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In the earlier course on digital circuits, we would have seen the design of combinational 

logic; there the approach would have been to minimize the number of gates used in the 

design. There are conventional techniques such as, karnaugh maps to reduce the number 

of gates to be used in implementing a given function. These conventional techniques are 

good, provided the circuits are simple. In today‟s technology we design circuits, which 

are, very large, extensive and of course complex. Complexities can always be 

implemented with whatever gates available. It is the size of the circuit, which is of 

concern here. 

If you have a huge circuit to be implemented using gates and karnaugh maps, the design 

becomes extremely difficult. Another thing you would have learnt in the karnaugh map 

approach is, even though the circuits rely and use AND, OR invertors, sometimes you are 

asked to manipulate the circuit to use specific type of gates, such as NAND gates for 

example. In that case, you take the simplified function using karnaugh maps and 

manipulate it using a given type of a gate like the NAND gate. These techniques are as I 

said, good to be used for small circuits. 

When the circuits become larger, as in today‟s technology, we need it to look at other 

methods. These other methods revolve around the available components; you would 

decide on the hardware that you would use to implement the circuit and try to map your 

circuit functions on the available hardware. For example, in today‟s technology like, field 

programmable gate arrays, you have the capability of 100,000 gates or 10,000 gates or 

4000 gates etc. So, when you look at the function, I will simplify it such that it can be 

fitted into that available gate. 

Before going to that level, the scope of this entire course is on IC design and digital VLSI 

design, we shall go one step further than the gate level implementation. Mapping of the 

given function onto an available hardware or given hardware is the theme of the VLSI 

design; that is the emphasis of VLSI design. In order to get there, we shall take it one step 

at a time. Let us look at some of the smaller, less complex components of hardware and 

see how our circuits can be mapped on to this. 

As an example of this approach we will talk about multiplexers; let us take multiplexer 

designs as an example of fitting a design onto an available hardware. Let me say, a 



Multiplexer based design (Refer Slide Time: 05:49). All of us know what a multiplexer 

is. A multiplexer is a component, with several inputs and 1 output; let us say 4 inputs and 

1 output; and which of these inputs gets connected to the output depends on the inputs 

known as selector inputs. In 4 to 1 multiplexers, where there are 4 inputs and 1 output, we 

need to have 2 selector inputs so that, one of these 4 can be selected at a time to the 

output. Let us call these inputs; I0, I1, I2 and I3, for inputs 1, 2, and 3. The selectors are S1 

and S0 and the output as F. We can write the function F as: F is equal to I0 if both the S1 

and S0 are low, zero, S1 bar S0 bar I0; if it is 0 1, that is S1bar S0, I1 which is the output; if 

input is 10 then S1 is 0, it is S1S0 bar output is I2 and finally when both are 1, output is … I3  

This is a multiplexer, which selects from a given number of inputs, one output, one of the 

given number of inputs, one of the inputs as outputs and this output that is selected 

depends on the selector combination. This component can be used to design a 

combinational logic. Now this is not a gate approach, but it uses gate because we know 

that a multiplexer cannot be built without gates. If you break into the multiplexer you will 

still find AND gates and OR gates. Like other combinational logic, everything can be 

reduced to a basic set of „AND‟ „OR‟ inverters or a universal gate such as a NAND gate 

or a NOR gate combination. It is not necessary for the designer to know the inside of this 

component. If the input output specifications of the component are given, the designer 

should be able to fit the required design into these pieces of hardware. This is what is 

known as a level higher than the gate level. A level in which the hardware is given to you 

and that hardware is used to fit in the given design. Sometimes it may not fit, because the 

design requirement is larger than the available component; that case we will have to see 

how to do that. That we will see later on. 

Let us continue with the example by trying to implement a one bit full adder using 

multiplexers. Let us look at a one bit full adder whose inputs are, a, b and carry. We shall 

call this: ai, bi and ci minus 1, (Refer Slide Time: 09:39) which was carried from the 

previous stage, and call the output as Si and Ci. The truth table for this would be: 



 

