three more

statement we need to go for, and if you have any question, you can ask, because I am

going to stop at this point of time, because this is going to be involved, so, will see in the

next lecture.

Have any question?

Why did you do that commenting out?

(Refer Slide Time: 50:20)

(Refer Slide Time: 50: 59)

That is because it has as for some comments here, I will find out what that comment is.

What it says is - please add Xilinx very log source glbl dot v to your compile comment,

because this are all resaved words, some library is being will be invoke. So, unless that

you specifically mention it one go other and pick it up. So, these are all mandatory

requirements. So, either you can do the Xilinx way suggested or this way also. I

preferred that way because it was easier, just commenting out. Otherwise, I had key in

this much, at the time of. So, next step here is, to take this back annotated file and going

to the modalism and once again view the way from, see, whether the delay has been

corporate or net. We will continue in the next class. Thank you.

