
Digital VLSI System Design 

Prof. S. Srinivasan 

Department of Electrical Engineering 

Indian Institute of Technology, Madras 

Lecture - 21 

Microprogrammed Design 

Slide – Summary of contents covered in previous lecture. 

(Refer Slide Time: 01:09) 

 

Slide – Summary of contents covered in this lecture. 



(Refer Slide Time: 01:31) 

 

Slide – Summary of contents covered in this lecture. 

(Refer Slide Time: 01:50) 

 

We have seen several methods of design and implementation of digital systems. First, we 

need to define the system, identify the parts required, then identify the control signals 

required, partition the system into architecture, and a controller and for the controller you 

do an ASM and implement the ASM. There are several methods of implementing ASM. 



We had talked about ASM using multiplexers and flip-flops. We talked about ASM using 

ROM or PLA and flip-flops. When you have a digital system whose specifications may 

change a little bit, it is difficult to change once you design the hardware. You have to 

scrap the whole hardware and re-do it all over again. Some sort of programmability is 

desirable. ROM based implementation of controllers for digital systems is very good in 

that sense, it is programmable. When you say ROM based, really we mean PROM based-

Programmable Read Only Memories and PROMs are very good programmable devices. 

But, the problem with PROM based design is the table becomes extremely large. It is 

tedious. I may have let us say 5 or 6 inputs and let us say if about 10, 12 states, it means I 

need 4 flip-flops and 7 or 8 inputs let us say. For every state I need to know the input 

corresponding to the status of each of these inputs. So my ROM table becomes extremely 

large. First of all, it is tedious to make a ROM table involving all the conditions for each 

of the inputs in each state and secondly the size of the ROM becomes extremely large. 

ROM based approach suffers from the tediousness of the design and also because of the 

large size of ROM required for implementation. Of course, the cost of ROM those days 

used to be very high and that was one of the considerations but today the size of 

memories is not at all a consideration because memory chips are available very cheap. 

Cost per bit of memory is very low, but still why do you want to have system whose 

memory is very large when you can do it with a much smaller sized memory? 

So, we go for another approach, a programmable approach using the ROM; because as I 

said, the alternative programmable is hardware. The hardware approach lacks flexibility 

and programmable approach using PROMs has the flexibility but PROM is not a very 

efficient implementation. We want to retain the programmability of the PROM and the 

cost effectiveness and the compactness of the non-programmable approach. 



(Refer Slide Time: 05:52) 

 

 

We have an approach called Microprogrammed Design of Digital Systems. I am not 

going to go to the details of the hardware because, we remember that we had partitioned a 

system of any individual system into a block called architecture or the functional block 

and a controller block. We send signal from controller to architecture and got the signal 

back from architecture in the controller. These are called commands, these are called 

status signals, these are more than one signal and then they may have external inputs and 

of course, they also can have external inputs and outputs. When I say digital system 

design I am not going to go into all these again because we have already seen the 

examples of all these things (Refer Slide Time: 07:20). When I say Microprogrammed 

Design of Digital Systems I am going to concentrate only on this block. 

Microprogrammed implementation of the controller of a digital system; when you have a 

controller, you assume there is an ASM already written. A controller starts with a 

controller design; start with an ASM. ASM stands for Algorithmic State Machine. I am 

not even going to tell you how to do that because you have seen many of those examples; 

what is an ASM chart, how do you draw it for a given controller, take into account the 

input output considerations of the controller. Assuming we have an ASM instead of a 

multiplexer based approach or a gate based approach or a PLA based approach or a 

PROM based approach, how are we going to do a microprogrammed based approach? 



The discussion of today’s lecture is limited to implementation of the ASM of a digital 

system using a microprogrammed approach. What is this microprogram? Why is it called 

microprogram? Because it has a programmability built in that is why it is called 

microprogrammed. Why is it microprogrammed? When you say program, you normally 

understand a high level computer program like C or even in a microprocessor, you talk of 

an instruction like assembly language programming, these are instructions when you say 

add or subtract or multiply or load or store. When a program consists of all these 

instructions it is called a program. But each of these instructions has to be carried out 

using several steps; each step of this instruction execution is called a microinstruction. 

When you are talking of a digital implementation where the circuit goes from one state to 

the next state based on an input being available or not available, this intermediate step for 

a minor step which is required in order to carry out a major task is called a microstep and 

that is why this approach is called a microprogrammed approach. Otherwise, it is nothing 

like a programmable approach. So, what does it mean? 