This is a well known truth table, seen it numerous books. This table can be implemented 

using gates. This is done by drawing one karnaugh map with ai, bi and ci minus1 as inputs 

and Si as output, an 8 cell karnaugh map and another karnaugh map with ai, bi, ci minus 1 

as inputs and Ci as output, again an 8 cell karnaugh map. Then you simplify them and 

implement these two simplified functions for Si and Ci. It can also be implemented using 

gates. If we are asked to use only NAND and NOR gates, then we have no further 

manipulation. But right now we are going to see if it can be implemented using an 

available component. Now if we were told to use only multiplexers by the person who 

has given the problem to us and we had the choice of multiplexer type, we would choose 

a multiplexer with 8 inputs and 1 output. 
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If we had 8 inputs, I0 to I7, then we need 3 selectors S2, S1, and S0. That will be the 

simplest possible implementation. So we are going use a multiplexer with 8 inputs and 1 

output; 8 to 1 MUX where output F is nothing but Si. We need to connect our selectors, 

ai, bi, ci minus1 and connect it to 8 inputs I0, I1, I2, I3, I4, I5, I6, I7, with corresponding values: 

0,1,1,0,1,0,0 and 1. Whatever the combination is, the corresponding input will be 

connected to the output. 

For example, if you take the combination 1, 0, 1 where ai is 1, bi is 0 and ci minus1 is 1, 

then the output should be 0. 1, 0, 1 corresponds to the I5, which is connected to 0, and 

then output will be 0. This is the simplest implementation. We have not reduced the 

karnaugh map nor have we drawn the karnaugh map, we have simply mapped on the 

available hardware, namely, the multiplexer, by our given design specification. This is 

straightforward and simple. Another multiplexer will be required in order to finish the job 

and to do Ci. So we will use the same inputs as selectors, S2, S1 and S0 and the inputs 

from I0 to I7. In this case we will put 0, 0, 0, 1, 0, 1, 1, 1 corresponding to the inputs. This 

is similar to the previous multiplexer and it gives us our Ci output carry. This means that 

2 outputs Si and Ci corresponding to the 2 outputs of the full adder with 8 inputs can be 

implemented using 2, 8 to 1 multiplexers. This fits the available hardware into the design 

specs. 



Today that is gaining momentum because these are simple examples of full adder. 

Usually to do this, we would probably do exclusive „OR‟ gates and simple „AND‟ gates, 

as we are used to in the previous course. Some may think that this is simpler, but think of 

this example growing, with larger number of inputs and more and more complex 

functions. The mapping of these available components, especially we are talking today of 

circuits which have functional complexities that are equal to tens of thousands of gates, 

we would have gone with this type of readymade component rather than writing a 

karnaugh map or using other techniques by which you can simplify, to say so many gates 

are being used. It is not gate optimization that is important today, it is the fitting into your 

available hardware to the given design. In an integrated circuit design the essence is to fit 

into the available or the given hardware as much functional complexity as possible. 

Optimization of course; this is a waste of 2, 8 to 1 multiplexers (Refer Slide Time: 16:29) 

This is the approach I want to show; this might not be the best way to do it. Can I 

optimize it? Instead of using 2, 8 to 1 multiplexers I would say is an overkill for this 

simple problem. There is a simpler way to optimize this. Instead of having 3 variables as 

selectors and 8 inputs, if I have only 4 inputs and 2 selectors; suppose I put a restriction. 

The person who gave this problem said “use a multiplexer but do not use 8 inputs, use 

only 4 inputs”. Similar to the karnaugh map case, where, instead of using „AND‟ gate and 

„OR‟ gate invertors we were told to use NAND gates for further manipulation, the same 

concept applies here (Refer Slide Time: 17:57). Instead of having 3 variables as selectors 

and 8 inputs, we are made to use a 4 input multiplexer (I0 to I3) with 2 selectors (S0 and 

S1). Let us assume we use ai and bi as selector inputs out of the 3 selectors. Instead of 

going to the truth table and designing line by line, we shall take ai and bi to be 0. There 

are 4 combinations possible here, let us identify these combinations. The first 

combination: ai and bi are 0, second combination is ai is 0 and bi is 1, third combination is 

ai is 1 and bi is 0 and the fourth combination is ai and bi are 1 (Refer Slide Time: 19:54). 

Now let us see how to do this, earlier we had one row corresponding to each input. We 

looked at the first row; found the input as 0 and connected to 0; second row found the 

input 1 and connected it to 1. That was easy, but now for the mapping we have to do 

more exercises here. 
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Now these two rows together correspond to the first input here, where ai and bi both are 

0. That means, in order to get Si, Si is 0 when ai and bi are both 0. Si is 1 when ai and bi 

are both 0. What distinguishes this row from the previous row is the ci value, if the ci 

minus1 is 0, then the output is 0. When the ci minus 1 is 1, then the output is 1. This means the 

output Si is the same as ci minus 1 (Refer Slide Time: 20:39). So instead of connecting a 0 

or 1, we are going to connect ci minus 1. Let us go to second combination if ci minus 1 is 0 

then we get output 1 and when ci minus 1 is 1 we get the output 0, so this would be ci minus 1 

bar. Likewise in the third case it is ci minus 1 bar and finally when both ai and bi are one, 

then ci minus 1 is 0, the output is 0, Si is 0 and ci minus 1 is 1, then the output is 1; this will be 

ci. So now we have added to the extra restriction of using only 4 to 1 multiplexer, rather 

than 8 to 1 multiplexer and arrived at this. 

We can repeat this for the next case. In the first combination both are 0 if Ci is 0. In the 

second combination ci is 1 if ci minus 1 is 1. Third combination ci is 1 if ci minus 1   is 1. 

Finally, if ci is 0 or if ci minus 1 is 0 in both cases, output is 1. In this case, the design has 

4 inputs and 1output and we are able to get a Si function and a ci function. There are two 

significant things we have to see in this design; one is that we have reduced the size of 

the multiplexer from 8 to 1, to 4 to 1. We are not using any extra logic here, the only is 

that thing ci minus 1 is an input. We can use that input straight away, but an inverter is 

required here. ci minus 1 requires an inverter here, in the true form and in the 



complementary form, true form complementary form and true form. So we need an 

inventor here, maybe we can replace the ci minus 1 by an inverter. In the second 4 to 1 

multiplexer there is no inverter required. By adding just one extra inverter (Refer Slide 

Time: 23:17) we can reduce the design from 2, 8 to 1 multiplexer to 2, 4 to 1 multiplexer. 

The other significant feature of the design is that normally, these multiplexers come in 

dual packages, we cannot buy a single 4 to 1 multiplexer in the market, we have to buy a 

twin package. In 1 IC we will get 2 of these 4 to 1 multiplexers. We can get 1 IC package 

and use both the 4 to 1 multiplexers for the entire design, instead of 2 different IC 

packages. 

(Refer Slide Time: 23:55) 

 

The above concepts, by using multiplexers and full adders as examples, help us 

understand clearly how to proceed using an available component. These concepts are 

simple, for as the problems get bigger, we can get more and more complex circuits using 

multiplexers. It can be proved, just as we had proved in our earlier combinational logic, 

all logic functions are implemented using „AND‟ „OR‟ inverters to start with and can 

further be simplified using NAND gates or NOR gates. So it can be proved that all the 

combinational logic can be derived using multiplexers. Today there are ICs available 

with huge number of multiplexers inside them and we can program those multiplexers 

and interconnect them any way, in order to realize any complex function that we want to 



implement. Any complex function you implement today, VLSI you call it; you take an 

array of multiplexers, some of them in one package, you can interconnect them and 

implement various functions automatically. We will see some of them later on in this 

course. 

Multiplexers are not the only component; there are other components like the decoder, 

which is used frequently. This component is also seen in the course „Digital design‟. The 

decoder is a circuit, which has several inputs and several outputs and the outputs are 

related to the input by a code. For example, let us take a simple case where we have 2 

inputs and 4 outputs, this is called a 2 to 4 decoder (Refer Slide Time: 26:21). Let us call 

these inputs a and b and the output as O0, O1, O2, O3, meaning, output 0, output 1, output 

2 and output 3. O0 is 0 when both and b are 0 this output is high and less than low. So 

output will be „a bar, b bar‟. If „a‟ is 0 and „b‟ is 1, then it is „a bar b‟, here the output 1 is 

active. Output 2 is active when, a is 1 and b is 0, which is „a b bar‟ and finally, when both 

are 1 output 3 is active (ab). This is an example of a decoder. This is again a packaged IC 

that is available in the market, which we can use to implement a given logic function, 

rather than going to the gate level and unifying and simplifying it. 