(Refer Slide Time: 09:54) 

 

I have an ASM; normally a state, let us call this state S0 and an input; let us say X. In this 

state the circuit remains in this state and input X is tested. If X is true it goes to a state we 

will call S1. If it is false, let us say it goes to S2. Each of these states can have outputs in 



an ASM state which we write it inside the box. Let us say there is an output of P for this, 

Q for this, no output for the particular state ASM - you do not write anything in the box - 

and you write the binary representation of the state variable. Call it 0 0, 0 1, 1 0. This is 

only a section; P can be reached from some other place, from here it may go somewhere 

else, we are not interested in all that. We are interested in this slice of an ASM chart. 

When I say I have microprogrammed implementation of an ASM chart what do I mean? I 

will consider what is the address norm, what is the state in which the circuit is, what is 

the input that is being considered in the state, what happens with the control if the input is 

true, what happens to the control when the input is false and in each of these states what 

is the output? This is all the information we need in order to execute the ASM chart 

properly. To fulfill the controller properly, we need all this information. 

In a PROM-based approach what we will do is, we will say the present state, let us say S0 

and say the input being tested X is 0, goes to S2 and the output is P. If X is 1, it goes to S1 

and next state is again P and so on. Now as I have only 1 input so X is 0 and 1 then I can 

go to S1 and start writing the table. But in practice, in the real system there are several 

inputs. 

In a large number of inputs, all these inputs have to be given here. Supposing instead of 1 

input X, it has a set of 7 or 8 inputs, all the 8 inputs have to be given here X, Y, Z, P, Q, 

R, S, T, whatever it is. If each of this input is 0 or 1, what is the next state? For 1 input, I 

have to take 2 rows of the ROM table. 2 rows of the ROM entry are required for 1 

variable. If there are 2 inputs there will be 4 rows required. The number of rows in the 

ROM will depend on the number of inputs in the system, so that if there are 8 inputs for 

example, each input will have 2 to the power 8 that is 256. Like that for each state, 

suppose there are 12 states, the number of rows in the ROM table will be 12 times two to 

the power 8 that is 256 and it becomes an enormous table. 

But most of the times in a 0 state the only input of significance is X. There may be Y, Z 

and so many other inputs; but, these inputs are not considered instead of S0. But because 

you have to give the complete table of what happens in state S0 when input X is equal to 

0, Y is equal to 0, Z is equal to 0 and all other inputs are 0, then what happens to the state 



S0 when x is equal to 1 and all other states are 0 and then when x is equal to 0 and y is 

equal to 0 and so on. 

Keep on writing it even though we do not have any significance of them. The only 

variable of interest in state S0 is X which is kept very easily written in 2 lines but because 

I have more than 1 input I need to complete a table. ROM is a truth table; remember that. 

ROM table is nothing but a truth table of a system. In a truth table I should give all 

possible input combinations whether they exist or not; whether they are practical or not. 

If the system has 8 inputs, all the 8 inputs in all the conditions should be available for 

each of the states. That makes the table very large and the ROM size very large -to make 

the table is cumbersome. 

(Refer Slide Time: 16:05) 

 



 (Refer Slide Time: 16:12) 

 

So in a microprogrammed approach what I am going to do is, I will replace this ROM 

table by what is known as a microprogrammed table. When I say the present state, input 

to be tested and if the input is true what happens and if input is false what happens? 

Present state is S0 and input tested is X; if X is true it goes to S1, if X is false it goes to S2 

and what is the output in this state? It is P. I am going to replace for each condition to be 

tested this condition to be tested is called a qualifier; it is a name for a qualifier. 

Each qualifier to be tested will make only 1 row in the microprogrammed table. That 

means my memory will be much smaller now because I have to implement this table; 

earlier it was huge -so to make a microprogrammed table is very simple. More than 

making it, to implement the microprogrammed table is also very simple. So I am going to 

have a smaller size of ROM, smaller size of memory in a microprogrammed approach. 

Let me explain this problem with a simple example: we will consider an ASM chart like 

this. 



(Refer Slide Time: 18:16) 

 

I have an ASM chart with 4 states. To make it very simple at the same time make it very 

clear. I have chosen an example with only 4 states. Let us call the states S0 S1 S2 S3 as 

usual. Let us say there are only 2 inputs in this: P and Q are the qualifiers. If P is true it 

goes to S1 and the cycle is from state S0 straight to state S1. If P is false it goes to state S2 

from S2 to S3, there is an unconditional transition. In S3 qualifier Q is tested. If Q is false 

it remains in S3; if Q is true it goes to S0 (Refer Slide Time: 19:48). It is a very simple 

ASM to illustrate the method of microprogramming an ASM chart for implementation. 

I have 4 states S0, S1, S2, S3, we will assign binary values 0 0, 0 1, 1 0 and 1 1 in a natural 

binary sequence. There are 2 qualifiers P and Q, Let us call the 3 outputs A B and C: 

Output of S0 let us call A; output of S1 as B; output of S3 as C and S2 has no output. That 

means I have here a table with 4 states, 2 qualifiers and 3 outputs. How to do a 

microprogrammed table out of this? Once you have a microprogrammed table, that table 

is implemented with the ROM, so it becomes a microprogrammed ROM. 

So instead of making a generalised or straight forward ROM table, we will do a 

microprogrammed ROM table. That is all. 



(Refer Slide Time: 21:36) 

 

Here I am going to have the following things for Microprogrammed ROM Table: The 

circuit is going to be in one of the present states, so I will call this present address. There 

are only 4 present addresses; binary value 0 0, 0 1, 1 0, 1 1 or if you want to write in 

decimal 0, 1, 2 or 3. Next, I am going to have the next qualifiers to be tested which are P 

and Q, so I need an index. The qualifier to be tested has to be given a binary value. What 

do you mean by qualifier index? This qualifier index will tell you which of the qualifiers 

is being tested in the current state we are considering. Considering state S0, qualifier tester 

is P; in state S1 no qualifier is tested; in S2 no qualifier is tested; in S3 qualifier Q is tested. 

We should have an index for that. 

We will say P is equal to 0, Q is equal to 1, this is called qualifier index. If the qualifier is 

true what happens and if the qualifier is false what happens? If the qualifier is true it goes 

for 1 state; if the qualifier is false it goes for another state. I should have a true address 

and false address. What are the outputs? Outputs can be again coded. 

There are only 3 outputs A, B, C. I can have an output index; no output is 0 0, A is 0 1, B 

is 1 0, C is 1 1. This is called output index. My job is very simple; I am at present address 

0 0, qualifier being tested instead A is P which is serving an index as 0. If it is true it goes 



to 0 1 which is the true address. If it is false it goes to 1 0 and output index is A which is 

0 1. 

That is all, this state is considered. Earlier if it had been a ROM based approach I would 

have written with A is equal to 0 0, if P is 0, Q is 0 what happens, if P is 0 Q is 1 what 

happens, if P is 1 Q is 0 what happens, if P is 1 Q is 1 what happens. I should have 

written four rows. Now instead of 4 rows I am writing only 1 row. That is the 

simplification I am talking about, both in the design as well as in the hardware. Then 

going to the present address 0 1. 

I will write it in the natural sequence, what is the qualifier being tested? In state S0 no 

qualifier is tested because if circuit is in state S1 it has to go to S0 no matter what. There is 

no qualifier to be tested. When there is no qualifier to be tested I do not have any index 

for that. But what I can do is I can use any index; I can either test P or Q, so I will put P is 

equal to 0 as the index to be tested. Make sure both for true address and false address you 

write 0 0. What I mean by this is: in circuit when it is in S1 we may have a qualifier 

whether it is true or false the address is going to be the 0, the next state. From S1 it goes to 

S0 that means from 0 1 it goes to 0 0, irrespective of whether the qualifier index is present 

or not, then output is B which is 1 0. 

(Refer Slide Time: 28:56) 

 



Now the next state is 1 0 that is present state S2. Again no qualifier to be tested and both 

cases the addresses to go to 1 1 and there is no output. Finally S3 which is 1 1; qualifier to 

be tested is Q whose index is 1. If it is false it goes to 1, if it is true it goes to 0 0. Output 

of state S3 is C which is 1 1. This completes my microprogrammed ROM table. I need to 

implement this in a ROM. I give the present address and as soon as I give the present 

address it has to give the qualifier index is 0; it has to give this true address value, it has 

to give this false address value and it has to give the output index. So what will be the 

size of my ROM? Size of microprogrammed ROM …this is my address, these are the 

outputs; so 4, 2 power 2, 2 address lines, 2 times the width of the ROM is 1, 2, 3, 4, 5, 6, 

7; is equal to 2 to the power of 2 times 7 which are the number of bits, the width of the 

ROM. 