Now let us see, how to do a problem, similar to the full adder using a decoder. We could 

use a 3 to 8 decoder, where we have 3 inputs - let us call them ai, bi and ci minus 1 and 8 

outputs O0 to O7. This is a simpler design, compared to the 8 to 1 multiplexer. The 

decoder gives us outputs corresponding to the combination of the inputs. Based on the 

combination of the inputs, the corresponding output will be high and the rest of the 

outputs will be low. Now for a sum Si, we need the outputs 1, 2, 4 and 7(Refer Slide 

Time: 28:46). So the output will be high, whenever these combinations are occurring, 

these outputs will be high and the sum is nothing but the „OR‟ of these. The sum is this or 

this or this or this (Refer Slide Time: 29:11). 

All we need to do is put an „OR‟ gate to the output and tie them together and call it Si. 

Now for the carry we want the outputs 3, 5, 6 and 7. Put these outputs together with 

another „or‟ gate and we get ci. Now with one simple 3 to 8 decoder, with 2 „OR‟ gates 

we can implement the full adder circuit, as given in the truth table. There is one catch 

though; the decoders generally do not come with active high outputs. In the decoders, 



which are generally available in market, the commercial decoders, the outputs are active 

low, which means when we choose a combination the corresponding output will be low 

and the rest of the outputs will be high. For example; if this is 0, 0, 0, O0 will be 0 and all 

others are high; if we take 0, 1, 1, which corresponds to the combination, O3; then O3 will 

be low and all others will be high. This is called active low combinations. 

Usually in the decoders the outputs are selected based on the input combination. In this 

case, for example, if all are 0, 0, 0, then the output will be high and rest of them will be 0. 

This is called active high, where the output is high. In active low outputs with inputs a 

and b, output will be will be: a bar b bar, bar, next one will be: a bar b, bar then, a, b bar, 

bar and ab bar. 

(Refer Slide Time: 33:35) 

 

Which means, applying Demorgan‟s theorem, this will be a or b, this will be a or b bar, 

this will be a bar or b and this will be a bar or b bar. So what we get is not this, but this 

(Refer Slide Time: 33:32); that has to be factored into the design of the full adder. When 

we use that logic here, our gate combination will be changed. Using my active low 

outputs, if I use my input as ai, bi, ci minus 1, the outputs will not be 0, but O0 bar, O1 bar, O2 

bar, O3 bar, O4 bar, O5 bar, O6 bar and O7 bar. 
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To get out output functions Si and ci, using the 3 to 8 decoder, with active low outputs 

and inputs ai, bi and ci minus 1, we have to do some manipulation. What I want is the sum is 

the output will be 1 or 2 or 4 or 7. Our output requirement from the truth table of the full 

adder is: Si is equal to 1 plus 2 plus 4 plus 7. It can also be written as 1bar.2bar.4bar.7bar, 

if we use the Demorgon‟s theorem (Refer Slide Time: 36:29). Since we have 1 bar, 2 bar, 

4 bar, 7 bar, all we have to do is to take these take this put them into a NAND gate. 

(Refer Slide Time: 37:20) 

 



Likewise my carry (Ci) would be: 3 or 5 or 6 or 7 which are the same as 3 bar and 5 bar 

and 6 bar and 7 bar, whole bar. Now we take these and add a NAND gate. 

(Refer Slide Time: 37:55) 

 

Now we got our 1 bit full adder, using a 3 to 8 decoder, with ai, bi and ci minus 1 as our 

inputs and Si and Ci as our outputs, with an active low output for the decoder. We have 

seen an example using the decoder that is another way in which hardware can be 

implemented; wherein, you fit into the design specification in the available hardware. 

Multiplexer was the first example we saw and decoder was the second example. We used 

the decoder example, to show that multiplexers are not the only component that can fit in 

a design using the available hardware. But let us switch back to the multiplexers again, to 

see some other interesting features of the multiplexers based design. 

In FPGA based designs, where FPGA stands for Field Programmable Gate Arrays, We 

saw this term in the introduction and will see more in these lectures. A lot of the 

functions are available on a single chip. We have to map the designs to these functional 

blocks within the chip. The multiplexers are a major component or major functional 

block, available in these FPGAs. For this, reason let us go back to the multiplexer and see 

more interesting things about it. 