(Refer Slide Time: 30:39) 

 

In a traditional ROM approach, these 4 states would have given 2 qualifiers and 3 

outputs, if I implemented this using a ROM to try to give you a traditional ROM based 

approach: 4 states will require 2 variables, 2 inputs, 2 qualifiers that is my P and Q. It will 

give me the output in the next state and outputs can again be coded (Refer Slide Time: 

31:49). If I want I can code it, the output code, into coded to 2 bits. 



Size is 2 to the power of 4 times 4 bits which is 16 times 4 is 64 bits. Here it is 2 to the 

power of 2 times 7 which is 28 bits. We can see the difference; 2 power 2 is 4, 4 times 7 

is 28 bits in size; 2 power 2 is 4, which is 16 times 4 is 64 bits. This is only for 2 inputs. 

Remember, as the number of qualifiers increases the address lines increases; the address 

lines come in exponential. Size of the ROM is determined by the exponential address 

line. On the other hand, when I have more qualifiers, only the qualifier index is going to 

increase. Even with the 2 qualifier example, I am sure I have shown you the size of the 

ROM is considerably small, but as the number of inputs increases there is an exponential 

increase in the ROM size in the traditional approach; whereas in the microprogrammed 

approach it is only linear increase. 

There is a lot of difference between the linear increase and an exponential increase and an 

exponential increase will very soon reach the very large size which is unmanageable both 

in terms of desire and cost. As I said not only it is the cost and the size, it is also the 

programming inconvenience. To write a ROM table with so many inputs becomes a 

nuisance and tedious. Now, what is the hardware, now of course this is the hardware for 

ROM based approach. What is the type of hardware for the microprogrammed approach? 

(Refer Slide Time: 34:30) 

 



Hardware for the micro programmed controller: I need to have a ROM of course which is 

where we are going to store the microprogrammes called the microprogrammed ROM. I 

will call it MICRO PROM. Input address is given; in this case there are 2 address lines in 

this particular example. The size will vary from problem to problem depending on the 

number of states and number of input qualifiers. Then we have the qualifier index given 

to a multiplexer; a qualifier index we will call n. The qualifier index chooses the 

qualifier; the qualifiers are in this case P and Q. The qualifier index is given to a 

multiplexer, which chooses between the 2 qualifiers P and Q and the value of P and Q is 

given to another multiplexer which is given the true address TA and the false address FA. 

If this is false it will select this address, if it is true it will select this and this becomes the 

address of this ROM for the next state. 

Given 2D flip-flops; present address, next address and clock. The output index goes 

through a decoder into no output, A output, B output, C output. These are 2 addresses, so 

this has 2 lines, P and Q are qualifiers with value true or false that is selected by this 

multiplexer and this multiplexer gives the new address, next address is also 2 bits and that 

is stored by these 2D flip-flops here and given as next address. So there is an extra logic. 

This is the PROM? Here we have the flip-flops and the PROM; 2 bits of 2 bits no 

problem and the output code has to be here also in output code to be DECODER. So that 

part is also common. What is extra? DECODER, no output A, B, C .what is extra in this? 

1 multiplexer with n inputs and n control inputs and 2 to the power of n inputs and 

another multiplexer with 2 inputs but it has be series of multiplexers because there will be 

a 2 address so they will be a 2 of this, this is 2 into 2 to 1 multiplexer 2 numbers, this is 2 

to the power of 1 multiplexer, 2 to 1 multiplexers - 2 numbers. 

These are the two extra things. On the other hand, I say the size of the ROM even for a 2 

bit as I said, even for 2 qualifiers, the size is less than half and if it is going to be more 

qualifiers the size is going to be enormously small at the cost of some extra multiplexers. 

But more important than that is the versatility, programmability. I can do it very elegantly 

as it is an elegant design. 



This is the final circuit of the Hardware for Microprogrammed Controller. And as I said n 

is the qualifier index, TA for true address, FA for false address. Elegant design, fine -we 

will have to see a practical example, we will see next time. Before that I want to tell you 

one more thing: This true address and false address; 2 addresses I have to give for each 

line. If the circuit is in present state and if qualifier is true it goes here, if the qualifier is 

false it goes here.- 2 addresses Even when there is no qualifier to be tested I have to give 

a true address and a false address, 2 fields both the same. For example, this does not have 

a qualifier in S0 0 1, we do not have a qualifier but still we put an artificial qualifier as 0 

and give the true address as 0 and false address also 0. Giving this an extra field of the 

false address can be removed if I can make some minor changes in my ASM. 

To make a minor change in my ASM, I can make 1 address as an increment of the 

previous address, that is: 1 added to the previous address and the other address is a 

different address. I can eliminate 1 true address field completely. Of course, the size of 

the ROM is going to be same interval where the address is 2 to the power of n. But the 

other 1 into 7 bits, the number of output bits can be reduced by removing 1 address from 

the original design. This approach is called single qualifier double address 

implementation in which there is a true address and a false address. I can remove 1 of the 

address and change it a single qualifier, single address microprogrammed design which 

means I can eliminate 1 of these 2 columns and reduce and shrink the size of the ROM. 

Further, I need to make a minor change in the ASM; I am going to remove a binary 

addresses. That is all. I am not going to do anything else because, I cannot change my 

ASM. ASM is what I have to implement. 

What I am going to do though, is to change the addresses as we know. I am going to call 

them differently, I am going to call this address 0 0, S1 I am going to call 0 0, this one I 

am going to call 0 1 and this one I am going to call 1 0. Size of the ROM has been 

reduced because the number of address lines of a microprogrammed ROM is much 

smaller compared to a conventional traditional approach. Having done that I want to 

reduce the size of the ROM in the sense,the width of the ROM, the word size for each 

address how many bits are there? In this case it is 7; I want to see if I can reduce it. That I 

can do by reducing one of the addresses; instead of storing 2 addresses for each of the 



present addresses, I will make it only 1 address. That is what single qualifier single 

address. But I cannot change the ASM -ASM is what I need to implement. 

We are going to make minor changes in the hardware in the addressing scheme. I am 

going to get 0 0, 0 1, 1 0, 1 1. There is logic here, this is not arbitrary. I will tell you how 

to do it next time. I am going to tell you how it is going to reduce the hardware and in the 

next lecture I am going to tell you the logic behind this and also the implementation. 

When there are no qualifiers we need only one address, we are writing two addresses 

unnecessarily. When there is no qualifier 0 1 or 1 0 we are unnecessarily reducing two 

addresses which are both same. I can eliminate one of them. There is no problem about 

states where there is no qualifier. For states for which there is a qualifier I want to make 

one of them one more than the present address. That is all I need to do. This state has a 

qualifier, A state S0 as a qualifier 1 0 is next to 1 1.One of the addresses has to be 

incremented or 1 more to the present address only if there is a qualifier. If there is no 

qualifier that rule need not be followed. From B it goes to A, 0 0 to 1 0 no problem 

because there is no qualifier. Similarly, from S2 to S3 there is no qualifier so it goes from 

1 1 to 0 1. 

But in state S3 if the qualifier Q one of the addresses has to be one more than 0 1.one 

more than 0 1 is 1 0. If the qualifier is true I go back here, so 0 1 becomes 1 0 if it is true 

and 0 1 becomes 0 1 when it is false. The rule is simple; whenever there is a qualifier 

make one of the next addresses one more than the present address. When there is no 

qualifier there is no such rule (Refer Slide Time: 48:50). If you make that rule very 

simple, my table will change. 



(Refer Slide Time: 49:24) 

 

I need to know the what is the present address, what is the qualifier index and what is the 

next address. I need to write true address or a false address so the next address is true 

address or false address and the output code. 

So I am going to eliminate 1 address; next address is now only one, not next address true 

and next address false. I am going to eliminate that. I am going to increase 1 extra bit 

here so I may have to increase 1 bit but then the address is more than 1 bit. Generally, in 

this simple example itself it has 2 bits but in practical examples the addresses are large 

number of bits so there is no problem about that. But with 1 extra bit I am able to knock 

off the next address. For the same table, same ASM, how to write the revised 

microprogrammed ROM table for a single qualifier single address mode? We will see 

that and what is the hardware change we make. In the next lecture what we will see is 

how do you write the single qualifier single address table for this example and how do 

you implement it. What change in the hardware are you going to make? And after seeing 

that we will take one practical example of the one of the problems we have seen several 

problems earlier and do it again. 

Thank you. 



Summary of Lecture 21 

(Refer Slide Time: 51:44) 

 

(Refer Slide Time: 52:03) 

 



(Refer Slide Time: 52:28) 

 

(Refer Slide Time: 52:48) 

 