The example we took in the multiplexer case was a 1 bit full adder, first we used 2, 8 to 1 

multiplexers, then using the same example we implemented 2, 4 to 1 multiplexers, this 



reasonably reduced the size and a single package can accommodate 2, 4 to 1 

multiplexers. In a given environment of a FPGA or a large IC - VLSI design, you may 

not have multiplexers of different sizes available to you, whereas functional requirement 

may be different. There may be several functional requirements, requiring multiplexers of 

different sizes, but within a single chip of the FPGA, only one type of multiplexer may be 

available, that means the given number of inputs and given number of outputs will have 

the same type of function. Several of them, in fact hundreds and thousands of them might 

be available, but all of them will be the same type. Functional requirement would be 

different in some cases and may have a fewer inputs and one output or in some cases, 

may have large number of inputs and an output. So to tailor or reduce the input/output 

specification to the type of multiplexers available on the chip, we shall see a few 

examples. 

Let us take a function, which would normally require an 8 to 1 multiplexer (with 3 inputs 

and 1 output), but in case we are told to use 2 to 1 multiplexers (with 2 inputs and 1 

output), with no restriction on the number of multiplexers to be used, but I will have a 

restriction on the type of multiplexer used. Let us take an example of the function F 

which would be; F equals xy plus xz plus yz. In this function there are 3 variables; we 

would normally use 8 to 1 multiplexers with I0 to I7 with inputs x, y, and z and output F 

(Refer Slide Time: 42:17). But, in this case we will implement it using only 2 to 1 

multiplexers. Even though there is no restriction on the number of 2 to 1 multiplexers, we 

shall try and keep the number to a minimum of 2 to 1 multiplexers. 
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I am going to rewrite the function here and select a 2 to 1 multiplexer; we can have only 

1 selector variable, whereas we have here 3 selector variables. We have to choose either 

x, y or z as a selector variable in each case and one of these can also be an input variable. 

We would use one variable in the first stage another in the second stage and the third 

variable would be an input variable. We shall first rewrite the function using x as the 

selected variable, that is, we would rewrite this as: x bar (yz) plus x (y plus z plus yz) 

(Refer Slide Time: 44:30). The x bar yz, combines with the x, yz to become yz, which 

implies that we have succeeded in rewriting this function F in this form. Therefore we 

can use a multiplexer with 2 inputs controlled by x, where „x‟ is the selector input. So 

when x is 0 the input would be yz, which would be connected to the output of the 

multiplexer and when x is 1 the input would be y plus z plus yz, which would be 

connected to the output of the multiplexer. This would require gates, since yz can be 

realized only using gates and y or z or yz requires another „or‟ gate. Even though we use 

only 1 multiplexer this would not be a good solution. 

In a multiplexer with x as the selector input and Io and I1 as the inputs, when I0 

corresponds with x it will be yz and when I1 corresponds with x it will be y or z or y z. 

The yz would require a 2 input „AND‟ gate and the y or z or yz would require a 2 input 

„AND‟ gate and a 3 input „OR‟ gate. Let us try and further simplify this, by calling the 

function ys as A and the whole function y or z or yz as B (Refer Slide Time: 46:30). 
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Let us write A and B individually in terms of y. We shall write A as y bar (0) plus y (z) 

and B as y bar (z) „OR‟ y (1plus z). This can be expanded to y bar z plus y plus z, since y 

bar z plus y is y plus z, it can be written as y plus z plus yz. B can be rewritten as y bar 

plus y into 1. 

(Refer Slide Time: 47:50) 

 

We can therefore, have A and B expressed as multiplexer expansions with y as a selector 

variable. This can be implemented in the first stage as; the A function, which will be 



obtained by giving y as the selector input, 0 as the first input and z as the second input. 

The second multiplexer which will implement B will have z as the first input and 1 as the 

second input. Now A and B together, can implemented, using a third multiplexer with x 

as the selector input and F as the output. All of them use 2 to 1 multiplexers. In effect, the 

given function, which would normally require an 8 to 1 multiplexer, has been replaced 

with 3, 2 to 1 multiplexers, by rewriting these equations in such a way that we only have 

2 inputs and 1 output for each, but we required 3 multiplexers. 

(Refer Slide Time: 49:45) 

 

In the FPGA there are so many multiplexer functional blocks of the same type, where the 

number is not restriction; we can go on adding any number of multiplexers, in order to 

realize the function. This is the essence of the VLSI design. That is to say, a huge 

function, that has several inputs and several outputs, which has several functional blocks 

with variable number of inputs and variable number of outputs, can be mapped onto a 

uniform hardware, where a uniform type of a functional block that will be available to be 

used for synthesis. We will stop with this and tomorrow we will see how to do using 

programmable logic device. 

Summary of Lecture 2 

Combinational Circuit Design 
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